
The Sin
erity Manual

Version 1.0-beta14

Main text written by Tal Liron

July 26, 2015

Copyright 2011-2015 by Three Cri
kets LLC.

This work is li
ensed under a

Attribution-NonCommer
ial-ShareAlike 4.0 International Li
ense.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

I Basi
 Manual 4

Introdu
tion 4

Prin
iples . 4

Lather, Rinse, Repeat . 4

Why JavaS
ript? . 8

Comparisons with Other Solutions . 9

Tutorial 10

Install Sin
erity . 10

Working with the Command Line . 10

Working with the Graphi
al User Interfa
e (GUI) . 12

Environment Variables . 12

Components . 12

Working with a VCS . 15

Working with Do
ker . 16

FAQ 18

II E
osystem 18

Core Plugins 19

Container . 19

Repositories . 20

Dependen
ies . 20

Artifa
ts . 22

Pa
kages . 24

Delegate . 24

Templates . 26

Short
uts . 26

Help . 26

Shell . 27

JavaS
ript Shell . 27

Java . 28

Language Plugins 28

JavaS
ript Plugin . 28

Python Plugin . 29

Ruby Plugin . 29

PHP Plugin . 30

Lua Plugin . 31

Groovy Plugin . 31

Clojure Plugin . 31

Feature Plugins 32

Sin
erity Standalone Plugin . 32

Logging Plugin . 32

Servi
e Plugin . 34

Redistribution Plugin . 36

Markup Plugin . 37

Batik SVG Plugin . 37

JsDo
 Plugin . 37

2

Skeletons 37

Nexus Skeleton . 38

Solr Skeleton . 39

Hadoop Skeleton . 40

OrientDB Skeleton . 40

H2 Skeleton . 41

Jetty Web Server Skeleton . 42

Jetty Servlet/JSP Skeleton . 43

Restlet Skeleton . 44

Felix Skeleton . 46

Pruden
e Skeleton . 46

Diligen
e Skeleton . 47

Rails Skeleton . 47

Django Skeleton . 48

LWJGL Skeleton . 49

Libraries 50

The Sin
erity JsDo
 Template . 50

MongoDB JavaS
ript Driver . 50

III Advan
ed Manual 50

Programming 50

S
ripturian . 50

The Sin
erity JavaS
ript Library . 50

Extending Sin
erity 51

Developing Plugins . 51

E
lipse Integration 52

Installing . 52

Preferen
es . 52

Sin
erity Proje
ts . 52

Sin
erity Laun
h Con�gurations . 52

Debugging . 52

Pa
kaging 52

The Sin
erity Pa
kaging Plugin . 52

How to Create a Sin
erity Pa
kage Using Maven . 53

Repositories 55

Spe
i�
ations 55

Sin
erity Pa
kages . 55

3

Part I

Basi
 Manual

Introdu
tion

Sin
erity is a tool for deploying, installing and bootstrapping software sta
ks on top of the JVM. It makes these

tedious tasks easy, simple and fun.

From the user's perspe
tive, Sin
erity makes it easy to install
omplete produ
ts and sta
ks, or individual mod-

ules and libraries, into portable �
ontainers,� (page 12) whi
h are nothing more than straightforward �le dire
tories.

A

ording to your preferen
es and
onstraints, you
an use either Sin
erity's pretty GUI (page 12) or the powerful

CLI (page 10).

From the provider's perspe
tive, Sin
erity is distribution system: simply host your pa
kages in a �repository� (a

simple web site) and let Sin
erity do the rest. Con�guration and bootstrapping of appli
ations is easily
ontrolled

via simple JavaS
ript
ode, and Sin
erity's growing e
ology of plugins makes it espe
ially easy to add features su
h

as
entralized logging and robust daemons with surprisingly minimal fuss.

Sin
erity was born of many years of experien
e writing
omplex software for the JVM. The rest of this
hapter

summarizes this experien
e and the problemati
 reality that made a tool su
h as Sin
erity ne
essary. If this sounds

dreary to you, feel free to skip to the tutorial (page 10) for now, and
ome ba
k here later!

Prin
iples

After using used Sin
erity for a while, you'll wonder how you
ould ever have lived without it.

Indeed, Sin
erity arrives after years of us having to repeat the same development and deployment tasks over and

over again for every new proje
t: download, unzip,
opy, rename and
on�gure, hopefully while staying organized as

to dependen
ies and versions. Solutions like Maven
reate their own problems (page 9): �enterprise�-style
omplexity,

enormous XML
on�guration �les, and a Java-
entrism that is be
oming a burden as more of us are developing for

the JVM without Java.

We de
ided that enough was enough! Sin
erity intends:

1. To simplify and unify the installation of JVM appli
ations, servi
es and libraries. You should never have to

download idiosyn
rati
 distributions and read through pages of installation instru
tions. We aim for a simpler

re
ipe.

2. To simplify and unify deployment via the JVM. It seems that every appli
ation and servi
e has its own set

of bootstrapping s
ripts, servi
e wrappers, logging
on�guration, dire
tory stru
tures, et
. We
an't entirely

smooth out the quirks, but we
an make your deployment experien
e
onsistent.

3. To be language agnosti
. The JVM is no longer the ex
lusive domain of Java. A ri
h e
osystem of languages

has grown around it, and Sin
erity lets you manage installation and deployment without ever having to write

or think in Java if you don't want to.

4. To be
ulturally agnosti
. The JVM is not the ex
lusive domain of enterprise appli
ations. If you think

and work like an agile te
hnology startup, Sin
erity is here for you.

5. To
ultivate an e
osystem. Three Cri
kets, the
ompany behind Sin
erity, maintains a
olle
tion of quality

plugins that do all the above, and the list keeps growing. Developing plugins is a pie
e of
ake and you're

strongly en
ouraged to develop your own using the straightforward API. This Sin
erity Manual
ontains

everything you need to know to get started.

Lather, Rinse, Repeat

The free software and open sour
e movements have utterly
hanged how we develop software.

Reusable libraries had existed freely before, but these movements have
reated a
ulture of sharing, fueled by

viable business models,
ulminating in an unpre
edented wealth of solutions. For any problem you en
ounter in

your everyday development work there is likely a library out there to help you that you
an download for free. �Your

mileage may vary,� as they say: quality may not always be up to snu�, and no warranty is provided, but the sour
e

ode is in
luded and you
an make it better, for yourself and for others. Importantly, it's relatively future-proof to

4

depend on free software: you
an be
ertain that your li
ense to use the library will not be revoked and that bugs

ould be solved, by you, by the
ommunity, or by hired help.

(You do need to worry whether the software breaks any owned patents, but that problem exists for any software,

whether it's free or proprietary, from a third party or developed by you.)

This wealth of solutions also
reates
hallenges. There are several pa
kaging, versioning and delivery standards

for libraries. And when it
omes to platforms and frameworks, there is no standard way to deploy software on top

of them. If your proje
t is a
omposite of many of these, you will �nd yourself spending a lot of time making sense

of these various s
hemes and integrating them into a system that is maintainable by you in the long run. And if

your software is itself modular and redistributable, you will �nd yourself having to pi
k one of the many di�erent

methods, or inventing one of your own. So, when it
omes down to it, while free software
an save you a lot of time

and e�ort in terms of development, you end up spending extra e�ort on integration and maintenan
e. Annoyingly,

you'll �nd that mu
h of this work is repetitive, unne
essarily so. If you're a programmer used to making
ode

reusable, you'll may su
h repetitive work espe
ially annoying.

When it
omes to the JVM, a few produ
ts have been widely adopted that make some of this work easier.

However, experien
e has shown them to have too small a s
ope: they solve very spe
i�
 problems, but do not

address the
omplete
hallenge (page 9). Additionally, sin
e they are already a few years old, they predate the

linguisti
 revolution that is happening in full for
e on the JVM: no longer is Java the only good
hoi
e for leveraging

the platform. New and popular languages like S
ala, Clojure and Groovy o�er a new experien
e and
ulture, while

Nashorn, Rhino, Jython, JRuby, Quer
us and Luaj bring popular languages and their paradigms to the JVM.

Indeed, sin
e version 7, the JVM has added support an op
ode (invokedynami
) that
annot be normally generated

by
ompiling Java language
ode: for the �rst time in its history, the JVM is made for languages that aren't Java.

With that in mind, Sin
erity is designed from the ground up with multilingual support, whi
h means that not

only is knowledge of Java
ode never required, but also that the
ulture of dynami
 languages and their standards

are intrinsi
ally supported: you
an in
lude dependen
ies from Ruby gems, Python's PyPI repository and PHP's

PEAR repository. Moreover, Sin
erity has standard plugins that make installing and working with these dynami

languages espe
ially easy.

You might want to jump straight to the tutorial to see how it works, but you're also invited to stay here and

look at some of the development and deployment tasks that Sin
erity ta
kles.

Dependen
y Management and �DLL hell�

How do you get a library working with your appli
ation? Let's see:

1. Find the library's web site.

2. Look for the �download� button.

3. Download the latest version: note that you want to write down all versions of all libraries you are using, so

that you
an handle upgrades and possible
on�i
ts.

4. Open the distribution ar
hive: you want to be organized about this, so that you
an �nd li
enses, do
umen-

tation, et
., later on.

5. You need to make put the jar in your
lasspath for the following environments:

(a) Your development environment: you might also want to link sour
e
ode and do
umentation if they are

available in the distribution.

(b) Your deployment environment: the appli
ation needs it to run, so you to need to somehow in
lude the

�le in your bootstrapping s
ript.

(
) Your distribution, assuming you are distributing your appli
ation: this is optional, sin
e you might de
ide

not to in
lude this dependen
y, and to have the users download and install it themselves.

6. There might be
on�guration �les (property �les, XML, et
.)

(a) You might need to make di�erent versions of these for your di�erent environments.

(b) The
on�guration �les might not be �exible enough for how your appli
ation runs, with too mu
h assumed

or hard
oded, so you will need to either:

i. Do
ument this fa
t for the user to handle on their own.

5

ii. Generate the
on�guration �les during your appli
ation's bootstrapping pro
ess.

iii. Pat
h the library to allow for the �exibility you require.

7. On
e in a while you want to
he
k for upgrades, whi
h might mean subs
ribing to an RSS feed or mailing list,

or just reminding yourself to
he
k the web site.

8. The library might have requirements, so you need to make sure to do all the above for them.

The above steps involve a lot of work. And what if you have 20 dependen
ies?

This is not a new problem, and there are already a few solutions for it. Firstly, there is a straightforward

standard for JVM repositories, iBiblio/Maven, whi
h is widely used by many proje
ts. But it requires you to use

one of two tools: Ivy, whi
h does a good job of downloading dependen
ies (and is used internally by Sin
erity), but

does nothing else, or Maven, whi
h is a sophisti
ated, heavyweight proje
t management tool with a steep learning

urve, and whi
h requires you to work entirely within its domain. We'll
ompare these tools in more depth to

Sin
erity later on, but for now let's just say that the former is too limited in s
ope, and the latter too
onstraining.

There are also various di�
ulties in
on�guring these tools: Sin
erity �just works,� immediately and easily, and also

handles bootstrapping and assists in
on�guration.

There's also the problem of being for
ed in the JVM bubble: if you're using Jython, JRuby or Quer
us, then

you have to also work with the repository standards of Python (PyPI), Ruby (gems) and PHP (PEAR). Sin
erity

is designed to support all of these standards.

Then there's the issue of potential
on�i
ts, a.k.a. �DLL hell�: What if one appli
ation you're working on

requires one version of a spe
i�
 library, and another appli
ation requires another? What if this happens within

di�erent parts of the same appli
ation? Again, there are standards and tools for this�OSGi and Jigsaw�but they

require you to work entirely within the paradigms they enfor
e. Sin
erity doesn't stop you from using them (in

fa
t, it has great support for the Felix OSGi
ontainer), but de�nitely does not for
e you to play by any spe
ial

rules. From the bottom up, Sin
erity is designed to be as straightforward and universal as possible. See the detailed

omparison to OSGi below for more information.

Bootstrapping

The JVM is pa
kaged as a set of
ommand line utilities, plus a few plugins for spe
ialized environments. It does

ome with one simple way to distribute programs�exe
utable JAR �les�but that would only su�
e for the most

trivial programs.

For anything more
omplex, you will need to handle bootstrapping your appli
ation. This means, at the very

least, �nding the right JVM on the ma
hine (more than one may be installed), and then loading the appli
ation

via the �java� tool. Usually, however, it ends up being far more
ompli
ated: rummaging through environment

variables, dete
ting the host operating system and environment in order to set spe
ialized JVM �ags and load

optimized native libraries, and be
ause this is so
omplex, you'll want to responding to spe
ialized bootstrapping

�ags set by the user. Indeed, many JVM-based produ
ts won't �just run,� but will in fa
t require you to set a host

of environment variables �rst.

All this work happens before the JVM even starts. Thus, it's usually handled by writing a shell s
ript, whi
h is

almost always immediately runnable. Depending on how many operating systems you want to support, this may

mean, at the very least, writing one for *nix systems and one for Windows systems. This is highly spe
ialized work,

and a development proje
t with its own
hallenges, so some proje
ts
hoose to avoid s
ripts and develop native

binaries that handle bootstrapping. And then there are installer produ
ts that purport to do this all for you.

And what if you want the software to run as a daemon, system servi
e, or
ron job?

And what if your software is not just one program, but also
ontains a set of tools that you also need to

bootstrap?

The bottom line is that bootstrapping is very hard to get right, and there are many
ompli
ated approa
hes

to it. It's a shame that so many JVM produ
ts keep trying to implement the same bootstrapping solutions from

s
rat
h. Sin
erity streamlines this in two ways: �rst, by providing you with working shell s
ripts, and se
ond, by

having these s
ripts delegate the pro
ess as soon as possible to a JavaS
ript program running in the JVM. On
e

on the JVM, Sin
erity o�ers a range of installable plugins that handle various
on�guration and deployment tasks,

in
luding running the software as a daemon.

Why JavaS
ript and not a di�erent s
ripting language? We deal with the question in length below (page 8).

What this means is that most produ
ts won't have to do anything beyond what Sin
erity o�ers out of the box,

and those with spe
ialized bootstrapping will be able to write portable JavaS
ript programs, instead of having to

deal with
omplex shell s
ripting.

6

Con�guration and �XML hell�

Between bootstrapping and rea
hing full usability, your produ
t has to
on�gure itself. Will you
hoose a properties

�le? XML? Something else? And where is the �le lo
ated?

Well,
onsider that all the libraries you use had to make their own
hoi
es for
on�guration. A non-trivial JVM

produ
t
ould thus require several
on�guration �les, in di�erent lo
ations, with di�erent
on�guration rules.

But there's a more serious problem to most of these approa
hes: they are unne
essarily rigid and stati
. While

there are many advantages to using text �les for
on�guration, the
hoi
e of te
hnologies is ba�ing. Possibly

the worst
hoi
e is XML. This language, ostensibly a �markup� language, is marking up nothing when used for

on�guration: it's instead used as a
umbersome format for stru
tured textual data. And it gets far, far worse:

XML
on�guration �les are often used programati
ally in the JVM world, to
onstru
t JVM
lasses and
all JVM

methods. The best known, worst o�enders are Log4j and Jetty. There, XML is used as if it were a s
ripting

language, the
lumsiest you have ever seen.

The use of XML for
on�guration is part of what we
all �XML hell,� whi
h refers to programmers being swamped

with
ountless overly-verbose XML �les. XML is also often abused as an inter
hange format on the Internet, and

a des
riptor format in mu
h of the JVM enterprise industry. Enough already!

The ex
use for this insanity, one would guess, is that the ability to parse XML is standard on many platforms,

in
luding the JVM. But, interpreting this XML is far more
ompli
ated that just parsing it. In essen
e, parsing

a general-purpose XML for something like Jetty involves writing a
omplete (more likely, not
omplete enough)

s
ripting language engine. Another ex
use for �XML hell�
ould be part of the general over-enthusiasm with XML,

and the untested faith that standardizing on a single format would lead to greater interoperability. Again, this is

madness: unless you
ouple the XML �le with the
ode that
an make sense of it, the ability to parse them is of

little use.

Another approa
h, better than XML, is to
reate a Domain-Spe
i�
 Language (DSL). But DSLs require a lot

of work, both by developers and by users who must learn them.

Sin
erity is here to stop the madness: wherever possible, it standardizes on using JavaS
ript for
on�guration.

(Why JavaS
ript? We deal with the question in length below.) With JavaS
ript you
an instantiate obje
ts,
all

methods, insert
onditionals and loops using natural programming paradigms, instead of shoe-horning them into

XML. At its simplest, a JavaS
ript
on�guration �le
an look identi
al to a simple properties �le: straightforward

assignments of values to
on�guration parameters. But, you also have the option of inje
ting interpreted
ode where

appropriate. And, of
ourse, it's still just text �les that don't need to be
ompiled, and
an even be pi
ked up and

re-interpreted at runtime, so you're still absolutely within the �
on�guration-by-text-�le� paradigm.

If you've never tried the �
on�guration-by-s
ript� approa
h before, you might be skepti
al about its bene�ts or

worried about the extra weight it adds. But Sin
erity's JavaS
ript engine is very lightweight, and we're
onvin
ed

that on
e you try this approa
h, you will avoid all others. For an instru
tive example, install Sin
erity's logging

plugin (page 32), and take a look at the logging
on�guration �les. Now
ompare them to the �o�
ial� Log4j

formats.

One
onsequen
e of this approa
h is that the line between bootstrapping and
on�guration gets blurred. They

end up as one integrated phase: a bun
h of JavaS
ript programs strapped together. This leads to both simpli�
ation

and greater �exibility for you. This approa
h leads to ex
eptionally dynami

on�guration systems that
an adopt

to any operating environment.

We really hope to see �
on�guration-by-s
ript� used throughout the JVM world, even for proje
ts that do not

want to or
annot use Sin
erity.

Logging

The JVM has a few good, widely-used logging APIs, as well as a great glue library�SLF4J�that
an bridge

between them. But there's quite a bit of work involved in getting all these libraries working together. It seems that

every JVM produ
t has its own way of doing this. Logging is important, and
an't be relegated to an afterthought:

if it's not properly
on�gured and well integrated, it's
lose to useless.

Sin
erity takes logging very seriously: it provides a plugin (page 32) that does mu
h of the work for you, and

extensions that further enhan
e logging. For example, one extension funnels all logs to a
entralized MongoDB

olle
tion, perfe
t for distributed
loud deployments. And this system will work with pra
ti
ally any JVM library.

Note that logging
on�guration is handled via the �
on�guration-by-s
ript� approa
h mentioned above, and is

well integrated with the whole e
ology of Sin
erity plugins.

7

http://www.slf4j.org/
http://www.mongodb.org/

Why JavaS
ript?

There are many great s
ripting languages for the JVM. Note that by �s
ripting� here we mean that these languages

are immediately runnable from the textual sour
e
ode. This doesn't have to mean that they are �interpreted�: many

of these languages
ompile some or all of your
ode on-the-�y. So, why has Sin
erity standardized on JavaS
ript,

rather than Groovy, S
ala, Clojure, Lua, Python, Ruby or others?

There's no single answer, but rather a
ombination of fa
tors that make JavaS
ript attra
tive:

1. JavaS
ript is very well known. Sin
e its original introdu
tion into web browsers, and universal adoption as a

web standard, it has gained an enormous skill share in the industry. There's a wealth of edu
ation material

available for it.

2. Its implementations are relatively lightweight, in that JavaS
ript is both fairly minimal linguisti
ally, and also

does not have anything like a standard library, of the kind you would �nd in Python and Ruby. This allows

Sin
erity to have a mu
h smaller footprint than if it were to use Jython, JRuby or even Groovy. Note that

not having a standard library
an also be seen as a disadvantage, but in the
ase of Sin
erity it's dealt with

in two ways:

(a) Sin
e we are running JavaS
ript on the JVM, we have full a

ess to the Java standard library.

(b) Sin
erity
omes with the Sin
erity JavaS
ript Library (page 50) a very lightweight framework that makes

working with JavaS
ript on the JVM a little bit easier.

3. JavaS
ript is very future-proof: not only is it an open standard (where it's
alled �ECMAS
ript�), but it is

baked into the JVM (from version 8) as the Nashorn engine.

4. JavaS
ript is a
tually a ni
e language. It has been the target of a lot of negativity from programmers

who had to work with it in browser environments, but we believe the fault is more of the environment (the

browser DOM's poor API and many annoying di�eren
es between various browser implementations of it) than

the language itself. It en
ourages prototype-oriented programming, whi
h
an easily emulate obje
t-oriented

programming, as well as other paradigms. In fa
t, JavaS
ript shares mu
h of its s
oping and fun
tion handling

with S
heme, a language that is generally admired. You
an think of it this way: JavaS
ript is S
heme with

a C-like syntax.

Despite these general advantages, you might still prefer to use another s
ripting language for your own work.

Lu
kily, Sin
erity, with the help of the S
ripturian library (page 50), will let you write plugins in Python, Ruby,

PHP, Lua, Groovy or Clojure. The only disadvantage is that you would have to in
lude the appropriate language

engine as a dependen
y. In the interest of keeping Sin
erity and its e
ology of plugins lean and mean, we want to

en
ourage the use of JavaS
ript for plugins that are intended to be shared with the
ommunity.

Just to be 100%
lear: this preferen
e for JavaS
ript only applies to Sin
erity plugins,
on�guration s
ripts,

and skeletons: you are de�nitely wel
ome to write your appli
ation in whatever language you
hoose. In fa
t,

Sin
erity
ontains great plugins for many popular JVM languages, as well as skeletons for
omplete language-

spe
i�
 frameworks, su
h as Django and Rails.

JavaS
ript vs. Shell S
ripting

This se
tion is meant for those of you who are
omfortable with shell s
ripting, and are wary about Sin
erity's use

of JavaS
ript for bootstrapping.

1. You might think that shell s
ripting would always be more portable than a s
ripting language running inside

the JVM. But, think again: the point of your bootstrapping work is to get into the JVM, in order to run your

appli
ation. If that doesn't work, then your whole appli
ation won't run, and portability is moot. Sin
erity

does have shell s
ripts, but they're designed to delegate to the JVM as soon as they
an.

2. You might be
on
erned about startup delay: starting up the JVM with all the JavaS
ript engine
lasses is

mu
h slower than starting up a shell s
ript. This is true, no doubt, but sin
e version 7 the JVM is doing

better. Also
onsider that you have to get into the JVM anyway for your appli
ation to do anything useful.

Still, if your appli
ation has a lot of tools that do not always require the JVM, and would be adversely a�e
ted

by the JavaS
ript bootstrap times, then by all means write them as shell s
ripts! You
an use all of Sin
erity's

other features when you need them.

8

http://openjdk.java.net/projects/nashorn/

3. Shell s
ripts treat most of your program as an opaque, bla
k box. But with JavaS
ript running in the JVM

you
an
all parts of your API before the appli
ation truly starts. This
an allow for mu
h more powerful,

dynami
 bootstrapping.

4. JavaS
ript is likely ri
her than your shell language. Sure, bash 4.0 and PowerShell are a leap forward
ompared

to what we had 20 years ago, but they're still quite
onstri
ting.

Comparisons with Other Solutions

Sin
erity vs. Maven

Apa
he Mavenis a
omprehensive solution for managing Java proje
ts, handling building, dependen
y management

and distribution. It
ontrastingly
ombines a lot �exibility on the one hand�an open plugin API built on the Plexus

IoC
ontainer�with deliberate rigidity on the other hand: a stri
t rea
tor-based, multi-phase
y
le. In parti
ular,

Maven's design goes to great lengths to keep you from a�e
ting the order of operations: you are supposed to

on�gure your proje
t, and let Maven de
ide what to do when. For those used to s
ripting their build pro
ess,

this approa
h may initially seem ba�ing and restri
ting. However, there are signi�
ant bene�ts to this approa
h

when working with very large,
omplex proje
ts: instead of
oding and maintaining nightmarishly long build s
ripts

based on dozens of
hanging environment variables, you
an sit ba
k and let Maven analyze the entire operation

and then do the right thing.

But, for this to work, you need to play by Maven's rules, and that's where things get tri
ky. Small deviations

from the stri
t assumptions Maven makes throw you down the rabbit hole of plugins and ha
ks, as you struggle to

shoe-horn a simple pro
edure into a produ
t that abhors pro
edure. Spe
i�
ally, Maven's ideal environment is one

in whi
h your versioned modules are written in Java mapped to single jar �les. Anything even slightly di�erent

be
omes painful and ha
ky.

Both Sin
erity and Maven handle downloading dependen
ies, but other than this apparent overlap these produ
ts

have di�erent goals and s
ope. Importantly, they
an be very
omplementary. One way to think of this is that

Maven
ould
ome �rst and Sin
erity
ome se
ond: Maven
ould help you build your proje
t and repositories, while

Sin
erity would handle your deployment
ontainer. Maven won't help you run your appli
ation: its output is jars of

ompiled
ode, sour
e
ode or do
umentation, and it doesn't handle their bootstrapping or runtime
on�guration.

On the other hand, Sin
erity does not build your proje
t, nor does it make any assumptions about how its built:

you
an use Maven, Ant or anything else.

Sin
erity vs. OSGi

An �interfa
e� in the JVM lets you
reate a standard proto
ol, su
h that you
an plug in various implementations

of it��
lasses,� with �methods� as the entry points�at runtime. The proto
ol is enfor
ed by the JVM, whi
h will

not let you plug in implementations that do not �t the interfa
e. OSGi takes this up a level, by providing a mu
h

broader
on
ept of �implementation.� The implementation is a �bundle� that
an
ontain any number of
lasses.

So far so good, but it gets
ompli
ated fast. OSGi takes it up one level more: the proto
ols are published and

endorsed by a
ommunity of providers, with the idea that di�erent providers (software vendors or departments in

a large enterprise)
an provide bundles to implement them, whi
h would all work together perfe
tly. With this

broader ambition, �DLL hell� suddenly be
omes a far more malevolent enemy: bundles are often bla
k boxes that

you
annot easily pat
h to use a shared version of a dependen
y. There's thus a real need for a standard solution

of runtime
ode
ompartmentalization, whi
h OSGi provides via a
lever system of
lassloaders.

. . .Whi
h, of
ourse, introdu
es its own set of problems. To get its
lassloading s
heme to work, OSGi requires

stri
t separation of
lassloading between bundles, whi
h in turn adds subtle and mis
hievous restri
tions to your

usual JVM work. This is not entirely bad: working within these limitations does en
ourage
lean, sharp boundaries

between your modules, and goes a long way towards redu
ing
lassloading
onfusion. It's not, however, trivial by

any means, and all your bundles must be designed with this in mind for OSGi to work properly.

One very useful side e�e
t of having the framework
ontrol
lassloading is that entire bundles
an be loaded and

unloaded during runtime. Indeed, OSGi de�nes proto
ols for starting, stopping and hotswapping servi
es. This is a

powerful feature in itself, and is indeed the entire motivation for using OSGi in some
ases. (Though, if that's your

reason, you might want to look at other, simpler ways to enable hotswapping, rather than embra
ing the whole of

OSGi.)

It's worth noting, however, that there is a more straightforward solution to the problem of �DLL hell�: Why not

run ea
h �bundle� as a separate pro
ess? Ea
h JVM would load its own
lasses as ne
essary, and never will they

mix or
on�i
t. This makes a lot of sense if you're running a distributed system, sin
e you're already dividing your

9

http://maven.apache.org/

software among many ma
hines and pro
esses, and indeed many parts of your appli
ation may not be JVM-based at

all, and
an't be run in a single pro
ess anyway. As for starting and stopping your �bundles,� the operating system

already does a good job of managing pro
esses, so you don't need OSGi's proto
ol for that. From this perspe
tive,

you
an see that OSGi is, in e�e
t,
reating a virtual operating system inside the JVM, where �bundles� are very

mu
h like operating system pro
esses.

Indeed, the original target environment for OSGi was pre
isely one in whi
h all bundles ran in a single pro
ess,

in shared memory spa
e: it is the world of embedded
omputing, where the runtime is variously
on�ned, su
h that

you are either limited to a single pro
ess due to limited resour
es or se
urity
on
erns. In su
h environments OSGi

may be your only good solution for the problem of modularity and pluggable servi
es. Still, OSGi has also proved

popular in large enterprise environments, where it allows for modules to be treated more abstra
tly whether or not

they are running in a single pro
ess.

Sin
erity, in itself, takes the more straightforward approa
h: su
h high-level modularity is provided through the

notion of �
ontainers,� whi
h you
an easily
reate,
lone and
hange, and start and stop as pro
esses, spe
i�
ally

the servi
e plugin (page 34) makes it espe
ially easy to run them as daemons and servi
es. Containers
an then

talk to ea
h other (and to other servi
es) using whatever te
hnology is appropriate, be it REST, SOAP, message

queuing, Hazel
ast, et
. That said, OSGi may indeed be appropriate for your proje
t, and Sin
erity provides a ni
e

Felix plugin to get you up and running. The point being that Sin
erity was designed to be neutral to the te
hnology

of modularity, introdu
ing no spe
ial restri
tions for users that do not need them.

Tutorial

Install Sin
erity

You need a JVM, at least version 6.

If you're an Ubuntu user, then use our repository! It would do everything for you.

Otherwise, download a Sin
erity distribution. If you're download the Zip distribution, unpa
k the folder, and

put it in any standard lo
ation, for example:

• Unix: �/opt/sin
erity�

• Windows: �C:\Program Files\Sin
erity�

• Ma
 OS X: �Appli
ations�

You
an then run the �sin
erity� s
ript (Unix and Ma
) from there or �sin
erity.bat� (Windows).

You might want to add the Sin
erity path to your system path, to allow for easy a

ess from the
ommand line.

In Linux, you
an do this by adding the following line to your user's .bashr
 �le:

PATH=$PATH:/ opt / s i n
 e r i t y

Working with the Command Line

If you run Sin
erity with a Graphi
al User Interfa
e (GUI) (page 12) using �sin
erity gui�. However, it's strongly

re
ommended that you learn how to use the
ommand line. Here are the main prin
iples:

1. All Sin
erity
ommands exist within �plugins.� The full name of a
ommand is its plugin name, with a
olon,

and then the
ommand name within the plugin. For example, �
ontainer:
reate� is the �
reate�
ommand

within the �
ontainer� plugin. Use �sin
erity help� to list all available
ommands from all plugins. Many

ommands support
ommand line arguments, both required and optional. See the
ommand do
umentation

for full details.

2. As a short form, you
an use only the
ommand name. However, this will only work if there is no ambiguity,

meaning that the same
ommand does not exist in more than one plugin. For example, �
reate� will be

equivalent to �
ontainer:
reate� if no other plugin has a �
reate�
ommand. Also note that the full form of

the �help�
ommand is �help:help�. (Plugin developers are en
ouraged not to use
ommand names that would

on�i
t with the
ore plugin
ommands, su
h as �
reate�, �add�, �install�, et
.)

3. Some Sin
erity
ommands
an only be run while pointing to a
ontainer. Generally, it's useful to run Sin
erity

when the
urrent dire
tory is somewhere in the
ontainer. There are a few rules to
onsider:

10

http://threecrickets.com/sincerity/download/

(a) Sin
erity
an only point to one
ontainer at a time.

(b) You
an
hange the
ontainer or expli
itly point to one using the �
ontainer:use�
ommand (page 19).

(
) Otherwise, Sin
erity will attempt to �nd for a
ontainer in the following order:

i. The �sin
erity.
ontainer.root� JVM property

ii. The �SINCERITY_CONTAINER� environment variable

iii. Sear
h up �lesystem tree from
urrent path looking for a dire
tory that has a �.sin
erity� subdire
tory

4. Sin
erity's
urrent set of available plugins, whi
h a�e
ts the set of available
ommands, is a
ombination of

both the plugins available in the Sin
erity installation as well as those available in the
urrent
ontainer.

5. You
an
hain
ommands together using �:�. Command
hains are used extensively in Sin
erity.

(a) Note that a single
ommand
hain
an
hange the
urrent
ontainer multiple times. For example:

s i n
 e r i t y use
onta ine r1 : i n s t a l l : s e r v i
 e s t a r t web−s e r v e r : use
onta ine r2 : l og " t e s t l og message"

(b) Considering the above, note also that ea
h time you swit
h
ontainer within a
ommand
hain the set

of available plugins and
ommands
hanges, mat
hing whatever is the
urrent
ontainer at the time.

(
) Also keep in mind that a single
ommand
hain is always run within the same JVM. Sin
erity a
hieves

JVM
lassworld separation by swapping
lass loaders when it
hanges
ontainers. If this behavior is not

desired, you should avoid
haining and run your
ommands using separate �sin
erity�
ommand lines.

6. If an argument begins with a ���
hara
ter, it will be interpreted as a short
ut, and sear
hed for in the
urrent

ontainer's �/
on�guration/sin
erity/short
uts.
onf� �le. If found, it will be expanded to the
ommand de�ned

there.

(a) Expansion to a
ommand
hain is allowed, as well as re
ursive use of short
uts. For example:

s i n
 e r i t y use
onta ine r1 : �mv : s t a r t r e s t l e t

Would expand to:

s i n
 e r i t y use
onta ine r1 : add mongovision : i n s t a l l : s t a r t r e s t l e t

If the following entry is in �short
uts.
onf�:

mv = add mongovision : i n s t a l l

(b) Some
ommands support impli
it use of short
uts without requiring the ��� pre�x. Spe
i�
ally, the

�dependen
ies:add� and �repositories:atta
h�
ommands will sear
h for short
uts with the �add#� and

�atta
h#� pre�xes respe
tively. For example:

s i n
 e r i t y add mongovision

Will expand to:

s i n
 e r i t y atta
h three−
 r i
 k e t s : add
om . t h r e e
 r i
 k e t s . mongovision mongovision

If the following entry is in �short
uts.
onf�:

add#mongovision = atta
h three−
 r i
 k e t s : add
om . t h r e e
 r i
 k e t s . mongovision mongovision

From here, you
an
ontinue reading about the
ore plugins (page 19) to learn about all the essential
ommands.

11

Working with the Graphi
al User Interfa
e (GUI)

Sin
erity has a Swing-based GUI that displays information about your
ontainer and lets you perform operations

on it. It
an be used instead of the CLI, though ea
h interfa
e has its own strengths. The GUI is espe
ially useful

for displaying data, su
h as the dependen
y tree stru
ture.

Sin
erity provides the GUI frame, but the
ontents are provided by plugins. This means that the whole GUI

would look di�erently a

ording to whatever is the
urrent
ontainer and what plugins it has installed. For this

reason, when you
hange
ontainers from within the GUI, it will restart.

If you run �sin
erity� without any
ommand, it will default to running �shell:
onsole� (page 27). You
an also

start the GUI via the �shell:gui�
ommand (page 27). For example:

s i n
 e r i t y use
onta ine r1 : gu i

A ri
her
onsole, in whi
h you
an use full JavaS
ript, is available via the �jsshell:js
onsole�
ommand (page 27).

If you are designing your own Sin
erity plugin, it is strongly re
ommend that you in
lude GUI support if

appropriate via the optional gui() entry point.

Environment Variables

The �sin
erity� s
ript will try to �nd your operating system's default JVM and your Sin
erity installation. You
an

modify its behavior using the following environment variables:

• SINCERITY_HOME: The root of the Sin
erity installation to use. If not provided, will automati
ally dis
over

it a

ording to a
tual (not symlinked) lo
ation of the s
ript �le.

• SINCERITY_JAVASCRIPT: To for
e the JavaS
ript engine to either �Nashorn� or �Rhino�.

• SINCERITY_CONTAINER: The path of the
ontainer to use. If not spe
i�ed, will sear
h up the �lesystem

tree from the
urrent path. See also the �
ontainer:use�
ommand (page 19).

• SINCERITY_DEBUG: An integer spe
ifying the internal debug level. Higher numbers will display more

debugging information. Defaults to 0.

• JAVA_HOME: The root of the JVM installation. If not provided, will use a platform-spe
i�
 heuristi
 to

dis
over it.

• JAVA_VERSION: Used only in Darwin (Ma
 OS X). Defaults to "CurrentJDK".

• JVM_LIBRARIES: Extra libraries to add to the
lasspath.

• JVM_BOOT_LIBRARIES: Extra libraries to prepend to the boot
lasspath (-Xboot
lasspath/p).

• JVM_SWITCHES: Extra swit
hes to add to the JVM
ommand.

Components

Before detailing the
ore plugins and
ommands in the next
hapter (page 19), it's important that you understand

a few basi

omponents:

Container

A set of �les implementing a self-
ontained JVM-based exe
ution environment managed by Sin
erity and by you.

The
ontainer has a root path, under whi
h it may have a dire
tory stru
ture of any depth. Libraries, binary

exe
utables,
on�guration �les, temporary work �les and logs are all by default stored within the
ontainer.

Why su
h an emphasis on self-
ontainment? One goal is for the
ontainer to be deployable anywhere as a whole,

simply by
opying the dire
tory elsewhere. Another goal is for the
ontainer to be a useful playground: you
an

install and try out various appli
ations and libraries without a�e
ting your operating system. You
an undo you

work simply by deleting the
ontainer's dire
tory.

It is possible and sometimes useful to break this prin
iple of self-
ontainment by using symboli
 links.

Below are some a few standard
ontainer subdire
tories used by the
ore plugins. Other plugins and skeletons

may add more subdire
tories.

12

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/java.html

/.sin
erity/ Reserved for Sin
erity's internal use. It's most essential use is to mark a dire
tory as a
ontainer

root.

If you are using a VCS, make sure to
ommit this hidden dire
tory (page 15).

/
a
he/ Files put here should be
onsidered deletable without any negative e�e
ts.

Two subdire
tories are most
ommon: �/
a
he/sin
erity/� is where Sin
erity will store information about down-

loaded dependen
ies, and �/
a
he/javas
ript/� is where S
ripturian (page 50) will store its
ompiled JavaS
ript

ode.

You likely do not want to
ommit this dire
tory to a VCS (page 15).

/logs/ Files put here should be
onsidered deletable without any negative e�e
ts. This is used by the logging

plugin (page 32).

You likely do not want to
ommit this dire
tory to a VCS (page 15).

/
on�guration/ Container-wide
on�guration �les for various libraries are found here. Note that generally

Sin
erity prefers �
on�guration by s
ript,� so that most of these �les will be in JavaS
ript
ode. However, some

libraries may require XML, property sheets, or other unfortunately idiosyn
rati
 formats.

Various libraries will use their subdire
tories here: for example, �/
on�guration/logging/� for the logging plugin

(page 32).

/
on�guration/sin
erity/ Here you
an
on�gure your
ontainer: repositories, dependen
ies, installed artifa
ts,

and short
uts. Note that you usually will not have to edit these �les dire
tory: many Sin
erity
ore
ommands will

manipulate these �les for you.

For the format of �repositories.
onf�, see the Ivy do
umentation for resolvers. For the format of �dependen-

ies.
onf�, see the Ivy do
umentation for dependen
ies.

/libraries/ Sin
erity will install dependen
ies here, but you
an also add your own �les manually.

Note that the Sin
erity installation also has a �/libraries/� subdire
tory, whi
h is
onsidered in addition to the

one found in your
ontainer.

/libraries/jars/ Sin
erity will re
ursively add all Java ar
hives (.jar �les) here to the
lasspath. Those dependen-

ies installed by Sin
erity will follow the �/organization/name/version/name.jar� dire
tory stru
ture, for example:

�org.slf4j/slf4j-api/1.6.6/slf4j-api.jar�. It is not required that you follow the same stru
ture for jars you install

manually: all jars found under this dire
tory will be added.

/libraries/
lasses/ Sin
erity adds this path to the
lasspath, expe
ting to �nd JVM
lass �les (�.
lass�).

The dire
tory stru
ture must be �/pa
kage/sub-pa
kage/.../
lassname.
lass�. For example, the JVM
lass

�org.myorg.Frame� would be in �/org/myorg/Frame.
lass�.

/libraries/javas
ript/, /libraries/python/, et
. These subdire
tories are for libraries for spe
i�
 program-

ming languages to use dire
tly. Note that these are slightly di�erent from the �/libraries/s
ripturian/� subdire
tory,

whi
h also
ontains programming language libraries, but is intended to use only from within S
ripturian (page 50).

/libraries/s
ripturian/ Sin
erity, as well as other produ
ts that use S
ripturian (page 50), will look for ex-

e
utable do
uments here (and possibly in other pla
es). Most libraries and frameworks will
reate their own

subdire
tory underneath. For example, Pruden
e (page 46) libraries are under �/libraries/s
ripturian/pruden
e-

s
riptlet-resour
es/�.

/libraries/s
ripturian/plugins/ This subdire
tory is reserved for Sin
erity plugins. Ea
h do
ument here rep-

resents a single plugin, and ea
h plugin may implement any number of
ommands.

/libraries/s
ripturian/installers/ This subdire
tory is reserved for Sin
erity installers. Installers are run by

the �artifa
ts:install�
ommand (page 23), and are in
luded in some dependen
ies as a way to exe
ute arbitrary

installation tasks. A
ommon use
ase is for the install hook to manipulate the unpa
ked �les in order to tailor

them for the spe
i�
 environment in whi
h the
ontainer is running.

13

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html
http://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependencies.html

/libraries/web/ Files here are intended to be served over the web as stati
 �les, for example: images, HTML

�les, CSS, et
. Various web servers will look for �les here (and possibly in other pla
es). Various
lient-side web

frameworks (su
h as jQuery, Ext JS) will thus install here, and be made available for various web servers you may

have installed.

/programs/ The �delegate:start� (page 25)
ommand will look for S
ripturian (page 50) do
uments to run from

here.

/exe
utables/ The �delegate:exe
ute� (page 25)
ommand will look for exe
utables to run from here.

/referen
e/ Referen
e material, for use by humans or by software, will be available here.

/referen
e/do
umentation/ Here you'll �nd referen
e manuals and API do
umentation for installed dependen-

ies. Files installed by Sin
erity will be pla
ed in �/organization/name/version/� dire
tory stru
ture, for example:

�org.slf4j/slf4j-api/1.6.6/�.

/referen
e/li
enses/ Here you'll �nd li
enses for installed dependen
ies. Files installed by Sin
erity will be

pla
ed in �/organization/name/version/� dire
tory stru
ture, for example: �org.slf4j/slf4j-api/1.6.6/�.

See also the �dependen
ies:li
enses�
ommand (page 21).

/referen
e/sour
es/ Here you'll �nd sour
e
ode for installed dependen
ies. Files installed by Sin
erity will be

pla
ed in �/organization/name/version/� dire
tory stru
ture, for example: �org.slf4j/slf4j-api/1.6.6/�.

Dependen
y

A
ontained, versioned, installable set of �les (
alled �artifa
ts�), whi
h
an in turn have its own list of dependen-

ies. Dependen
ies are deployable software bundles, representing things like libraries, frameworks, platforms and

skeletons, in
luding
omplete appli
ations and servi
es.

All dependen
ies in Sin
erity are identi�ed by a two-part name,
omposed of a �group� pre�x plus a unique

�name� within the group, plus a version spe
i�er. Di�erent dependen
ies might have their own versioning s
hemes,

but Sin
erity is good at guessing these for the purposes of
omparing versions.

Note that a dependen
y
an also have none of its own �les, and only a list of its own dependen
ies, allowing for a

onvenient short
ut for installing several dependen
ies together. These are sometimes
alled �meta-dependen
ies.�

You
an list all installed dependen
ies using the �dependen
ies:dependen
ies�
ommand (page 21). However,

note that dependen
ies are stru
tured as a nested tree that may be better visualized using the GUI (page 12).

Artifa
t

There are �les within a dependen
y. Sin
erity supports a spe
i�
 set of artifa
t types: JVM libraries (jars),

language-spe
i�
 libraries (Python eggs, Ruby gems, PHP pa
kages, et
.), do
umentation bundles, sour
e
ode

bundles, software li
enses, installers, dependen
y des
riptors and more generi
 �pa
kages� (see below).

You
an list all installed artifa
ts using the �artifa
ts:artifa
ts�
ommand (page 23).

Pa
kage

This is a spe
ial kind of Sin
erity-spe
i�
 jar artifa
t that
an
ontain other �les, and
an additionally have spe
ial

install/uninstall hooks.

Sin
erity
ontains tools to help you easily
reate your own pa
kages, as well as do
umentation about the pa
kage

spe
i�
ation, so that you
an manually
reate your own.

Pa
kages are automati
ally unpa
ked using the �artifa
ts:install�
ommand (page 23), but you
an also expli
itly

unpa
k them using �pa
kages:unpa
k� (page 24).

14

Repository

A store for dependen
ies and their artifa
ts. Repositories usually
ontain indexes of available dependen
ies and

versions. Some repositories also have friendly human-fa
ing web frontends whi
h you
an use to sear
h for depen-

den
ies. Sin
erity supports several repository te
hnologies, and
an also help you deploy your own dependen
ies to

them.

You
an list all repositories atta
hed to your
ontainer using the �repositories:repositories�
ommand (page 20).

Working with a VCS

Be
ause Sin
erity
ontainers are all in a single dire
tory tree, it's very easy to use them with Version Control

Systems (VCSes), su
h as git, Mer
urial and Subversion.

One qui
k issue to note is that your �/.sin
erity/� dire
tory will often be empty, and many VCSes, su
h as Git,

tend to ignore empty dire
tories. To for
e Git to
ommit it, simply add a �.gitignore� �le in that dire
tory:

tou
h . s i n
 e r i t y / . g i t i g n o r e

Otherwise, there are two re
ommended strategies for working with a VCS:

Strategy #1: Commit (Almost) Everything

This strategy is safest in terms of testing and debugging, be
ause it guarantees that all developers and deployments

are sharing the exa
t same �les.

You might just want to make sure that you don't
ommit the deployment-spe
i�
 dire
tories. Here's an example

of a �.gitignore�:

/
a
he

/ l o g s

The problem with this strategy�and it
an be serious�is that distributed VCSes often require you to
lone the

repository with its entire history. Every time you
hange a large binary, it will in
rease the size of the repository.

If this happens a lot, the repository
an be
ome quite unwieldy.

Some VCS have workarounds for this problem, though they would only work in environments where developers

have a

ess to these �les via a shared dire
tory. Consider, for example, git-annex for Git.

Strategy #2: Commit Only Your Work

This strategy makes good use of Sin
erity and allows for
ompa
t repositories. The idea is that users of the

repository will just have to run �sin
erity install� to �ll in all the missing �les.

In order for this to work well, you will need some dis
ipline. You will need to have your VCS expli
itly ignore all

�les that are managed by Sin
erity. A good way to do this a blanket ignore on all standard
ontainer and skeleton

dire
tories, and then add ex
eptions for �les you add or
hange. Care must be taken during the
ommit phase to

make sure that your
hanges have indeed been
ommitted, and that you have not forgotten to add an ex
eption. If

you forget, your
hanges will not be
ommitted and
an be lost.

One small but important issue is that you want to make sure that �/
on�guration/sin
erity/artifa
ts.
onf� �le

is ignored. This �le is managed by Sin
erity spe
i�
ally in order to keep tra
k of �les
hanged during �sin
erity

install� (and �sin
erity unpa
k�).

Here's an example .gitignore for a
ontainer based around a Pruden
e skeleton (page 46):

Ignore everyth ing by de fau l t , a l l ow ing S i n
 e r i t y to manage i t

/
a
he

/
omponent

/
on f i gu r a t i on

/ exe
utab l e s

/ l i b r a r i e s

/ l o g s

/programs

/ r e f e r e n
 e

Our app l i
 a t i o n s

15

http://git-scm.com/
http://mercurial.selenic.com/
http://subversion.apache.org/
http://git-scm.com/
http://git-annex.branchable.com/

! /
omponent/ app l i
 a t i o n s/myapp1

! /
omponent/ app l i
 a t i o n s/myapp2

Mod i f i
a t i ons to i n s t a l l e d a pp l i
 a t i o n s

! /
omponent/ app l i
 a t i o n s/pruden
e−admin/ rout ing . j s

Our shared l i b r a r i e s

! / l i b r a r i e s / s
 r i p t u r i a n /minjson . py

Component mod i f i
 a t i on s and add i t i on s

! /
omponent/ s e r v e r s

! /
omponent/ s e r v i
 e s /database

Logging
on f i gu r a t i on

! /
 on f i gu r a t i on / logg ing /appenders /
ommon− f i l e . j s

S i n
 e r i t y
 on f i gu r a t i on

! /
 on f i gu r a t i on / s i n
 e r i t y / r e p o s i t o r i e s .
on f

! /
 on f i gu r a t i on / s i n
 e r i t y / dependen
 ies .
onf

! /
 on f i gu r a t i on / s i n
 e r i t y / sho r t
u t s .
onf

Note how we added ex
eptions for both new dire
tories added to the
ontainer as well as
hanges to spe
i�
 �les.

Also note that the �/
on�guration/sin
erity/artifa
ts.
onf� �le is ignored, as required, due to the blanket ignore on

�/
on�guration�.

There are two possible disadvantages for this strategy:

First, unless you spe
ify dependen
y versions pre
isely for all dependen
ies, every time a user runs �sin
erity

install� they may get di�erent versions, and thus have a di�erent
ontainer. For some testing strategies, this is a

disadvantage. However, for more �agile�
ontinuous build strategies, this
an a
tually be seen as an advantage, as

it makes sure that you are always at the
utting edge. As long as your tests are run before deployment, then this

should not be a problem. However, it
ould still be a problem for
oordinating debugging if multiple developers are

working on the same VCS repository but are using di�erent versions of dependen
ies. To work around this potential

problem, you
an of
ourse maintain your own repository and
oordinate its use with the development team, with

the same
are used for
oordinating VCS repository use. Alternatively, for the parti
ular problem of debugging,

you
an make sure to
opy over �les from the deployment in whi
h the bug has been dis
overed, or possibly in
lude

a full �sin
erity dependen
ies� dump with the bug report, allowing developers to pre
isely repli
ate its environment.

The se
ond problem is that be
ause you need to run �sin
erity install�, you would potentially be dependent on

third-party repositories (Three Cri
kets, Maven Central, PyPI) to turn your VCS repository into a runnable system.

A good solution is to use a repository proxy, su
h as Nexus (page 38), that would guarantee that you
ontrol a

ess

to all binaries within your organization, even if the third party repositories fail.

Working with Do
ker

Ma
hine virtualization brought about a revolution in deployment strategies. And then
ame LXC, providing a more

limited set of features via built-in isolation features in Linux: think
hroot, but with �lesystem and networking

ontainment. LXC allows for mu
h lighter
ontainers as
ompared to virtualization.

So lightweight, in fa
t, that it makes sense to pa
kage and distribute appli
ations via LXC. That's exa
tly

what Do
ker does, by providing an easy-to-use set of tools, standardized pa
kaging, repository management, and a

urated
atalog of ready-to-run base images. Many workload distribution systems, su
h as Mesos, support Do
ker

pa
kages, allowing you to deploy appli
ations with ex
eptional �exibility, robustness, and e
onomi
al utilization of

resour
es.

(It's also interesting to see LXC en
roa
hing into the data
enter market, whi
h until now was dominated

virtualization: LXD will allow you to manage a
loud of �ma
hines� that are a
tually LXC
ontainers, o�ering

mu
h greater density on existing hardware. It will even integrate with OpenSta
k, allowing data
enters a smooth

transition to this ex
iting te
hnology.)

16

https://linuxcontainers.org/
https://www.docker.com/
http://mesos.apache.org/
https://linuxcontainers.org/lxd/introduction/
https://www.openstack.org/

Running in Do
ker

Be
ause Sin
erity puts your entire
ontainer in one root dire
tory, it's trivial to run your Sin
erity
ontainer in a

Do
ker image. In this example, we'll
reate a
ontainer with the Pruden
e example appli
ation, and then run it

inside the ready-made �java� Do
ker image:

s i n
 e r i t y
 r e a t e /path/ to /my
ontainer : add pruden
e . example : i n s t a l l

sudo do
ker run −−rm − i t \

−v /path/ to/my
ontainer / : / opt /my
ontainer / \

−p 8080:8080 \

java : 8 u45−j r e \

/opt /my
ontainer / s i n
 e r i t y use /opt /my
ontainer / : s t a r t pruden
e

If you haven't used the �java:8u45-jre� Do
ker image yet, it will have to download it.

In this example, we've mapped our Sin
erity
ontainer to �/opt/sin
erity/� in the Do
ker image, and Pruden
e's

default HTTP port to a port in the host, so that we
ould a

ess the site at http://lo
alhost:8080/. We've also

enabled an intera
tive pseudo-TTY (�-it�) so that we
an press CTRL+C to quit.

The result seems identi
al to running �normally�: and that's the beauty of Do
ker.

What good is this? Well, for one, it allows you to easily test your Sin
erity
ontainer in various versions of the

JVM without having to install them on your main operating system. But also, Do
ker
an o�er tighter se
urity

more easily than just, for example, running your Sin
erity
ontainer under a
ustom user.

Pa
kaging in Do
ker

On
e you've tested your Sin
erity
ontainer in Do
ker, it's time to pa
kage it for deployment.

First,
reate a �Do
ker�le� in your
ontainer's dire
tory. For our example:

FROM java : 8 u45−j r e

MAINTAINER Three Cr i
ke t s

ADD . /opt /my
ontainer /

CMD /opt/my
ontainer / s i n
 e r i t y use /opt /my
ontainer / : s t a r t pruden
e

EXPOSE 8080

You'll also want to
reate a �.do
kerignore� �le (whi
h uses the same syntax as �.gitignore�). For our example:

/
a
he

/ l o g s

Now we
an build it:

sudo do
ker bu i ld −t t h r e e
 r i
 k e t s : my
ontainer .

That's it! It was very fast, be
ause Do
ker uses a transa
tion system: our new pa
kage is only a small di� over

the original image. Running it is very similar to before:

sudo do
ker run − i t −p 8080:8080 t h r e e
 r i
 k e t s : my
ontainer

You
an also run it in �deta
hed� mode (like a daemon) using �do
ker run -d�. Use �do
ker ps� to list existing

running images, and �do
ker stop� to stop any.

To save the image into a self-
ontained, redistributable �le:

sudo do
ker save t h r e e
 r i
 k e t s : my
ontainer | bzip2 > my
ontainer . t a r . bz2

To load it:

at my
ontainer . t a r . bz2 | bunzip2 | sudo do
ker load

Note that be
ause the image is self-
ontained, the environment loading it does not need a

ess to the repository

where �java:8u45-jre�
ame from (it essentially in
ludes the JVM). However, be
ause all transa
tions have GUIDs,

it would be identi
al to having retrieved �java:8u45-jre�. So, if that environment were to be running 100 images

based on �java:8u45-jre�, it would only keep the a
tual installation on
e. (You
an also ��atten� your image, as if it

were a single
ommit, using �do
ker export�.)

Also note that �save� does not keep the tags, though you
an re-tag the image via its ID like so:

17

http://localhost:8080/

sudo do
ker images

. . .

sudo do
ker tag . . . t h r e e
 r i
 k e t s : my
ontainer

See the Do
ker do
umentation for more information about how to work with repositories.

FAQ

Please also refer to the FAQ for S
ripturian.

The wrong version of a dependen
y is being installed. Why, and how do I �x it?

First, diagnose what is going on by viewing the dependen
y tree, via either the �dependen
ies:dependen
ies�

ommand (page 21) or the GUI.

If the problem is with an expli
it dependen
y that you added, it
ould be that it is also being in
luded as an

impli
it dependen
y with di�erent version restri
tions, and Ivy has done its best to resolve the
on�i
t within the

restri
tions. You
an over
ome Ivy's
ompromise by using the ��for
e� when adding the expli
it dependen
y. For

example:

s i n
 e r i t y add
om . tanuk i so f tware wrapper−l i nux 3 . 5 . 2 0 −−f o r
 e

If the problem is with an impli
it dependen
y, you
an override the version by using the �dependen
ies:override�

ommand (page 22). For example:

s i n
 e r i t y ov e r r i d e
om . tanuk i so f tware wrapper−l i nux 3 . 5 . 2 0

Another option is to use the ��only� swit
h when adding the expli
it dependen
y that pulls in the wrong impli
it

dependen
y, and then expli
itly adding the sub-dependen
ies in the versions you want. You
an, in fa
t, only use

��only� for all your adds, making 100% sure that only expli
it dependen
ies are used.

I'm getting �java.lang.OutOfMemoryError: PermGen spa
e� ex
eptions!

This is likely be
ause you are
haining several of Sin
erity
ommands together while also using the �heavier� language

engines (Jython, JRuby). The easy solution in most
ases is simply separating your
ommands. For example, instead

of this:

s i n
 e r i t y add r a i l s : i n s t a l l : add django : i n s t a l l : s t a r t django

Run this:

s i n
 e r i t y add r a i l s : i n s t a l l

s i n
 e r i t y add django : i n s t a l l

s i n
 e r i t y s t a r t django

If you're using the Ora
le JVM, you
an also in
rease the PermGen spa
e by setting the JVM_SWITCHES

environment variable (page 12) before running Sin
erity:

JVM_SWITCHES=−XX:MaxPermSize=128m s i n
 e r i t y . . .

This problem should
ompletely disappear in JVM 8, whi
h removes the PermGen feature entirely.

How do I for
e the use of Rhino with JVM 8?

There is an environment variable (page 12) for it:

SINCERITY_JAVASCRIPT=Rhino s i n
 e r i t y i n s t a l l

By default, Sin
erity will prefer Nashorn, even if Rhino is also on the
lasspath.

18

http://threecrickets.com/scripturian/manual/faq/
http://openjdk.java.net/jeps/122

Part II

E
osystem

Core Plugins

These are the plugins that
ome with the Sin
erity installation and implement its most essential
ommands.

Sin
e these
ommands are used so often, it's a good idea to avoid implementing these
ommand names in your

own
ustom plugins, so that there would never be ambiguity for the essentials. In other words, treat �add�, �install�,

et
. as reserved
ommand names.

We've organized them here in the order by whi
h you'd likely use them.

Optional arguments are marked by square bra
kets.

Container

Manages Sin
erity
ontainers.

ontainer:
reate

Creates a new
ontainer using a
ontainer template and points Sin
erity to it, making it the new
urrent
ontainer.

Arguments

1. Container root dire
tory: If the dire
tory does not exist, this
ommand will
reate a new
ontainer there.

If the dire
tory already exists and is a
ontainer, points Sin
erity at it.

2. [Template name℄: This is the name of a subdire
tory under your Sin
erity installation's �/templates/�

subdire
tory. Will default to �default�. Sin
erity will re
ursively
opy the �les from the template into your

new
ontainer. Use the �templates:templates�
ommand (page 26) to see available templates.

Swit
hes

• �for
e: With this swit
h, even if the dire
tory already exists, the
ommand would still
opy the template

into it. Note that this might overwrite existing �les.

ontainer:use

Changes the
urrent
ontainer to whi
h Sin
erity is pointing.

Arguments

1. Container root dire
tory: The path must point to a valid
ontainer root, meaning that it must have a

�/.sin
erity/� subdire
tory.

ontainer:
lone

Creates a
lone of the
urrent
ontainer.

Arguments

1. Target
ontainer root dire
tory: If the dire
tory does not exist, this
ommand will
reate a new
ontainer

there, re
ursively
opying all �les from the
urrent
ontainer to it. Note that Sin
erity will not swit
h to the

new
ontainer: use the �
ontainer:use�
ommand if you need to do that.

Swit
hes

• �for
e: With this swit
h, even if the target dire
tory already exists, the
ommand would still
opy the �les

into it. Note that this might overwrite existing �les.

19

ontainer:
lean

This
ommand is the same as �artifa
ts:uninstall� (page 24) but also deletes the �/
a
he/� subdire
tory.

Repositories

Manages repositories within the
urrent
ontainer. Adds a �Repositories� tab to the Sin
erity GUI.

The �artifa
ts:install� (page 23)
ommand sear
hes for dependen
ies in all atta
hed repositories, in order.

Instead of using these
ommands, you
an also edit the
ontainer's �/
on�guration/sin
erity/repositories.
onf�

�le dire
tly. See the Ivy do
umentation for resolvers.

repositories:repositories

List all repositories atta
hed to the
urrent
ontainer in order by se
tion.

repositories:atta
h

Atta
hes (adds) a repository to the
urrent
ontainer. This
ommand modi�es the �/
on�guration/sin
erity/repos-

itories.
onf� �le.

Arguments

1. Se
tion: Repositories are sear
hed in the order they are added, but are �rst ordered by se
tion. By default

Sin
erity
ontainers have two se
tions: �private� and then �publi
�, in that order. Thus, any repositories you

atta
h to the �private� se
tion will be sear
hed before any repositories atta
hed in the �publi
� se
tion.

2. Name: The repository name must be unique per its se
tion.

3. Type: Sin
erity
urrently supports two types of repositories: �maven� (you
an also use the �ibiblio� alias)

and �pypi� (you
an also use the �python� alias).

Arguments after the �rst three depend on the type of repository atta
hed. However, both
urrently supported types

require one additional argument: the repository base URL.

Note that this
ommand supports impli
it short
uts that begin with the �atta
h#� pre�x. For example:

s i n
 e r i t y atta
h maven−
 en t r a l

Will expand to:

s i n
 e r i t y atta
h pub l i
 maven−
 en t r a l maven http :// repo1 .maven . org/maven2/

If the following entry is in �short
uts.
onf�:

a t ta
h#maven−
 en t r a l = atta
h pub l i
 maven−
 en t r a l maven http :// repo1 .maven . org/maven2/

To see all available �atta
h#� short
uts in your
ontainer use the �short
uts:short
uts�
ommand.

repositories:deta
h

Deta
hes (removes) a repository from the
urrent
ontainer. This
ommand modi�es the �/
on�guration/sin
eri-

ty/repositories.
onf� �le.

Arguments

1. Se
tion: See the �repositories:atta
h�
ommand.

2. Name: See the �repositories:atta
h�
ommand.

Dependen
ies

Manages dependen
ies for the
urrent
ontainer. Adds �Dependen
ies� and �Li
enses� tabs to the Sin
erity GUI.

Instead of using these
ommands, you
an also edit the
ontainer's �/
on�guration/sin
erity/dependen
ies.
onf�

�le dire
tly. See the Ivy do
umentation for dependen
ies.

20

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html
http://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependencies.html

dependen
ies:dependen
ies

Lists all dependen
ies in the
urrent
ontainer as a tree stru
ture. Dependen
ies that are not installed will be listed

in parentheses.

For a large dependen
y tree, it may be easier to use the Sin
erity GUI instead of this
ommand.

dependen
ies:li
enses

Lists all li
enses per all dependen
ies in the
urrent
ontainer. Note that dependen
ies may be available via more

than one li
ense.

Please be aware that you should not treat the output of this
ommand as legal advi
e. Pa
kage maintain-

ers do their best to provide you with
orre
t and useful information, but you should yourself investigate

the li
ensing available per ea
h library you use to avoid breaking the law.

Swit
hes

• �verbose: By default only the name of the li
ense will be printed. With this swit
h, the URL will be printed,

too, if available.

dependen
ies:add

Adds a dependen
y to the
urrent
ontainer. Note that this does not download artifa
ts : all it does is modify the

�/
on�guration/sin
erity/dependen
ies.
onf� �le.

The reason this
ommand doesn't install �les is that installation requires a resolution phase that goes over

all dependen
ies and their sub-dependen
ies and sele
ted the highest possible versions of dependen
ies. Use

�artifa
ts:install� (page 23) to download and install artifa
ts. It will also delete artifa
ts no longer used in the

revised dependen
y tree.

Arguments

1. Group: The dependen
y group name. This is sometimes also
alled an �organization,� though it may be a

bit misleading, be
ause a group
an refer to a set of produ
ts within an organization. Group names tend to

follow the Java pa
kage naming format. For example, Pruden
e's group name is �
om.three
ri
kets.pruden
e�.

Unfortunately, group names are not standardized and many proje
ts follow their own
onventions.

2. Name: This is the name of the dependen
y within the group. It is usually a simple string, possibly with

dashes, the proje
t. For example, the name for the �Pruden
e Example� appli
ation within the Pruden
e

group is �pruden
e-example�.

3. [Version℄: If you do not spe
ify a spe
i�
 version (or use the spe
ial �latest� string), Sin
erity will resolve

for the highest available version. Sin
erity supports range spe
i�
ations for versions. For example. �[1.0,2.0[�

will mat
h versions that are greater than or equal to 1.0 but lesser than 2.0.

Swit
hes

• �only: Ignores all impli
it dependen
ies of this dependen
y

• �for
e: For
es the spe
i�ed version, even if a di�erent version is preferred by a di�erent dependen
y

Important: Sin
erity uses Ivy's dynami
 revision format for versions, whi
h look similar to Maven's

but is in fa
t interpreted quite di�erently. This is a
ause for many mistakes in using version
onstraints

in Sin
erity!

Note that this
ommand supports impli
it short
uts that begin with the �add#� pre�x. For example:

s i n
 e r i t y add v e l o
 i t y 1 .7

Will expand to:

s i n
 e r i t y atta
h three−
 r i
 k e t s : add org . apa
he . v e l o
 i t y v e l o
 i t y 1 .7

If the following entry is in �short
uts.
onf�:

add#ve l o
 i t y = atta
h three−
 r i
 k e t s : add
om . org . apa
he . v e l o
 i t y v e l o
 i t y

To see all available �add#� short
uts in your
ontainer use the �short
uts:short
uts�
ommand.

21

http://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependency.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-dependencies.html#pom-relationships-sect-version-ranges

dependen
ies:revise

Allows you to
hange the version of a previously added dependen
y. The format is identi
al to �dependen
ies:add�

(page 21): the di�eren
e is that a new dependen
y
annot be added with this
ommand, only revised. For example:

s i n
 e r i t y add org . apa
he . v e l o
 i t y v e l o
 i t y 1 .7

s i n
 e r i t y r e v i s e org . apa
he . v e l o
 i t y v e l o
 i t y l a t e s t

dependen
ies:remove

Removes a dependen
y from the
urrent
ontainer. Note that this does not delete installed artifa
ts : all it does is

modify the �/
on�guration/sin
erity/dependen
ies.
onf� �le.

Use �artifa
ts:install� (page 23) or �artifa
ts:prune� (page 24) to delete artifa
ts no longer used in the revised

dependen
y tree, or �artifa
ts:uninstall� (page 24) to delete all artifa
ts.

Arguments

1. Group: The dependen
y group name. This is sometimes also
alled an �organization,� though it may be a

bit misleading, be
ause a group
an refer to a set of produ
ts within an organization. Group names tend to

follow the Java pa
kage naming format. For example, Pruden
e's group name is �
om.three
ri
kets.pruden
e�.

Unfortunately, group names are not standardized and many proje
ts follow their own
onventions.

2. Name: This is the name of the dependen
y within the group. It is usually a simple string, possibly with

dashes, the proje
t. For example, the name for the �Pruden
e Example� appli
ation within the Pruden
e

group is �pruden
e-example�.

For example:

s i n
 e r i t y add org . apa
he . v e l o
 i t y v e l o
 i t y 1 .7

s i n
 e r i t y remove org . apa
he . v e l o
 i t y v e l o
 i t y

dependen
ies:ex
lude

For
ibly ex
ludes an impli
it dependen
y from being downloaded. The format is identi
al to �dependen
ies:remove�

(page 22). For example:

s i n
 e r i t y ex
 lude org . apa
he . v e l o
 i t y v e l o
 i t y

dependen
ies:override

Overrides the version of an impli
it dependen
y. Note that this does not a
tually add the dependen
y. If the

dependen
y is not in the tree, then the override has no e�e
t. The format is identi
al to �dependen
ies:add� (page

21):

s i n
 e r i t y ov e r r i d e org . apa
he . v e l o
 i t y v e l o
 i t y 1 .6

dependen
ies:freeze

Overrides the versions of all expli
it and impli
it dependen
ies to be their
urrently installed versions. This ensure

that future runs of �artifa
ts:install� (page 23) will result in exa
tly the same version installations.

dependen
ies:reset

Removes all dependen
ies from the
urrent
ontainer. Note that this does not delete installed artifa
ts : all it does

is empty the �/
on�guration/sin
erity/dependen
ies.
onf� �le. Use �artifa
ts:uninstall� (page 24) to delete installed

�les.

Artifa
ts

Manages artifa
ts in the
urrent
ontainer. Adds an �Artifa
ts� tab to the Sin
erity GUI.

22

artifa
ts:artifa
ts

Lists artifa
ts available for ea
h dependen
y of the
urrent
ontainer. If the dependen
y is not installed, it will be

listed in parentheses.

Swit
hes

• �pa
kages: Shows artifa
ts within pa
kages (by default these are not shown).

• �verbose: In non-verbose mode (the default) only the type of artifa
t is shown. In verbose mode you'll see

the
omplete relative path to the artifa
t as well as its size in bytes.

artifa
ts:install

This powerful
ommand downloads and installs artifa
ts belonging to the
urrent
ontainer's dependen
ies and

their sub-dependen
ies from the online repositories to whi
h the
ontainer is atta
hed. It should thus be used

after �dependen
ies:add� (page 21) and �repositories:atta
h� (page 20) have been used. This
ommand also handles

upgrades and resolves dependen
y version
on�i
ts.

Installation happens in seven phases:

1. Che
king: First, it sear
hes for your dependen
ies in all atta
hed repositories in order. It uses the �/
on�gu-

ration/sin
erity/dependen
ies.
onf� and �/
on�guration/sin
erity/repositories.
onf� �les as a starting point.

Though you
an edit these dire
tly (or
opy them from elsewhere), you may prefer to use the �dependen-

ies:add� and �repositories:atta
h�
ommands to manipulate them instead.

2. Meta-data: When found, the meta-data (in Maven this is a .pom �le) for the pa
kage is downloaded and

stored in a lo
al
a
he (under �/
a
he/sin
erity/pa
kages/�).

3. Re
ursion: If your dependen
y has sub-dependen
ies, they are added. Phases 1 to 3 are repeated for ea
h.

4. Resolution: Now that we have a
omplete dependen
y tree, it will be �resolved.� This means that dupli
ate

dependen
ies will be skipped and highest possible versions for dependen
ies will be sele
ted. Note that

upgrades are handled by this phase: if a newer version of a
ertain dependen
y is found, it will be sele
ted

instead of the previously installed one. Rarely, this phase may fail with an error due to version
on�i
ts that

annot be resolved.

5. Download/Delete: The dependen
ies sele
ted for installation in the resolution phase will be downloaded,

and those that were previously installed and are no longer needed (for an upgrade) will be deleted. You
an

use the �dependen
ies:dependen
ies�
ommand to see the whole dependen
y tree, in
luding dependen
ies that

were sele
ted to not be installed by the resolution phase. A more detailed report will be made available in

�/
a
he/sin
erity/resolution/three
ri
kets-sin
erity-
ontainer-default.xml�. Note that this XML report uses

XSL and CSS to make it ni
ely readable in a web browser.

6. Unpa
k: Installed pa
kages will be unpa
ked. This is identi
al to the �pa
kages:unpa
k�
ommand, and may

ause new artifa
ts to appear in your
ontainer, as well as arbitrary
ode to be exe
uted via installer hooks

in a pa
kage. It will not by default overwrite existing �les.

7. Prune: Unused artifa
ts will be deleted, unless you have
hanged them. This is identi
al to the �arti-

fa
ts:prune�
ommand.

Under the hood, Sin
erity relies on Ivy to handle phases 1 to 5, and it may be useful to refer to its do
umentation

if you require spe
ialized
on�guration and handling.

Note that remote repositories introdu
e
onsider delay for phases 1, 2 and 5. Furthermore, the more repositories

you atta
h, the longer phase 1 will take, as ea
h repository is
he
ked in sequen
e. For these reasons, as well as

saving you from network/server failure by 3rd party providers, it is strongly re
ommend that you run a lo
al proxy

for the repositories you use. You
an install one easily with Sin
erity using the Nexus skeleton.

Swit
hes

• �overwrite: This a�e
ts phase 6. See �pa
kages:unpa
k� (page 24) for more information.

• �verify: This a�e
ts phase 6. See �pa
kages:unpa
k� (page 24) for more information.

23

http://ant.apache.org/ivy/

artifa
ts:uninstall

This
ommand deletes all artifa
ts installed by �artifa
ts:install� (page 23), unless these artifa
ts have been
hanged

sin
e they've been installed. This behavior ensures that you do not lose your
ustom work. If a pa
kage has an

uninstaller hook, it will be exe
uted after its artifa
ts are deleted.

This
ommand is useful for leaving your
ontainer
lean of any dependen
ies. Though the artifa
ts are deleted,

they are still added to your
ontainer. Thus, this
ommand is entirely reversible by issuing a �artifa
ts:install�

ommand.

Also see the �
ontainer:
lean�
ommand (page 20).

artifa
ts:prune

Deletes artifa
ts that were previously installed by �artifa
ts:install� (page 23) but for whi
h their dependen
ies no

longer exist. Artifa
ts that were
hanged sin
e installation will not be deleted. This behavior ensures that you do

not lose your
ustom work.

You usually would not have to run this
ommand by itself, be
ause it is part of �artifa
ts:install�. However, it

may be useful in
ase you are manipulating the
ontents of �/libraries/jars/� manually.

Pa
kages

Manages pa
kages in the
urrent
ontainer.

pa
kages:unpa
k

Unpa
ks all Sin
erity pa
kages in �/libraries/jars/�. If a pa
kage has an installer hook, it will be exe
uted after its

artifa
ts are unpa
ked.

You usually would not have to run this
ommand by itself, be
ause it is part of �artifa
ts:install� (page 23).

However, it may be useful in
ase you are manipulating the
ontents of �/libraries/jars/� manually.

It is also useful in
ase you've made various
hanges to unpa
ked artifa
ts and want to restore them to their

initial unpa
ked state. A good way to do this is to delete all the �les that you want to restore and then run �sin
erity

unpa
k�.

Arguments

1. [Filter℄: Currently unused.

Swit
hes

• �overwrite: By default the
ommand will not overwrite existing �les, unless these �les were previously

installed by Sin
erity and have not been modi�ed sin
e. This behavior ensures that you do not lose your

ustom work. However, you
an override this behavior using this swit
h. Be
areful: this will overwrite �les

unpa
ked by all pa
kages. If you only want to overwrite a sele
t few �les, it is best to delete them and then

run �unpa
k� without this swit
h.

• �verify: Veri�es that artifa
ts have been unpa
ked
orre
tly. Slower but safer.

Delegate

Manages entry points into the
urrent
ontainer, and is the primary means to run appli
ations in it. Adds a

�Programs� tab to the Sin
erity GUI.

delegate:main

Calls the main() method within a JVM
lass. The
lass may exist anywhere within the
urrent
ontainer, within

the Sin
erity installation, or elsewhere in the JVM
lasspath.

24

Arguments

1. Classname: This is the fully quali�ed JVM
lass name. For example, �org.myappli
ation.Servi
e�. Note that

the
lass has to have a method named �main� with the
orre
t signature (publi
, returns void, with an array

of strings as its only argument).

Additional
ommand arguments after the �rst will be sent as arguments to the main() method.

delegate:start

Exe
utes a S
ripturian (page 50) do
ument.

Though Sin
erity
omes with support for JavaS
ript, do
uments
an be written in any installed programming

language that support S
ripturian. The do
ument extension will tell S
ripturian whi
h language engine to use: �.js�

for JavaS
ript, �.py� for Python, �.rb� for Ruby, et
. Use the �delegate:languages�
ommand (page 26) to list all

supported languages.

Your
ode will have full a

ess to Sin
erity's exe
ution environment and API. See the
hapter on Programming

for more information.

S
ripturian will store
ompiled
ode in the �/
a
he/� subdire
tory, speeding up subsequent runs. For example,

JavaS
ript
lasses will be stored under �/
a
he/javas
ript/�. You
an safely delete this �les.

Arguments

1. Do
ument name: The argument is a do
ument name, either beginning with a �/� and relative to the

urrent
ontainer root, or a simple string spe
ifying a �lename in the �/programs/� subdire
tory. Use the

�delegate:programs�
ommand to list all �les under �/programs/�. As usual with S
ripturian, �lename exten-

sions should not be used. If the name points to a dire
tory, then a �le named �default� (with the appropriate

programming language extension) in that dire
tory will be exe
uted. For example, �sin
erity start /
om-

ponent/� would exe
ute �/
omponent/default.js� from within the
urrent
ontainer, while �sin
erity start

omponent� would exe
ute �/programs/
omponent.js�.

Additional
ommand arguments after the �rst will be ignored by Sin
erity, but will be forwarded to the program

and
an be a

essed from within its
ode using the appli
ation.arguments API.

delegate:exe
ute

This
ommand starts a new pro
ess, whi
h would be a
hild pro
ess of Sin
erity. Standard output and input from

the
hild pro
ess are piped to the
urrent standard output and input.

This
ommand is useful not only for integrating non-JVM
ode into Sin
erity, but also for hashtag support,

allowing you to in
orporate dynami
 language s
ripts, for Python, Ruby, et
. Sin
e Sin
erity
ontrols the environ-

ment of the
hild pro
ess, it
an guarantee that environment variables and other properties are set a

ording to the

urrent
ontainer.

Arguments

1. Exe
utable name: The argument is a �lename relative to the
urrent
ontainer's �/exe
utables/� subdi-

re
tory. The �le must be exe
utable by the underlying operating system. On *nix this in
ludes support for

hashtag s
ript �les.

Swit
hes

• �ba
kground: By default this
ommand will blo
k until the
hild pro
ess exits. However, using this swit
h

Sin
erity will not blo
k and
ontinue pro
essing its
ommand
hain. Note that this would not stop the
hild

pro
ess from ending when the Sin
erity parent pro
ess ends.

delegate:programs

Lists all available programs in the
urrent
ontainer (do
uments in the �/programs/� subdire
tory). Use the

�delegate:start�
ommand (page 25) to start them.

25

http://threecrickets.com/api/javascript/?namespace=application

delegate:languages

Lists all languages installed in the
urrent
ontainer that support S
ripturian (page 50).

Templates

Manages templates in the Sin
erity installation. Adds a �Templates� tab to the Sin
erity GUI.

Templates are used by the �
ontainer:
reate�
ommand (page 19) to initialize new
ontainers.

templates:templates

Lists all templates available in the Sin
erity installation.

templates:templatize

Turns the
urrent
ontainer into a Sin
erity template. This works by simply re
ursively
opying the
urrent
ontainer

into your Sin
erity installation's �/templates/� subdire
tory. Note that you must have write permissions there in

order for this to work.

Note that you
an manipulate the �/templates/� subdire
tory dire
tly. This
ommand is merely for
onvenien
e.

Arguments

1. Template name: A new subdire
tory to be
reated under your Sin
erity installation's �/templates/� subdi-

re
tory. Note that this
ommand will not
opy over an existing template! If the dire
tory already exists, you

will get an error. You must manually delete the dire
tory if you want to
hange an existing template using

this
ommand.

Short
uts

Manages short
uts for the
urrent
ontainer. Adds a �Short
uts� tab to the Sin
erity GUI.

Your short
uts are de�ned in your
ontainer's �/
on�guration/sin
erity/short
uts.
onf� �le.

short
uts:short
uts

Lists all available short
uts in the
urrent
ontainer.

Help

Provides general information about your Sin
erity installation. Adds a �Commands� tab to the Sin
erity GUI.

help:version

Lists Sin
erity version information. This in
ludes the numeri
al version and the build timestamp. An example of

output:

b u i l t=Jun 18 2013 , 1 5 : 2 8 : 4 6 , TZ+0800

ve r s i on =1.0−dev5

help:help

Lists all available Sin
erity
ommands (in full form) from all available Sin
erity plugins. This in
ludes both plugins

installed in the
urrent
ontainer and those available in the Sin
erity installation.

26

help:verbosity

If no argument is provided, prints out the
urrent Sin
erity output verbosity. If an argument is provided (integer

>=0) then
hanges the
urrent verbosity. Note that the default verbosity is 1, and you
an
hange the verbosity

several times within a
hained Sin
erity
ommand.

Verbosity is interpreted individually by individual
ommands, though 0 usually means �silent,� 1 means �only

important messages� and 2 means �quite
hatty.� Higher values usually in
lude more minute debugging information.

Note that verbosity is only used to
ontrol messages to standard output and standard error. Con�guring logging

should be done separately, via the logging plugin (page 32).

Shell

User interfa
es to Sin
erity.

shell:
onsole

A straightforward
onsole in whi
h you
an run Sin
erity
ommands. The
onsole supports basi

ommand
om-

pletion using the TAB key and persistent
ommand history using the UP and DOWN keys.

Use �exit� (or CTRL+C) to exit the
onsole. Use �reset� to reset the
ommand history. The history is available

in the �/
a
he/shell/
onsole.history� �le.

See �jsshell:js
onsole� (page 27) for a ri
her
onsole, in whi
h you
an use full JavaS
ript
ode.

Swit
hes

• �s
ript=: If present, the
onsole will load this s
ript �le, run it one line at a time, and then exit. Empty

lines and lines beginning with a �#� (
omments) will be ignored. In the s
ript, you may separate
ommands

via �:� or a newline, with the same �nal e�e
t.

shell:gui

Starts the Sin
erity Sin
erity GUI (page 12). The GUI will go through all available plugins and try to
all the

optional gui() entry point if they have them, allowing plugins to enhan
e the GUI as is appropriate.

Note that this
ommand blo
ks until the GUI is shut down.

Swit
hes

• �ui=: Let's you
hange the Swing look-and-feel. Look-and-feels supported on most JVMs are: �metal� and

�nimbus�. Note that if no look-and-feel is spe
i�ed, or the spe
i�ed look-and-feel is not found, then Sin
erity

will attempt to default to the native look-and-feel, unless the native platform is GTK. We found the GTK

look-and-feel to be so riddled with bugs that we de
ided to spare you from it.

JavaS
ript Shell

User interfa
es to Sin
erity using JavaS
ript.

jsshell:js
onsole

A JavaS
ript
onsole in whi
h you
an run JavaS
ript
ode, with full a

ess to all JavaS
ript and JVM libraries

in the
ontainer. The
onsole supports basi

ommand
ompletion using the TAB key and persistent
ommand

history using the UP and DOWN keys.

As a short
ut, any line beginning with a �:� will exe
ute a Sin
erity
ommand, similar to using the basi

�shell:
onsole� (page 27).

Use �exit� (or CTRL+C) to exit the
onsole. Use �reset� to reset the
ommand history. The history is available

in the �/
a
he/jsshell/js
onsole.history� �le.

Swit
hes

• �s
ript=: If present, the
onsole will load this s
ript �le, run it all at on
e, and then exit. Note that you

annot use the �:� short
ut to run Sin
erity
ommands here, be
ause this �le is pure JavaS
ript. However,

you
an run Sin
erity
ommands using sin
erity.run(...)
alls.

27

Java

Support for the Java programming language.

java:
ompile

Compiles Java sour
e �les (�.java�) into JVM
lass �les (�.
lass�) using the
urrent
ontainer's
lasspath.

Note that you must have a full JDK to use this
ommand: a JRE usually does not
ome with a Java
ompiler.

Arguments

1. [Sour
e dire
tory℄: Re
ursively
ompiles all �.java� �les in this dire
tory (relative to the
ontainer root).

Defaults to �/libraries/java/�.

2. [Classes dire
tory℄: Output �.
lass� �les here. Defaults to �/libraries/
lasses/�. Note that Sin
erity will

always in
lude this dire
tory in its
lasspath, so it may be a good idea to keep this default.

Language Plugins

These plugins add a language engine to your
ontainer. In some
ases, this also means support for standard tools

that
ome with the language distribution, su
h as a CLI, a REPL, and tools for
ompilation and pa
kaging.

Most of these language engines support the S
ripturian (page 50) standard, meaning that with a language plugin

installed you
an:

• Write S
ripturian programs and Sin
erity programs in this language. For example, with Python installed, you

an write a �/programs/�sh.py� program and start it via �sin
erity start �sh�. Note that the servi
e plugin

(page 34)
an also be used to run programs as daemons or servi
es.

• Write Sin
erity plugins in this language. For example, with Ruby installed, you
an write a �/libraries/s
rip-

turian/plugins/�sh.rb� plugin.

The �delegate:languages�
ommand (page 26) will list all S
ripturian-supported languages in the
ontainer.

JavaS
ript Plugin

Though JavaS
ript was originally designed to be run in web browsers, it is a powerful general-purpose C-syntax

language with S
heme-like
losures that supports many programming paradigms, and has proved useful and popular

outside the browser. Sin
erity runs JavaS
ript
ode via either Nashorn (available from JVM 8) or Rhino.

Note: You do not need this plugin to install JavaS
ript support in a Sin
erity
ontainer. All it does is

provide you with a new
ommand to get easy a

ess to a JavaS
ript shell.

To install:

s i n
 e r i t y add j a v a s
 r i p t : i n s t a l l

To start a shell:

s i n
 e r i t y j a v a s
 r i p t

Fleshing Out

The shell
an run s
ript �les and also evaluate inline s
ripts as arguments. Use �sin
erity javas
ript -h� to see the

ommand's possible arguments. An example of an inline s
ript:

s i n
 e r i t y
 r e a t e my
ontainer : add j a v a s
 r i p t : i n s t a l l : j a v a s
 r i p t −e " pr in t (' Hel lo , world ') "

Note that this �javas
ript� does not use S
ripturian (page 50), nor does it have a

ess to any Sin
erity APIs. To

run JavaS
ript �les in Sin
erity's S
ripturian environment use the �delegate:start�
ommand (page 25).

28

http://openjdk.java.net/projects/nashorn/
https://developer.mozilla.org/en/docs/Rhino

Python Plugin

Python is a general-purpose multi-paradigm dynami
 language with an ex
eptionally
lean syntax and a ri
h

e
osystem. Sin
erity implements Python via Jython, and also has limited support for Jepp.

To install:

s i n
 e r i t y add python : i n s t a l l

To start a shell:

s i n
 e r i t y python

Ruby note: Due to
on�i
ts in their implementations, you
annot
urrently use the Python and Ruby

plugins in the same
ontainer.

Fleshing Out

The shell
an run s
ript �les and also evaluate inline s
ripts as arguments. Use �sin
erity python -h� to see the

ommand's possible arguments. An example of an inline s
ript:

s i n
 e r i t y
 r e a t e my
ontainer : add python : i n s t a l l : python −
 " pr in t ' Hel lo , world ' "

Note that this �python�
ommand does not use S
ripturian (page 50), nor does it have a

ess to any Sin
erity

APIs. To run Python �les in Sin
erity's S
ripturian environment use the �delegate:start�
ommand.

Python has a very extensive e
osystem hosted on PyPI (a.k.a. �The Cheese Fa
tory�) in �egg� format. You
an

install libraries, frameworks and appli
ations into your Sin
erity
ontainer using a spe
ial version of �easy_install�

in
luded in this plugin as a Sin
erity
ommand. For example, let's install Beej's Fli
kr API:

s i n
 e r i t y e a sy_ in s t a l l f l i
 k r a p i

Eggs will be installed into your
ontainer under the �/libraries/python/Lib/site-pa
kages/� subdire
tory.

Note that not all software written for CPython runs well on the Jython engine. See the software's do
umentation

for more details.

The Sin
erity Python plugin also in
lude a �python�
ommand (under �/exe
utables/python�) to allow for proper

integration with Python software that starts Python subpro
esses. You
an run this
ommand dire
tly, and even

use it with a shebang for exe
utable �les. For example, this �le is exe
utable:

#!/path/ to /my
ontainer / exe
utab l e s /python

pr in t ' h e l l o world '

You
an also pla
e su
h �les in your �/exe
utables/� subdire
tory and run them using Sin
erity's

�delegate:exe
ute�
ommand (page 25).

Ruby Plugin

Ruby is a general-purpose multi-paradigm dynami
 language with a ex
eptionally full set of features and a ri
h

e
osystem.

Sin
erity implements Ruby via JRuby, an ex
eptionally robust implementation.

To install:

s i n
 e r i t y add ruby : i n s t a l l

To start a shell:

s i n
 e r i t y ruby

Python note: Due to
on�i
ts in their implementations, you
annot
urrently use the Python and Ruby

plugins in the same
ontainer.

29

http://www.jython.org/
http://jepp.sourceforge.net/
https://pypi.python.org/pypi
http://stuvel.eu/flickrapi
http://jruby.org/

Fleshing Out

The shell
an run s
ript �les and also evaluate inline s
ripts as arguments. Use �sin
erity ruby -h� to see the

ommand's possible arguments. An example of an inline s
ript:

s i n
 e r i t y
 r e a t e my
ontainer : add ruby : i n s t a l l : ruby −e "puts ' Hel lo , world ' "

Note that this �ruby�
ommand does not use S
ripturian (page 50), nor does it have a

ess to any Sin
erity

APIs. To run Ruby �les in Sin
erity's S
ripturian environment use the �delegate:start�
ommand (page 25).

Ruby has a very extensive e
osystem hosted on RubyGems in �gem� format. You
an install libraries, frameworks

and appli
ations into your Sin
erity
ontainer using a version of �gem� in
luded in this plugin as a Sin
erity

ommand. For example, let's install Fli
kraw, an API for a

essing Fli
kr:

s i n
 e r i t y gem i n s t a l l f l i
 k r aw

Gems will be installed into your
ontainer under the �/libraries/ruby/lib/ruby/gems/shared/� subdire
tory.

Note that not all software written for Ruby runs well on the JRuby engine (though in some
ases it may a
tually

run better in JRuby). See the software's do
umentation for more details.

Other standard Ruby
ommands supported by the plugin are: �ast�, �irb�, �rake�, �rdo
�, �ri� and �testrb�.

The Sin
erity Ruby plugin makes sure that the exe
ution environment will work with the JRuby e
osystem.

Spe
i�
ally, JRuby exe
utable �les start with the �env� shebang, for example:

#!/ usr / bin/env jruby

puts ' Hel lo , world '

You
an pla
e su
h �les in your �/exe
utables/� subdire
tory and run them using Sin
erity's �delegate:exe
ute�

ommand (page 25).

PHP Plugin

Though PHP was designed for generating web pages, it is also useful as a general-purpose templating language.

Sin
erity implements PHP via Quer
us. Note that the free version of Quer
us is in
luded, but you may easily swap

it for a pur
hased professional release if you have it.

To install:

s i n
 e r i t y add php : i n s t a l l

To start a shell:

s i n
 e r i t y php

Fleshing Out

The shell
an run s
ript �les provided as arguments. Use �sin
erity php -h� for more information. For example,

let's
reate a �le named �test.php�:

<?php

pr in t "Hel lo , World ! \ n " ;

?>

And then run it like so:

s i n
 e r i t y
 r e a t e my
ontainer : add php : i n s t a l l : php t e s t . php

Note that this �php�
ommand does not use S
ripturian (page 50), nor does it have a

ess to any Sin
erity APIs.

To run PHP �les in Sin
erity's S
ripturian environment use the �delegate:start�
ommand (page 25).

PHP has a very extensive e
osystem hosted on PEAR, often in PHP ar
hive (.phar) format. Though Sin
erity

does not yet support PEAR dire
tly, you
an install PEAR libraries using standard PHP and then
opy them over

to your Sin
erity
ontainer.

30

http://rubygems.org/
http://hanklords.github.io/flickraw/
http://quercus.caucho.com/
http://pear.php.net/

Lua Plugin

Lua is an espe
ially lightweight multi-paradigm dynami
 language, whi
h shares many features with JavaS
ript, but

is nevertheless simpler to implement due to its minimalist design. The simple implementation allows for a register-

rather than sta
k-based virtual ma
hine and famously fast performan
e. Sin
erity implements Lua via Luaj, whi
h

outperforms even the standard Lua in many situations and allows integration with JVM libraries.

To install:

s i n
 e r i t y add lua : i n s t a l l

To start a shell:

s i n
 e r i t y lua

Fleshing Out

The shell
an exe
ute Lua �les provides as arguments, and also evaluate inline s
ripts as arguments. Use �sin
erity

lua -h� to see the
ommand's possible arguments. An example of an inline s
ript:

s i n
 e r i t y
 r e a t e my
ontainer : add lua : i n s t a l l : lua −e " pr in t ' Hel lo , world ' "

Note that this �lua�
ommand does not use S
ripturian (page 50), nor does it have a

ess to any Sin
erity APIs.

To run Lua �les in Sin
erity's S
ripturian environment use the �delegate:start�
ommand (page 25).

Additionally, the plugin supports a �lua
�
ommand to
ompile Lua sour
e �les into portable Lua byte
ode, and

a �luaj
�
ommand to
ompile into JVM
lasses.

Groovy Plugin

Groovy is a dynami
 language with a syntax familiar to Java programmers, but with features inspired by Python,

Ruby and Smalltalk. It provides ex
eptionally good integration with libraries written in Java, su
h that any JVM

library is immediately also a Groovy library.

To install:

s i n
 e r i t y add groovy : i n s t a l l

To start shell:

s i n
 e r i t y groovy

Note that the Groovy plugin requires at least JVM 7 by default, be
ause it depends on the invokedynami

version of Groovy. If you need to run on JVM 6, you
an swit
h to the non-invokedynami
 version with the

following
ommand:

s i n
 e r i t y ex
 lude org .
odehaus . groovy groovy−indy : add org .
odehaus . groovy groovy : i n s t a l l

Fleshing Out

The shell
an run s
ript �les and also evaluate inline s
ripts as arguments. Use �sin
erity groovy� to see the

ommand's possible arguments. An example of an inline s
ript:

s i n
 e r i t y
 r e a t e my
ontainer : add groovy : i n s t a l l : groovy −e " p r i n t l n ' Hel lo , world ' "

Note that this �groovy�
ommand does not use S
ripturian (page 50), nor does it have a

ess to any Sin
erity

APIs. To run Groovy �les in Sin
erity's S
ripturian environment use the �delegate:start�
ommand (page 25).

Clojure Plugin

Clojure is a modern Lisp designed for
on
urren
y and performan
e. It is a superbly expressive language that

supports robust fun
tional programming as well as other paradigms.

To install:

s i n
 e r i t y add
 l o j u r e : i n s t a l l

To start a REPL:

s i n
 e r i t y
 l o j u r e

31

http://luaj.org/luaj/README.html
http://groovy.codehaus.org/
http://clojure.org/

Fleshing Out

The REPL
an run s
ript �les and also evaluate inline s
ripts as arguments. Use �sin
erity
lojure -h� to see the

ommand's possible arguments. An example of an inline s
ript:

s i n
 e r i t y
 r e a t e my
ontainer : add
 l o j u r e : i n s t a l l :
 l o j u r e −e ' (p r i n t l n "Hel lo , World ") '

Note that the REPL does not use S
ripturian (page 50), nor does it have a

ess to any Sin
erity APIs. To run

Clojure �les in Sin
erity's S
ripturian environment use the �delegate:start�
ommand (page 25).

Clojure has a very extensive e
osystem hosted on Clojars. It is a standard Maven-type repository that is

naturally supported by Sin
erity, and atta
hed by default if you use the �add
lojure� short
ut. For example, let's

install the �i
kr-
lj, an API to a

ess Fli
kr:

s i n
 e r i t y add
 l o j u r e : add org .
 l o j a r s . s t an i s t an f l i
 k r −
 l j : i n s t a l l

A short
ut is also available for atta
hing Clojars expli
itly:

s i n
 e r i t y atta
h
 l o j a r s : at ta
h maven−
 en t r a l

Note that many Clojars libraries also rely on Maven Central, so it's a good idea to atta
h it as well. Both are

atta
hed when you use the �add
lojure� short
ut.

Feature Plugins

Sin
erity Standalone Plugin

See also the redistribution plugin for a di�erent approa
h to distribution.

Logging Plugin

This plugin makes it ex
eptionally easy to unify and
on�gure your logging a
ross a diverse set of te
hnologies and

dependen
ies. In most
ases, simply installing this plugin into your
ontainer should handle all logging with sensible

defaults. Should you need to
ustomize and
on�gure logging, you'll �nd Sin
erity's s
heme espe
ially �exible and

powerful.

Though the JVM in
ludes a standard logging API, in the �java.util.logging Interfa
e� (�JULI�) pa
kage, the

greater JVM e
ology has adopted a few in
ompatible standards. In parti
ular, Apa
he Log4j, whi
h was the

inspiration for JULI, enjoys broad support and a more robust implementation. Espe
ially sin
e Log4j 2.0, it

provides state-of-the-art s
alability for high loads using innovative asyn
hronous handling. We've thus preferred to

use Log4j for our a
tual implementation, and rely on the ex
ellent SLF4J library for bridging JULI to it. SLF4J has

be
ome popular enough that several libraries support it dire
tly, so that we
an avoid even the minimal overhead

introdu
ed by bridging.

To install:

s i n
 e r i t y add logg ing : i n s t a l l

To initialize logging, you
an exe
ute the �logging�
ommand from within your programs. An example in

JavaS
ript:

// Wil l do nothing i f the l ogg ing p lug in i s not i n s t a l l e d :

t ry { s i n
 e r i t y . run (' l ogg ing : logg ing ') }
at
h (x) {}

You
an also test logging simply using the �log�
ommand, whi
h sends an �info� level message to the �sin
erity�

logger:

s i n
 e r i t y add logg ing : i n s t a l l : l og "This i s a t e s t ! "

Logs will appear under the �/logs/� dire
tory. By default, all loggers are appended to �/logs/
ommon.log�, whi
h

is a rolling log �le with a size of 5MB per �le, and a maximum of 10 �les.

Note for Restlet users: If you're using the Restlet skeleton, it's re
ommended to install the Restlet

skeleton logging add-on (page 45), whi
h adds a Restlet extension library that provides dire
t
hute to

SLF4J.

High CPU usage? On some rare
ombinations of operating systems and JVMs, Log4j 2.0 (well,

a
tually the LMAX Disruptor library it uses) may use too mu
h CPU time, even when idle. You
an

32

https://clojars.org/
https://github.com/stanistan/flickr-clj
http://logging.apache.org/log4j/
http://www.slf4j.org/
http://lmax-exchange.github.io/disruptor/

redu
e CPU usage in these
ases, at the expense of a�e
ting the high-s
alability pro�le, by using the

following JVM swit
h:

−DAsyn
LoggerConfig . WaitStrategy=Blo
k

Fleshing Out

�O�
ially,� Log4j
on�guration is based either on JVM properties �les or XML. Both are hard
oded, in�exible and

di�
ult to s
ale. Sin
erity's logging plugin instead uses a powerful JavaS
ript-based s
heme, whi
h allows you to

dynami
ally
on�gure your loggers a

ording to your operating environment.

Con�gure your loggers under �/
on�guration/logging/loggers/� and your appenders under �/
on�guration/log-

ging/appenders/�. Any JavaS
ript �le you add to these dire
tories will be exe
uted upon logging initialization.

Take a look at the defaults to get a sense of how this works: the /sin
erity/log4j/ library makes it espe
ially easy

to use.

For example, here's a de�nition of a rolling �le appender:

var l o gF i l e = s i n
 e r i t y .
onta ine r . g e tLogsF i l e (' main . log ')

l o gF i l e . pa r en tF i l e . mkdirs ()

 on f i gu r a t i on . ro l l i ngF i l eAppender ({

name : 'main ' ,

layout : {

pattern : '%d : %−5p [%
 ℄ %m%n '

} ,

f i leName : S t r ing (l o gF i l e) ,

f i l e P a t t e r n : S t r ing (l o gF i l e) + '.% i ' ,

p o l i
 y : {

s i z e : '5MB'

} ,

s t r a t e gy : {

min : ' 1 ' ,

max : '9 '

}

})

Note that you
an also use �o�
ial� Log4j
on�guration if you are more
omfortable with it. If the �le �/
on�g-

uration/logging.
onf� is present, it will be used. This �le
an either be a properties �le, a JSON �le, or an XML �le

(in whi
h
ase it must begin with the �<?xml� header). The plugin
omes with an example �logging.
onf� named

�logging.alt.
onf�, whi
h you
an rename to �logging.
onf� if you wish to use it.

The logging plugin also
omes with a simple �log�
ommand to test your logging
on�guration. Example usage:

s i n
 e r i t y l og "Hel lo , l og ! "

Extras

In distributed environments, su
h as grids and
louds, you may prefer to
entralize your logging. To aid this
ommon

use
ase, Sin
erity
omes with two logging server solutions.

Log4j Server You
an
reate a simple Log4j TCP-based so
ket server, whi
h
omes with the logging plugin:

s i n
 e r i t y
 r e a t e l o g s e r v e r : add logg ing : i n s t a l l : s t a r t l og4 j−s e r v e r

Note that we're
reating the Log4j server in a separate
ontainer, and starting it as a separate pro
ess.

On this Log4j server, you want to
on�gure your a
tual appenders. Then, on all your
lient pro
esses, you want to

disable all the appenders ex
ept the so
ket appender (�/
on�guration/logging/appenders/so
ket.js�). Un
omment

all the
ode there to enable it and make it the default root appender.

The result is that all logging messages will be sent from the
lients to the server, where they will be a
tually

logged.

It's re
ommend to run the Log4j server with Sin
erity's servi
e plugin (page 34):

33

http://threecrickets.com/api/javascript/?namespace=Sincerity.Log4j.Configuration

s i n
 e r i t y
 r e a t e l o g s e r v e r : add logg ing : add s e r v i
 e : i n s t a l l : s e r v i
 e l og4 j−s e r v e r s t a r t

MongoDB Appender You
an install a MongoDB-ba
ked appender:

s i n
 e r i t y add logg ing .mongodb : i n s t a l l

To
on�gure the MongoDB
onne
tion, edit �/
on�guration/logging/appenders/
ommon-mongo-db.js�. By de-

fault, it
onne
ts to lo
alhost at the default port (27017) without se
urity, and logs to database �logs�,
olle
tion

�
ommon�.

It is strongly re
ommended that you use a
apped
olle
tion for your log. This guarantees both ex
ellent write

performan
e as well as automati
 rolling. You
an
reate it from the �mongo� shell tool like so:

db .
 r e a t eCo l l e
 t i on ('
ommon ' , {
apped : true , s i z e : 100000})

Or,
onvert an existing
olle
tion to
apped:

db . runCommand({ '
onvertToCapped ' : '
ommon ' , s i z e : 100000})

This plugin also provides you with a very useful tool to �tail� your
entral log (works only with
apped
olle
tions):

s i n
 e r i t y l o g t a i l

Press CTRL+C to quit. To test that this works, open another terminal and send a log message:

s i n
 e r i t y l og "This i s a t e s t ! "

You
an provide �logtail� with the MongoDB
onne
tion parameters:

s i n
 e r i t y l o g t a i l −−u r i=l o
 a l h o s t :27017 −−username=admin −−password=admin123 −−db=log s −−
 o l l e
 t i o n=
ommon

Servi
e Plugin

This plugin lets you easily start and
ontrol any program as a daemon or servi
e running in the ba
kground.

This is a
hieved using Tanuki Software's ex
ellent Java Servi
e Wrapper (JSW). JSW deploys a native pro
ess to

monitor your daemon's health, is able to dete
t failures and hangs, and restarts in su
h
ases. It supports many

on�guration options to
ontrol the JVM pro
ess, as well as JMX-based management for the wrapper. While you

an start any program using the �sin
erity start�
ommand, it is strongly re
ommended that you use this plugin

instead for produ
tion environments. It's so well-designed, we wish it were in
luded in the JVM!

JSW runs on an impressive array of JVM-
apable operating systems: Linux, Ma
 OS X, Windows, Solaris,

AIX, FreeBSD, HPUX, z/OS and z/Linux, supporting several 32-bit and 64-bit ma
hine ar
hite
tures for ea
h. Of

ourse, you do not want to install support for all of these platforms in your
ontainer, and so this plugin
leverly

dete
ts the underlying operating system and downloads the ne
essary native libraries on-demand the �rst time it

is run. An error message will be displayed on unsupported platforms.

To install:

s i n
 e r i t y add s e r v i
 e : i n s t a l l

To start a program as a daemon:

s i n
 e r i t y s e r v i
 e myprogram s t a r t

The above assumes that you have a �/programs/myprogram.js� �le. (Programs
an be written in languages

other than JavaS
ript if they are installed in your
ontainer.) See the servi
e wrapper's log at �/logs/servi
e-

myprogram.log�.

To stop the daemon:

s i n
 e r i t y s e r v i
 e myprogram stop

To restart it:

s i n
 e r i t y s e r v i
 e myprogram r e s t a r t

To
he
k its status:

s i n
 e r i t y s e r v i
 e myprogram s t a tu s

34

http://www.mongodb.org/
http://www.mongodb.org/display/DOCS/Capped+Collections
http://wrapper.tanukisoftware.com/

Additionally, you
an run the wrapper in �
onsole mode,� whi
h outputs the wrapper's log to the
onsole, and

lets you easily stop it using CTRL+C. This is very useful for testing and debugging:

s i n
 e r i t y s e r v i
 e myprogram
onso l e

Note that Sin
erity uses the Community Edition of JSW, whi
h is li
ensed under the GPL (v2). Make

sure that you understand the spe
ial impli
ations of this li
ense if you intend to redistribute your produ
t.

Furthermore, some Windows platforms (64bit x86 and Itanium) supported by the Standard/Professional

Editions are not supported by the Community Edition. A
ommer
ial li
ense is available for pur
hase

without these limitations. See the li
ense guide for more information.

Fleshing Out

This plugin generates some parts of the JSW
on�guration on the �y, but it
an furthermore merge your
ustom

settings into this
on�guration. To do so, edit �/
on�guration/servi
e/servi
e.
onf�. In parti
ular, you might want

to
ontrol the memory pro�le of your JVM, or
on�gure the wrapper's logging (whi
h works independently of JVM

logging). See the JSW do
umentation for a
omplete guide.

Additionally, this plugin provides a �exible way for you to send arguments to the wrapped JVM. Any �les under

�/
on�guration/servi
e/jvm/� with a �.
onf� extension will be merged and added. The plugin
omes installed with

a few sensible defaults, and additionally other plugins may add their own �.
onf� �les to support the servi
e plugin.

These �.
onf� �les all support string interpolation using any JVM system property or environment variable. For

example, here's a way to add garbage
olle
tion logging:

−Xlogg
 : { s i n
 e r i t y .
onta ine r . root }/ l o g s /g
 . l og

−XX:+PrintGCDetai ls

−XX:+Pr in tTenur ingDi s t r ibut i on

It may furthermore be useful to run your Sin
erity servi
e as an operating system servi
e. On Unix-like systems,

you
an use a �system init s
ript.� Below is a s
ript template you may use, meant for the Restlet skeleton (page

44). It adds a spe
ial �###�
omment blo
k used by Linux's Standard Base (LSB) spe
i�
ation. Let's name it

�/et
/init.d/restlet�:

#!/bin/sh

BEGIN INIT INFO

Provides : r e s t l e t

Required−Star t : $ l o
 a l_ f s $remote_fs $network $sys l og

Required−Stop : $ l o
 a l_ f s $remote_fs $network $sys l og

Default−Star t : 2 3 4 5

Default−Stop : 0 1 6

Short−Des
 r ip t i on : s t a r t s the Re s t l e t
omponent

Des
 r ip t i on : s t a r t s the Re s t l e t
omponent us ing s ta r t−stop−daemon

END INIT INFO

SINCERITY=/path/ to/ s i n
 e r i t y / s i n
 e r i t y

CONTAINER=/path/ to/
onta ine r

SERVICE=r e s t l e t

OWNER=myuser

COMMAND=$1

sudo −u "$OWNER" "$SINCERITY" use "$CONTAINER" : s e r v i
 e "$SERVICE" "$COMMAND"

ex i t 0

For
onsisten
y, make sure to
hange the �Provides:� entry to mat
h the name of the �le.

You
an start/stop this servi
e by running the above s
ript dire
tly, for example: �sudo /et
/init.d/restlet start�.

On some operating systems, you may also use your �servi
e�
ommand, for example: �sudo servi
e restlet start�.

Make sure to edit the variables to point to the paths on your system. Note that the �OWNER� user will be used

to run your servi
e, and that for se
urity reasons you are strongly advised not to use �root�: it is best to
reate a

35

http://wrapper.tanukisoftware.com/doc/english/licenseOverview.html
http://wrapper.tanukisoftware.com/doc/english/properties.html
http://refspecs.linuxbase.org/LSB_3.1.1/LSB-Core-generic/LSB-Core-generic/initscrcomconv.html

spe
ial user for your servi
e, and to set its permissions a

ording to only what it needs: read a

ess to Sin
erity

and the
ontainer, and write a

ess to the
ontainer's �/
a
he/�, �/logs/� and other relevant dire
tories.

To make your servi
e start automati
ally when the system starts depends on your operating system. The above

s
ript should work on most Linux-based operating systems due to the �###�
omment blo
k. To pro
ess this �le

and the blo
k, e�e
tively installing the servi
e into the operating system, run �sudo update-r
.d restlet defaults�.

That
ommand uses �insserv� internally, so run �man insserv� to get do
umentation for the
omment blo
k format.

Extras

JMX is a powerful te
hnology for remote monitoring and management of your JVM and appli
ations. Lo
al JMX

(using pipes) is automati
ally supported, however you may also need remote JMX over the network. To add it:

s i n
 e r i t y add s e r v i
 e . remote−jmx : i n s t a l l

The default
on�guration is adequate for a

essing JMX via SSH tunneling, whi
h is very se
ure. To
reate the

tunnel, use the �-L� swit
h of SSH when
onne
ting to your remote server:

ssh −L 1650 : l o
 a l h o s t :1650 −L 1651 : l o
 a l h o s t :1651 mysite . org

Note that we a
tually
reate two tunnels, one for JMX on port 1650 and one for the RMI registry on port 1651.

With the tunnel in pla
e, start VisualVM (it's in
luded with the JDK),
hoose �Add JMX Conne
tion,� and use

�lo
alhost:1650� for the
onne
tion string. Note that you do not want to use �Add Remote Host�: tunneling makes

the remote host appear lo
al. Of
ourse, you will need to keep the tunnel open for as long as you're
onne
ted with

VisualVM.

If this is your �rst time using VisualVM, it is re
ommended that you install its �VisualVM-MBean� plugin, whi
h

will, among other things, allows you to a

ess JSW's bean (�org.tanukisoftware.wrapper�) for remotely restarting

your servi
e.

You
an
on�gure remote JMX by editing �/
on�guration/servi
e/jvm/remote-jmx.
onf�. For example, you may

hange the port numbers, enable authenti
ation, and also SSL if you prefer it to SSH tunneling.

Important note if you are using a version of the JVM prior to 7u4: Unfortunately, old versions

of the JVM do not support the �
om.sun.management.jmxremote.rmi.port� property, without whi
h the

RMI registry port is assigned randomly, thus making it di�
ult to use SSH tunneling. To solve this

problem, this Sin
erity add-on
omes with a spe
ial ��rewall-friendly-agent� library that allows for this

fun
tionality. You must spe
i�
ally enable it in �/
on�guration/servi
e/jvm/remote-jmx.
onf�.

Redistribution Plugin

This plugin lets you pa
kage your Sin
erity
ontainer for
onvenient redistribution. See the Sin
erity standalone

plugin for a di�erent approa
h to distribution.

Currently, it supports
reating a powerful
ross-platform JVM-based graphi
al installer, using the ex
ellent

IzPa
k library. In the future, we hope to support additional distribution media.

To install:

s i n
 e r i t y add r e d i s t r i b u t i o n : i n s t a l l

To use:

s i n
 e r i t y izpa
k [app l i
 a t i on name ℄ [ve r s i on (opt iona l , d e f a u l t s to " 1 . 0 ") ℄

For example, in a single
ommand let's
reate an installable Nexus repository manager with a few plugins:

s i n
 e r i t y
 r e a t e nexus : add nexus : add logg ing : add s e r v i
 e : add r e d i s t r i b u t i o n : i n s t a l l : i zpa
k "Nexus Repos i tory Manager"

The result will be an �installer.jar� �le in your
ontainer's root dire
tory, whi
h you
an distribute. To install

your appli
ation from this jar:

java −j a r i n s t a l l e r . j a r

(Note that on some desktop environments double-
li
king this �le would also run it.)

The installed dire
tory will
ontain a
onvenient �uninstaller.jar�.

36

http://docs.oracle.com/javase/tutorial/jmx/
http://visualvm.java.net/
http://izpack.org/

Fleshing Out

To
hange the li
ense, edit �/
on�guration/izpa
k/li
ense.txt�.

The �/
on�guration/izpa
k/installer.xml� in
luded with this plugin has sensible defaults that should work �ne

for many use
ases, but you'll likely want to
ustomize it. By default, it merges your Sin
erity install in, and

ex
ludes IzPa
k itself, as well as the �/
a
he/� and �/logs/� dire
tory. This guarantees that it would �just work�

leanly on any JVM with no pre-requisites.

Please see the IzPa
k do
umentation for full details. IzPa
k is very powerful, and
an let you
reate modular,

�exible distributions.

Markup Plugin

Need to qui
kly render markup text into HTML? Markdown, Con�uen
e, MediaWiki, Twiki, Tra
, Textile and

Bugzilla Textile are all supported by this plugin. Markdown is supported by the Pegdown engine, and the rest by

Mylyn WikiText. (While useful in itself, this plugin is intended to serve as a
ode example for using these libraries.)

The rendering engines themselves are not at �rst installed: the plugin will make sure that the engine you need

is available, and install it if it's not, on demand.

To install:

s i n
 e r i t y add markup : i n s t a l l

To use:

s i n
 e r i t y render [language ℄ [marked up sour
e path ℄ [rendered output path ℄

For example:

s i n
 e r i t y render markdown README.md readme . html

Batik SVG Plugin

Need to qui
kly render SVG into PDF, PNG or JPEG? This plugin uses Apa
he Batik to do so. (While useful in

itself, this plugin is intended to serve as a
ode example for using Batik.)

To install:

s i n
 e r i t y add bat ik : i n s t a l l

To use:

s i n
 e r i t y render [SVG sour
e path ℄ [rendered output path ℄

The output path extension will determine the output type. For example:

s i n
 e r i t y render t e s t . svg t e s t . pdf

JsDo
 Plugin

Uses JsDo
 Toolkit.

�jsdo
.sin
erity�

See JsDo
 template (page 50).

Skeletons

You've most likely
ome to Sin
erity for the skeletons: they provide the easiest way to get started with all kinds

of frameworks, servers and libraries, while Sin
erity lets you easily add more features, more libraries and more

languages as your proje
t grows.

37

http://izpack.org/documentation/installation-files.html
https://github.com/sirthias/pegdown
http://wiki.eclipse.org/Mylyn/Incubator/WikiText
http://xmlgraphics.apache.org/batik/
http://code.google.com/p/jsdoc-toolkit/

Web Platforms

• Pruden
e (page 46)

• Restlet (page 44)

• Jetty: stati
 web (page 42)

• Jetty: servlet/JSP
ontainer (page 43)

Web Frameworks

• Diligen
e (page 47)

• Rails (page 47)

• Django (page 48)

Databases

• OrientDB (page 40)

• H2 (page 41)

Middleware

• Hadoop (page 40)

• Solr (page 39)

• Felix (page 46)

• Nexus (page 38)

Nexus Skeleton

Sonatype's Nexus repository manager is a re
ommended
ompanion for Sin
erity. At its most basi
, it provides

you with a proxy for a

essing remote repositories, su
h as the Three Cri
kets repository in whi
h many Sin
erity

pa
kages are stored. A

essing repositories via a proxy provides you with mu
h better performan
e and reliability.

Nexus is a very powerful tool, and learning how to use it well will
an go a long way towards improving your

Sin
erity experien
e.

With Sin
erity, it's a pie
e of
ake to install a working Nexus instan
e:

s i n
 e r i t y add nexus : i n s t a l l

Give this a minute or two: Nexus has a lot of dependen
ies, though most are tiny.

To start the server:

s i n
 e r i t y s t a r t j e t t y

The default port is 8080, so point your browser to http://lo
alhost:8080 to see your new Nexus repository

manager. The default user is �admin� with password �admin123�. You probably want to log in and
hange that

password. Nexus provides a ri
h web-based interfa
e and in
ludes ex
ellent do
umentation.

Note that the Nexus skeleton relies on the standard Jetty servlet skeleton, to whi
h you
an indeed install other

�
ontexts� (web appli
ations).

Fleshing Out

You may want to
hange the default port from 8080, whi
h you
an do by editing �/server/
onne
tors/default.js�.

Otherwise, the default
on�guration should be quite sensible. It in
ludes support for the standard repositories

used by Sin
erity, in addition to the Nexus defaults. Logging has also been
on�gured to adhere to Sin
erity's

ontainer stru
ture, so that logs will appear under �/logs/�. Note that Nexus itself will not use Sin
erity's logging

plugin (page 32), but you
an
on�gure Nexus logging right in the user interfa
e.

38

http://www.sonatype.org/nexus/
http://localhost:8080

Extras

Two plugins are strongly re
ommended: logging (page 32) and servi
e (page 34). To install them:

s i n
 e r i t y add logg ing : add s e r v i
 e : i n s t a l l

Note that the Nexus appli
ation uses its own logging implementation, whi
h must be
on�gured internally.

However, the logging plugin (page 32) will be put to good use by the
ontaining Jetty server.

The following
ommand will install a Nexus repository with the re
ommended plugins into a Sin
erity
ontainer

reated in the
urrent dire
tory, and then start it a servi
e:

s i n
 e r i t y
 r e a t e my
ontainer : add nexus : add logg ing : add s e r v i
 e : i n s t a l l : s e r v i
 e j e t t y s t a r t

To stop it:

s i n
 e r i t y use my
ontainer : s e r v i
 e j e t t y stop

Solr Skeleton

Apa
he Solr is a popular distributed textual sear
h platform. It runs on the JVM and relies on the ex
ellent Lu
ene

library for indexing and sear
hing, but is a

essed via simple network APIs, making it perfe
t for distributed

deployments and heavy loads. Client libraries are available for many platforms, and are even integrated into the

ba
kends of many web development frameworks, su
h as Django and Ruby on Rails.

With Sin
erity, it's a pie
e of
ake to install a working Solr instan
e:

s i n
 e r i t y add s o l r : i n s t a l l

To start the server:

s i n
 e r i t y s t a r t j e t t y

The default port is 8080, so point your browser to http://lo
alhost:8080/solr/admin/ to see the main Solr

administration page.

Fleshing Out

The skeleton
omes with the example
on�guration supplied with the o�
ial Solr distribution, and should serve as

a good starting point for the majority of proje
t. The
on�guration is available under �/
on�guration/solr/
onf/�,

and indexing and other data is stored in �/data/solr/�.

Solr is very
on�gurable, both in terms of performan
e �ne-tuning and language analysis and indexing. It also

enjoys a range of useful plugins. See the o�
ial site for more information on �eshing out your skeleton.

Extras

The logging plugin (page 32) is strongly re
ommended. To install it:

s i n
 e r i t y add s e r v i
 e : i n s t a l l

Note that the logging plugin (page 32) is already in
luded in the skeleton, be
ause Solr relies on SLF4J.

The following
ommand will install a Solr server with the re
ommended plugins into a Sin
erity
ontainer
reated

in the
urrent dire
tory, and then start it a servi
e:

s i n
 e r i t y
 r e a t e my
ontainer : add s o l r : add s e r v i
 e : i n s t a l l : s e r v i
 e j e t t y s t a r t

To stop it:

s i n
 e r i t y use my
ontainer : s e r v i
 e j e t t y stop

39

http://lucene.apache.org/solr/
http://lucene.apache.org/
http://localhost:8080/solr/admin/

Hadoop Skeleton

Apa
he Hadoop is a powerful platform for distributed
omputing, well known for its s
alable distributed �lesystem

and popular map-redu
e module. It provides the underlying infrastru
ture for several data storage and analysis

platforms, su
h as Cassandra, HBase, Hive and Pig.

Hadoop runs best on Linux, where it relies on native libraries. This skeleton dete
ts the underlying ar
hite
ture

and downloads the ne
essary native libraries on-demand.

With Sin
erity, it's a pie
e of
ake to install a working Hadoop instan
e. Note that we need to format the node

�rst:

s i n
 e r i t y add hadoop : i n s t a l l : hadoop namenode −format

(Note that the �namenode -format�
ommand exits the JVM when done, so you
annot
hain more
ommands

after it.)

Then, to start the node:

s i n
 e r i t y hadoop s t a r t

If this is the only node in your Hadoop
luster, you will need to wait about 30 se
onds for the servi
es to fully

initialize. To test
opying �les to and from the Hadoop �lesystem:

s i n
 e r i t y hadoop f s −put myf i l e . txt t e s t . txt

s i n
 e r i t y hadoop f s −get t e s t . txt t e s t . txt

To stop the node:

s i n
 e r i t y hadoop stop

To see the status of the node servi
es:

s i n
 e r i t y hadoop s t a tu s

Note that Hadoop uses the logging plugin (page 32) to manage the node servi
es.

Fleshing Out

The skeleton
omes with a plugin that supports the full list of Hadoop
ommands, and additionally supports �start�,

�stop� and �status� to manage the servi
es.

All logs are under �/logs/�, and the data is stored in �/data/�.

To
on�gure your instan
e, see �/
on�guration/hadoop/�. The default
on�guration is based on that of the

o�
ial Hadoop distribution on ports 8000 (name node) and 8001 (job tra
ker). The logging
on�guration is based

on the logging plugin (page 32), but its essential setup has likewise been
opied over from the o�
ial distribution.

OrientDB Skeleton

OrientDB is a powerful do
ument- and graph-oriented (�NoSQL�) database server designed for s
alability. As a

graph database, it supports the entire Tinkerpop sta
k, in
luding the Gremlin graph traversal language, allowing

you to easily port your appli
ation between di�erent database implementations. For users needing features from

traditional RDBMS, OrientDB also supports SQL and allows enfor
ing s
hemas on your
olle
tions.

If you're interested in a more traditional RDBMS,
he
k out Sin
erity's H2 skeleton.

The Sin
erity OrientDB skeleton makes it easy to set up and run a single OrientDB instan
e, whi
h
an run on

its own or as a node in a multi-master
luster. To install an OrientDB instan
e:

s i n
 e r i t y add or ientdb : i n s t a l l

To start the server:

s i n
 e r i t y s t a r t or i entdb

The default web port is 2480, so point your browser to http://lo
alhost:2480/studio/ to see the OrientDB Studio

appli
ation.

To start the
onsole:

s i n
 e r i t y
onso l e

In the
onsole, to
onne
t to the demo �tinkerpop� database:

40

http://hadoop.apache.org/
http://hadoop.apache.org/hdfs/
http://hadoop.apache.org/mapreduce/
http://cassandra.apache.org/
http://hbase.apache.org/
http://hive.apache.org/
http://pig.apache.org/
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SingleCluster.html
http://www.orientdb.org/
http://tinkerpop.com/
https://github.com/tinkerpop/gremlin/wiki
http://localhost:2480/studio/

orientdb>
onne
t remote : l o
 a l h o s t / t inkerpop admin admin

orientdb> greml in g .V[1 ℄

Fleshing Out

The OrientDB plugin also supports a �gremlin�
ommand to get a pure Gremlin
onsole, though note you
an also

run Gremlin
ode in the general OrientDB
onsole by pre�xing it with the �gremlin�
ommand.

To
on�gure your instan
e, start with �/
on�guration/orientdb/server.
onf� (XML). The default �server.
onf�

also referen
es �database.
onf� (JSON) and �hazel
ast.
onf� (XML).

Additionally, �properties.
onf� (properties sheet)
an be used to set JVM system properties used by OrientDB.

Databases will be stored in the �/databases/� dire
tory in your Sin
erity
ontainer.

Extras

Two plugins are strongly re
ommended: logging (page 32) and servi
e (page 34). To install them:

s i n
 e r i t y add logg ing : add s e r v i
 e : i n s t a l l

The following
ommand will install an OrientDB node with the re
ommended plugins into a Sin
erity
ontainer

reated in the
urrent dire
tory, and then start it a servi
e:

s i n
 e r i t y
 r e a t e my
ontainer : add or ientdb : add logg ing : add s e r v i
 e : i n s t a l l : s e r v i
 e or i entdb s t a r t

To stop it:

s i n
 e r i t y use my
ontainer : s e r v i
 e or i entdb stop

H2 Skeleton

H2 is a lightweight-yet-powerful relational database management system (RDBMS). It
an run both as a standalone

server (supporting a PostgreSQL
ompatibility mode), or embedded in your JVM program.

If you're interested in non-relational (�NoSQL�) databases,
he
k out Sin
erity's OrientDB skeleton.

The Sin
erity H2 skeleton is spe
i�
ally designed to make it easy to run H2 in standalone server mode. To

install an H2 instan
e:

s i n
 e r i t y add h2 : i n s t a l l

To start the server:

s i n
 e r i t y s t a r t h2

The default web port is 8082, so point your browser to http://lo
alhost:8082/ to see the H2 Console appli
ation.

Note that the web
onsole appli
ation is useful not just for H2: it be used to
onne
t to any JDBC URI, as long as

you have the JDBC driver installed in your Sin
erity
ontainer.

Fleshing Out

The H2 plugin supports all the tools that
ome with H2. You
an use �sin
erity help� to get a list of them. For

example, to
reate a
luster:

s i n
 e r i t y
reate−
 l u s t e r \

−ur lSour
e jdb
 : h2 : t
p :// l o
 a l h o s t :9101/ t e s t \

−ur lTarget jdb
 : h2 : t
p :// l o
 a l h o s t :9102/ t e s t \

−user sa \

−s e r v e rL i s t l o
 a l h o s t : 9101 , l o
 a l h o s t :9102

To
on�gure your server, see �/
on�guration/h2/server.
onf�. Lines that are not empty and do not begin with

�#� will be added as
ommand line arguments to the �server� tool. In fa
t, you
an
reate �.
onf� �les for all the

H2 tools if you wish to set default
ommand arguments for them. For example, �
reate-
luster.
onf�.

By default, databases will be stored in the �/databases/� dire
tory in your Sin
erity
ontainer. However, note

that H2's JDBC URI allows you to a

ess database stored anywhere in the �lesystem. If this is a se
urity
on
ern,

you may want to
onsider running the H2 server in a lo
ked-down operating system user.

41

http://www.h2database.com/
http://localhost:8082/

Extras

Two plugins are strongly re
ommended: logging (page 32) and servi
e (page 34). To install them:

s i n
 e r i t y add logg ing : add s e r v i
 e : i n s t a l l

The following
ommand will install an H2 database server with the re
ommended plugins into a Sin
erity

ontainer
reated in the
urrent dire
tory, and then start it a servi
e:

s i n
 e r i t y
 r e a t e my
ontainer : add h2 : add logg ing : add s e r v i
 e : i n s t a l l : s e r v i
 e h2 s t a r t

To stop it:

s i n
 e r i t y use my
ontainer : s e r v i
 e h2 stop

Jetty Web Server Skeleton

Need a web server for stati
 �les? No problem:

s i n
 e r i t y add j e t t y . web : i n s t a l l

Jetty is a very robust, modular web server with ex
ellent asyn
hronous performan
e, and lots of features and

extensions. With this skeleton we've provided you with the lightweight, bare minimum dependen
ies to serve just

stati
 �les for a single web site.

To start you server:

s i n
 e r i t y s t a r t j e t t y

The default port is 8080, so point your browser to http://lo
alhost:8080 to see the default wel
oming page.

Jetty allows for mu
h more sophisti
ation than just serving a single web site, and for that we've provided a sep-

arate skeleton: �jetty.servlet�. That skeleton supports multiple �
ontexts� under the server, as well as
on�guration

of
onne
tors, and of
ourse servlets and web appli
ations pa
kaged as WAR �les.

Additionally, Jetty is a re
ommended
onne
tor for Restlet. It's available as a skeleton add-on, �restlet.jetty�.

The Jetty skeletons use Jetty 9.3, whi
h requires a JVM of at least version 8.

Fleshing Out

Just put your �les under the
ontainer's �/web/� dire
tory, using the usual rules for web servers: URLs are mapped

to �le paths under �/web/�, and dire
tory URLs are mapped to �index.html� �les in that dire
tory. MIME types

are automati
ally guessed a

ording to the
ommon �lename extensions.

You
an
on�gure the server by editing �/
on�guration/jetty/default.js�. For example, you
an
hange the port,

enable SSL, and also HTTP/2. Note that support for SPDY must be added as an �extra� (see below).

For SSL, the example
omes with a self-signed key stored in a Java KeyStore (JKS) at �/
on�guration/jetty/-

jetty.jks�. You should use it only for testing! Otherwise, you will want to
reate or import your own key using the

�keytool� utility that is bundled with most JDKs. Here's how to
reate a new, unique key:

key too l −keys to r e j e t t y . j k s −a l i a s j e t t y −genkey −keya lg RSA

Su
h self-
reated keys are useful for
ontrolled intranet environments, in whi
h you
an provide
lients with the

publi
 key, but for Internet appli
ations you will likely want a key
reated by one of the �
erti�
ate authorities�

trusted by most web browsers. Some of these
erti�
ate authorities may
onveniently let you download a key in

JKS format. Otherwise, if they support PKCS12 format, you
an use keytool (only JVM version 6 and later) to

onvert PKCS12 to JKS. For example:

key too l −importkeystore −s r
 s t o r e t yp e PKCS12 −s r
 k ey s t o r e mysite . pk
s12 −

des tkeys to r e j e t t y . j k s

If your
erti�
ate authority won't even let you download PKCS12 �le, you
an
reate one from your �.key� and

�.
rt� (or �.pem�) �les using OpenSSL:

opens s l pk
s12 −inkey /path/mykey . key −in /path/mykey .
 r t −export −out mysite .

pk
s12

(Note that in this
ase you must give your new PKCS12 a non-empty password, or else keytool will fail with an

unhelpful error message.)

42

http://www.eclipse.org/jetty/
http://localhost:8080
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://www.openssl.org/

Extras

Two plugins are strongly re
ommended: logging (page 32) and servi
e (page 34). To install them:

s i n
 e r i t y add logg ing : add s e r v i
 e : i n s t a l l

It is also possible to add HTTP/2 support: this proto
ol, supported by many web browsers,
an improve the

user experien
e as well as redu
e server load when using �https�.

To install support for HTTP/2, as well as the required ALPN support:

s i n
 e r i t y add j e t t y . http2 : i n s t a l l

To enable ALPN, you need to spe
ify your �alpn-boot.jar� in the JVM_BOOT_LIBRARIES environment

variable (page 12), for example:

JVM_BOOT_LIBRARIES=/path/ to/my
ontainer / l i b r a r i e s / j a r s / org . mortbay . j e t t y . alpn /alpn−boot /8 . 1 . 3 / alpn boot . j a r \

s i n
 e r i t y : s t a r t j e t t y

It's a bit awkward, but ne
essary due to the way ALPN is se
urely implemented in the JVM.

The following
ommand will install a web server with the re
ommended plugins into a Sin
erity
ontainer
reated

in the
urrent dire
tory, and then start it a servi
e:

s i n
 e r i t y
 r e a t e my
ontainer : add j e t t y . web : add logg ing : add s e r v i
 e : i n s t a l l : s e r v i
 e j e t t y s t a r t

To stop it:

s i n
 e r i t y use my
ontainer : s e r v i
 e j e t t y stop

Jetty Servlet/JSP Skeleton

Servlets let you generate dynami

ontent for a web site, usually using the Java language. There is a very large

e
osystem of free servlets out there, in
luding
omplete frameworks, that
an help you develop dynami
 appli
ations.

To install a bare servlet skeleton, based on Jetty:

s i n
 e r i t y add j e t t y . s e r v l e t : i n s t a l l

To start you server:

s i n
 e r i t y s t a r t j e t t y

The default port is 8080, so point your browser to http://lo
alhost:8080. But, you won't see anything yet:

this is a bare skeleton waiting for you to add your appli
ation to it. You might want to start by installing

�jetty.servlet.example� �rst.

Note that if you only intend to install Jetty as a simple web server for stati
 �les, then you
an use a simpler

skeleton: �jetty.web�.

As useful as servlets are, we re
ommend you take a look at the Restlet skeleton (page 44) if you want to build

a dynami
 web appli
ation in Java. And Restlet
an use Jetty as its underlying
onne
tor.

And why stop there? Pruden
e (page 46) builds on Restlet, letting you do all of that and more with your
hoi
e

of JavaS
ript, Python, Ruby, PHP, Lua, Groovy or Clojure. (Dis
losure: Pruden
e has also been
reated by Three

Cri
kets.)

The Jetty skeletons use Jetty 9.3, whi
h requires a JVM of at least version 8.

Fleshing Out

Jetty's o�
ial distribution (whi
h doesn't rely on Sin
erity. . . yet) is a perfe
t example of why Sin
erity needs to

exist. �O�
ial� Jetty
on�guration is a morass of XML �les that e�e
tively dupli
ate what a lightweight s
ripting

language, like JavaS
ript does far more
omprehensibly and with far greater power. If you're swit
hing from �o�
ial�

Jetty, then you're in for a treat, as well as a sigh of relief.

Con�guration is handled similarly to the Jetty web server skeleton (page 42): in the same way, you
an add SSL

and SPDY support.

Though Jetty
an use the logging plugin (see below), it also supports its own internal logging me
hanism for the

web (NCSA-style) log. To
on�gure it, see �/server/servi
es/web-log.js�. By default, these logs will appear under

the �/logs/web/� dire
tory, and will be named a

ording to the date.

43

https://http2.github.io/
https://en.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation
http://www.eclipse.org/jetty/
http://localhost:8080
http://en.wikipedia.org/wiki/Common_Log_Format

Extras

Two add-ons are available: �jetty.servlet.jsp� adds support for JSP (JavaServer Pages), and �jetty.servlet.jmx� adds

JMX support to your Jetty server, allowing you to manage it via VisualVM or JConsole. To install both add-ons:

s i n
 e r i t y add j e t t y . s e r v l e t . j sp : add j e t t y . s e r v l e t . jmx : i n s t a l l

(You
an test JSP support in the example WAR below, at http://lo
alhost:8080/test/jsp/.)

It is also possible to add SPDY support: this proto
ol, supported by many web browsers,
an improve the user

experien
e as well as redu
e server load when using �https�. For instru
tions, see the Jetty web server skeleton (page

43).

A ni
e example of a Jetty server with multiple
ontexts is also provided, whi
h in
ludes a stati
 web server, a

servlet
ontainer, and a web appli
ation installed as a WAR �le:

s i n
 e r i t y add j e t t y . s e r v l e t . example : i n s t a l l

(You
an install this on its own, and it will pull in the basi
 skeleton as a dependen
y.)

The example �/server/
ontexts/servlet-example/� is the most elaborate: it shows you how you
an drop in Java

sour
e
ode for your servlets and have them
ompiled as the server starts.

Additionally, two plugins are strongly re
ommended: logging (page 32) and servi
e (page 34). To install them:

s i n
 e r i t y add logg ing : add s e r v i
 e : i n s t a l l

The following
ommand will install the servlet examples with the re
ommended plugins into a Sin
erity
ontainer

reated in the
urrent dire
tory, and then start it a servi
e:

s i n
 e r i t y
 r e a t e my
ontainer : add j e t t y . s e r v l e t . example : add logg ing : add s e r v i
 e : i n s t a l l : s e r v i
 e j e t t y s t a r t

To stop it:

s i n
 e r i t y use my
ontainer : s e r v i
 e j e t t y stop

Restlet Skeleton

The Restlet library (�Restlet� is a registered trademark of Restlet S.A.S.) lets you dynami
ally generate web
ontent,

but it goes beyond just responding to
lient requests: it lets you map RESTful resour
es to URIs, while handling all

the tri
ky HTTP me
hani
s involved (
ontent negotiation,
onditional HTTP) and providing full, ri
h abstra
tions

for routing, �ltering and data presentation.

To install the minimal skeleton:

s i n
 e r i t y add r e s t l e t : i n s t a l l

To start your Restlet
omponent and its servers:

s i n
 e r i t y s t a r t r e s t l e t

The default port is 8080, so point your browser to http://lo
alhost:8080.

Restlet, on its own, requires you to
ode in Java, but Pruden
e (page 46) builds on Restlet, letting you do all of

the above with your
hoi
e of JavaS
ript, Python, Ruby, PHP, Lua, Groovy or Clojure. (Dis
losure: Pruden
e has

also been
reated by Three Cri
kets.)

Fleshing Out

While Restlet requires you to write your resour
es in Java, there is no reason for your bootstrapping
ode�the

ode that assembles your
omponent, servers,
lients, hosts and routes�to be so rigid. The API for boostrapping

your
omponent is simple and elegant enough, but without Sin
erity you would have to likely have to write it in

Java, or implement your own bootstrapping me
hanism or use a DSL.

JavaS
ript, Sin
erity's natural language, provides a lightweight solution, and one that does not require you to

re
ompile anything when all you want to
hange is your
on�guration. Of
ourse, on
e your
omponent is up and

running, JavaS
ript plays no more role. We mention that in
ase you're worried about performan
e, though you

shouldn't be: the language engine is likely not the sour
e of any bottlene
ks in your appli
ation's live performan
e.

The skeleton follows the network stru
ture of Restlet, whi
h in turn
losely adheres to Roy Fielding's original

terminology for Representational State Transfer (REST):

The �/
omponent/� dire
tory is the basis for your REST
omponent.

44

http://localhost:8080/test/jsp/
http://www.chromium.org/spdy/spdy-whitepaper
http://www.restlet.org/
http://www.restlet.com/
http://localhost:8080
http://code.google.com/p/groovy-restlet/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Under �/
omponent/servers/� you
an
reate �les for HTTP servers bound to your
omponent. See the

API do
umentation. The default is a single HTTP server is
reated on port 8080, but you
an
reate additional

servers. The te
hnology used for the servers is
alled a �
onne
tor,� and is pluggable in Restlet. Conne
tors
annot

be sele
ted by API
alls; rather, they are installed automati
ally if they are dis
overed in the
lasspath. By default,

the Sin
erity skeleton for Restlet relies on Restlet's internal
onne
tor, but it is not re
ommended for produ
tion

appli
ations. See �Extras� (page 45) on how to install other
onne
tors.

A qui
k and easy way to
hange the port for the default server is to set the environment variable is �REST-

LET_PORT� (or the �restlet.port� JVM property):

RESTLET_PORT=80 s i n
 e r i t y s t a r t r e s t l e t

Under �/
omponent/hosts/� you
an
reate �les for virtual hosts. See the API do
umentation. The default host

has no �lters, meaning that all requests from all servers will be routed to it. If you need several virtual hosts,

you will want to make the default host less in
lusive, or do away with a default host entirely. (The default host is

merely a Restlet
onvenien
e and is not required for a
omponent.) Appli
ations
an be atta
hed to one or more

hosts (see below).

Under �/
omponent/
lients/� you
an
reate �les for
lients supported by your
omponent. See the

API do
umentation. As with servers,
lient te
hnologies are �
onne
tors� installed on the
lasspath. Ea
h
on-

ne
tor handles a spe
i�
 URI proto
ol, su
h as �http:�, �https:� and ��le:�. The skeleton de�nes no
lients by

default, but you
an
reate �les here for ea
h
lient you need. Install the Restlet example (page 45) to see usage

of a ��le:�
lient. (The ��le:�
lient is required internally by the Restlet Dire
tory resour
e.) Note that the Restlet

internal
onne
tor
an handle �http:�, but not �https:�. To add support for �https:�, you
an install the Apa
he

HttpClient
onne
tor (page 45).

The �/
omponent/servi
es/� is used to
on�gure Restlet servi
es, su
h as ConnegServi
e, TunnelServi
e, En-

oderServi
e, et
., but
an be used for any additional work to be done before appli
ations are
on�gured. By default

only the LogServi
e is
on�gured.

Finally, �/
omponent/appli
ations/� is where you
an
reate your Restlet appli
ations. See the

API do
umentation. Though you
an atta
h appli
ations dire
tly to your
omponent, it is re
ommended that

you atta
h them to virtual hosts, even if it's just the default host, as it allows you more routing �exibility. Also,

though there is no requirement to do so, most Restlet appli
ations will probably have a Router as their inbound

root. It is
ru
ial that you understand how routing works in Restlet: from server, through host, through appli
ation,

through router, and �nally to your RESTful resour
es. Please refer to the Restlet do
umentation for full details.

Note that the skeleton does not in
lude any appli
ation by default, but one is available for you to install (page 45).

It may be useful during development to start only a few sele
t appli
ations. This
an be done by providing the

appli
ation dire
tory names you wish to start as arguments to the �start restlet�
ommand:

s i n
 e r i t y s t a r t r e s t l e t r e s t l e t−example myapp

Alternatively, you
an set the �RESTLET_APPLICATIONS� environment variable (or the �restlet.appli
ations�

JVM property) to a
omma-separated list of appli
ation dire
tory names:

RESTLET_APPLICATIONS=r e s t l e t−example ,myapp s i n
 e r i t y s t a r t r e s t l e t

Extras

A simple example Restlet appli
ation, with a
ustom resour
e as well as stati

ontent:

s i n
 e r i t y add r e s t l e t . example : i n s t a l l

(You
an install this on its own, and it will pull in the basi
 skeleton as a dependen
y.)

The example at �/
omponent/appli
ations/example/� shows you how you
an drop in Java sour
e
ode for your

resour
es and have it
ompiled automati
ally.

The skeleton does not install any
onne
tors by default, relying instead on the default Restlet
onne
tors. To

install the Jetty server
onne
tor, you have the
hoi
e of either Jetty 9.3 (requires JVM 8) or Jetty 9.2 (requires

JVM 7). For 9.3:

s i n
 e r i t y add r e s t l e t . j e t t y : i n s t a l l

For 9.2:

s i n
 e r i t y add r e s t l e t . j e t t y . l ega
y : i n s t a l l

45

http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/Server.html
http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/routing/VirtualHost.html
http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/Client.html
http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/service/package-summary.html
http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/Application.html
http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/routing/Router.html
http://www.eclipse.org/jetty/

It is possible to add HTTP/2 support to Jetty 9.3: this proto
ol, supported by many web browsers,
an improve

the user experien
e as well as redu
e server load when using �https�. For instru
tions, see the Jetty web server

skeleton (page 43).

To install the Apa
he HttpClient
onne
tor:

s i n
 e r i t y add r e s t l e t . h t t p
 l i e n t : i n s t a l l

Other short
uts in
lude �restlet.simple� (the Simple Framework server
onne
tor).

Additionally, two plugins are strongly re
ommended: logging (page 32) and servi
e (page 34). To install them:

s i n
 e r i t y add r e s t l e t . l ogg ing : add s e r v i
 e : i n s t a l l

(Note that �restlet.logging� is used here in preferen
e over Sin
erity's �logging� plugin. The former depends on

the latter, but adds a Restlet library that provides a dire
t
hute to SLF4J, whi
h is more e�
ient than bridging.)

The following
ommand will install the Restlet example with the re
ommended plugins into a Sin
erity
ontainer

reated in the
urrent dire
tory, and then start it a servi
e:

s i n
 e r i t y
 r e a t e my
ontainer : add r e s t l e t . example : add r e s t l e t . j e t t y : add r e s t l e t . l ogg ing : add s e r v i
 e : i n s t a l l : s e r v i
 e r e s t l e t s t a r t

To stop it:

s i n
 e r i t y use my
ontainer : s e r v i
 e r e s t l e t stop

Felix Skeleton

Apa
he Felix is �exible, straightforward OSGi (R4)
ontainer.

To install:

s i n
 e r i t y add f e l i x : i n s t a l l

To start the Gogo
onsole:

s i n
 e r i t y f e l i x

(You
an also use �sin
erity gogo� instead.) As an example, let's install the web
onsole via Gogo:

i n s t a l l http : // ar
h ive . apa
he . org/ d i s t / f e l i x /org . apa
he . f e l i x . http . j e t ty −2 .2 . 0 . j a r

s t a r t 5

i n s t a l l http : // ar
h ive . apa
he . org/ d i s t / f e l i x /org . apa
he . f e l i x . web
onsole −3 .1 . 8 . j a r

s t a r t 6

In this example you may need to
hange the IDs in the �start�
ommand to mat
h the bundle IDs that Gogo

reports. Then, point your browser to http://lo
alhost:8080/system/
onsole/. The default user is �admin� with

password �admin�.

Pruden
e Skeleton

Pruden
e is a platform on whi
h you
an build s
alable web frontends and network servi
es. It lets you write

your server-side
ode in JavaS
ript, Python, Ruby, PHP, Lua, Groovy or Clojure. Though minimalisti
, Pruden
e

addresses real-world, pra
ti
al web development needs, from virtual hosting and URI rewriting to state-of-the-art

server- and
lient-side
a
hing. Your appli
ations
an support ri
h
lients (AJAX), thin
lients (pure HTML), and

happy mixes between the two.

Pruden
e is distributed ex
lusively as a Sin
erity skeleton with a large
olle
tion of tightly integrated add-ons.

It is an extension of the Restlet skeleton (page 44), so the do
umentation there applies here. It is, in turn, the

underlying platform for Diligen
e (page 47).

Sin
e version 2.0, Pruden
e is designed from the ground-up around Sin
erity, and su
h provides the primary

example for how Sin
erity
an reform produ
t distribution.

Histori
ally, it was a
tually the other way around. Sin
erity was designed by Three Cri
kets pre
isely in

order to make Pruden
e 2.0 sanely modular, building on many lessons learned while deploying Pruden
e

1.0 and 1.1. It was
lear during development that there was nothing in the proposed solution that was

spe
i�
 to Pruden
e. And so Sin
erity was born as a generi
 tool useful for many JVM proje
ts.

Qui
k start to see the Pruden
e example:

s i n
 e r i t y add pruden
e . example : i n s t a l l : s t a r t pruden
e

And then browse to http://lo
alhost:8080/.

46

http://hc.apache.org/httpcomponents-client-ga/
http://www.simpleframework.org/
http://felix.apache.org/
http://www.osgi.org/Specifications/HomePage
http://localhost:8080/system/console/
http://threecrickets.com/prudence/
http://threecrickets.com/prudence/download/#sincerity
http://localhost:8080/

Diligen
e Skeleton

Diligen
e lets you develop s
alable data-driven web appli
ations in server-side JavaS
ript, using MongoDB as its

data provider and Pruden
e (page 46) as its RESTful base. It features strong integration with
lient-side �AJAX,�

notably Ext JS and Sen
ha Tou
h, and
lean-room integration with Fa
ebook, Twitter, Google, et
. Servi
es

in
lude a s
alable email noti�
ation system, robust sitemap generation (with spe
ial support for very large sites),

authenti
ation and authorization, and support for several markup languages.

Diligen
e is distributed ex
lusively as a Sin
erity skeleton. It is an extension of the Pruden
e skeleton (page 46)

and the Restlet skeleton (page 44), so the do
umentation there applies here.

(Dis
losure: Like Sin
erity and Pruden
e, Diligen
e is developed by Three Cri
kets. The three produ
ts together

form a powerful web appli
ation sta
k on top of the JVM.)

Qui
k start to see the Diligen
e example:

s i n
 e r i t y add d i l i g e n
 e . example : i n s t a l l : s t a r t pruden
e

And then browse to http://lo
alhost:8080/diligen
e-example/. Note that the example expe
ts an unprote
ted

MongoDB instan
e running at lo
alhost.

Rails Skeleton

Ruby on Rails, or just �Rails,� is a popular web development framework for the Ruby programming language. It

ombines a traditional MVC approa
h with a RESTful orientation ba
ked by relational database stores (MySQL,

Postgres). Rails enjoys the elegant, often-imitated, A
tiveRe
ord ORM, and a powerful �s
a�olding� feature that

automati
ally generates models, views and
ontrollers to whi
h you
an add your
ode.

Rails is known to work very well on the JVM, but it
an sometimes be painful to install everything and get it

running. The Sin
erity skeleton
an do it all for you with one
ommand:

s i n
 e r i t y add r a i l s : i n s t a l l

This may take a few minutes: Rails is quite massive.

To start you server:

s i n
 e r i t y s t a r t r a i l s

The default port is 3000, so point your browser to http://lo
alhost:3000.

If you're looking for a more stri
tly RESTful, minimalist alternative to Rails, while sti
king to Ruby, take a

look at Pruden
e (page 46). (Dis
losure: Pruden
e has also been
reated by Three Cri
kets.)

Fleshing Out

The skeleton will
reate an appli
ation for you under �/app/�, so you don't have to run �rails new� to
reate one.

Indeed, the
orre
t way to start a new Rails proje
t in Sin
erity is simply to
reate a new
ontainer for it. That's

the whole point of Sin
erity!

The skeleton
omes with a plugin to handle the �rails� tool for you, similarly to how Sin
erity's Ruby plugin adds

ommands for
ommon Ruby tools, su
h as �gem� and �rake�. The bene�t of this approa
h is that you do not have

to expli
itly
hange to the �/app/� dire
tory to run the tool, and indeed you
an
hain it as is usual with Sin
erity

ommands. It should work identi
ally to the usual �rails�
ommand: simple pre�x �sin
erity� to it. Examples:

s i n
 e r i t y r a i l s generate
 o n t r o l l e r home index

s i n
 e r i t y r a i l s generate s
 a f f o l d Post name : s t r i n g t i t l e : s t r i n g
ontent : t ex t

s i n
 e r i t y rake db : migrate

Or as one Sin
erity
ommand:

s i n
 e r i t y use my
ontainer : r a i l s generate
 o n t r o l l e r home index : r a i l s generate s
 a f f o l d Post name : s t r i n g t i t l e : s t r i n g
ontent : t ex t : rake db : migrate

A qui
k note: Ruby is a bit sluggish to start up on the JVM, whi
h you will noti
e when running �rails�.

However, don't let this worry you: on
e it's up and running, your Rails appli
ation will perform marvelously.

And that's it: from here on, it's all standard Rails goodness. You
an go ahead with the tutorial, skipping step

3.2 (�Creating the Blog Appli
ation�).

MySQL, PostgreSQL and SQLite are all supported out of the box, identi
ally to how Rails works on other

platforms.

If you need to a

ess the Rails sour
e
ode, you'll �nd it under �/libraries/ruby/lib/ruby/gems/1.8/gems/�,

whi
h is where all Ruby gems will be installed in your
ontainer.

47

http://threecrickets.com/diligence/
http://www.mongodb.org/
http://www.sencha.com/products/extjs
http://www.sencha.com/products/touch/
http://threecrickets.com/diligence/download/#sincerity
http://localhost:8080/diligence-example/
http://rubyonrails.org/
http://localhost:3000
http://guides.rubyonrails.org/getting_started.html

Extras

Though the �rails� tool does support a daemon mode, Sin
erity's logging plugin (page 32) is far more powerful and

is strongly re
ommended. To install:

s i n
 e r i t y add s e r v i
 e : i n s t a l l

The following
ommand will install the Rails skeleton with the re
ommended plugins into a Sin
erity
ontainer

reated in the
urrent dire
tory, and then start it a servi
e:

s i n
 e r i t y
 r e a t e my
ontainer : add r a i l s : add s e r v i
 e : i n s t a l l : s e r v i
 e r a i l s s t a r t

To stop it:

s i n
 e r i t y use my
ontainer : s e r v i
 e r a i l s stop

Note that Sin
erity's logging plugin (page 32) won't do you mu
h good out of the box, be
ause Rails uses

Ruby's logging system, not the JVM's. However, it should be easy implement your own Ruby logger that delegates

to standard JVM logging if that seems ex
iting to you.

Django Skeleton

Django is a popular web development framework for the Python programming language. It relies on a traditional

MVC approa
h ba
ked by relational database stores (MySQL, Postgres). Django enjoys a large e
osystem of drop-in

features and snippets, but already provides many features right out of the box. Mu
h the appeal of Django is the

Python programming language: elegant,
lean and supported by what must be the friendliest and most wel
oming

ommunity of any programming language.

There are many advantages for running Django on the JVM instead of on the CPython referen
e platform:

great performan
e, mu
h improved s
alability (there is no GIL in Jython), as well as a

ess to any JVM library in

addition to Python libraries. Of
ourse, Sin
erity makes it extremely easy and transparent to add both kinds of

libraries as dependen
ies.

If you're looking for RESTful, minimalist alternative to Django, while sti
king to Python, take a look at Pruden
e

(page 46). (Dis
losure: Pruden
e has also been
reated by Three Cri
kets.)

Django
an be di�
ult to install and get running on Jython, but of
ourse it's trivial with Sin
erity:

s i n
 e r i t y add django : i n s t a l l

This may take a few minutes: Django is quite massive!

To start you server:

s i n
 e r i t y s t a r t django

The default port is 8000, so point your browser to http://lo
alhost:8000.

Fleshing Out

The skeleton already has a minimal proje
t ready for you under �/proje
t/�, so you don't have to run �django-

admin.py startproje
t� to
reate one. Indeed, the
orre
t way to start a new Django proje
t in Sin
erity is simply

to
reate a new
ontainer for it. That's the whole point of Sin
erity!

However, if you need to a

ess �django-admin.py�, it is lo
ated under your �/exe
utables/� dire
tory, so:

s i n
 e r i t y exe
ute django−admin . py

Mu
h of the work with Django involves running �manage.py�, whi
h in this skeleton is lo
ated under �/proje
-

t/manage.py�. You
an run it easily, from anywhere in the
ontainer, with a handy plugin:

s i n
 e r i t y manage

Note that Python is a bit sluggish to start up on the JVM, whi
h you will noti
e when running �manage�.

However, don't let this worry you: on
e it's up and running, your Django appli
ation will perform very well.

And that's it: from here on, it's all standard Django goodness. You
an go ahead with the tutorial, skipping

the short �Creating a proje
t� step.

Well, just one qui
k note: the database ba
kend uses JDBC drivers (the JVM's relational database interfa
e)

instead of Python drivers, so the database engine names in your �settings.py� are a little bit di�erent than in

the o�
ial tutorial. You'll see the supported options
ommented in �settings.py�. JDBC drivers for MySQL and

48

https://www.djangoproject.com/
http://localhost:8000
https://docs.djangoproject.com/en/1.4/intro/tutorial01/

PostgreSQL are in
luded in the skeleton, but you must install the Ora
le JDBC driver on your own. Also note that

SQLite is not supported at this time.

If you need to a

ess the Django sour
e
ode, you'll �nd it under �/libraries/python/Lib/site-pa
kages/�, whi
h

is where all Python libraries will be installed in your
ontainer.

Extras

Adding the servi
e plugin (page 34) is strongly re
ommended. To install:

s i n
 e r i t y add s e r v i
 e : i n s t a l l

The following
ommand will install the Django skeleton with the re
ommended plugins into a Sin
erity
ontainer

reated in the
urrent dire
tory, and then start it a servi
e:

s i n
 e r i t y
 r e a t e my
ontainer : add django : add s e r v i
 e : i n s t a l l : s e r v i
 e django s t a r t

To stop it:

s i n
 e r i t y use my
ontainer : s e r v i
 e django stop

Note that Sin
erity's logging plugin (page 32) won't do you mu
h good out of the box, be
ause Django uses

Python's logging system, not the JVM's. However, it should be easy implement your own Python logger that

delegates to standard JVM logging if that seems ex
iting to you.

OutOfMemoryError? Installing and starting Django in the same Sin
erity
ommand may exhaust

your JVM's PermGen spa
e. Try installing and starting via separate
ommands. For more tips, see the

FAQ (page 18).

LWJGL Skeleton

The JVM is growing in popularity as a platform for game designers, due to its ability to easily have the game run

on many operating systems, as well as in browsers. Mu
h of this growth is due to the ex
ellent LWJGL library,

whi
h makes easy to use hardware-a

elerated features, su
h as 3D graphi
s and 3D sound, and to a

ept input

from gaming
ontrollers. LWJGL relies on native extensions to the JVM, and supports Linux, Windows, Ma
 OS

X and Solaris. (This author's favorite game, Mine
raft, is based on it!)

To install the barebones skeleton:

s i n
 e r i t y add lw j g l : i n s t a l l

To start your game:

s i n
 e r i t y s t a r t lw j g l

This �lwjgl� program will dete
t your operating system, install the relevant native binaries into the
ontainer

(if they aren't already installed), and then start the �game� program. . . ex
ept that with this barebones skeleton,

there is no game to start (page 50).

Fleshing Out

Create a �/programs/game.js� that starts up your game. If you want your game to be written only in Java, this

likely means delegating to your main
lass, like this:

s i n
 e r i t y . run (' de l ega t e : main ' , [' org . my
oolgame .Main ' ℄)

However, don't rule out writing your game in JavaS
ript, or the host of other languages easily installable in

Sin
erity! You
an even �drop down� to Java when you some low-level work, and keep the main game logi
 in a

higher-level language.

This is espe
ially useful if you want to provide a way for the
ommunity to provide plugins for your game: it

would make it easier for novi
e programmers to
ontribute, and also allow su
h plugins to be distributed as simple

text �les. If you go this route,
onsider using S
ripturian (page 50) to allow high-performan
e, muli-threaded

integration of the language engines.

49

http://www.lwjgl.org/
http://www.minecraft.net/

Extras

For something to play with, see the �lwjgl.example� add-on. It in
ludes a simple Spa
e Invaders
lone:

s i n
 e r i t y add lw j g l . example : i n s t a l l : s t a r t lw j g l

Libraries

The Sin
erity JsDo
 Template

TODO

s i n
 e r i t y add j sdo
 . s i n
 e r i t y : i n s t a l l

Note that you need to host the do
umentation via HTTP. File does not work.

See JsDo
 plugin (page 37).

MongoDB JavaS
ript Driver

s i n
 e r i t y add mongodb . j a v a s
 r i p t : i n s t a l l

Part III

Advan
ed Manual

Programming

S
ripturian

TODO

See link.

The Sin
erity JavaS
ript Library

Sin
erity relies on JavaS
ript for bootstrapping and plugins, and while JavaS
ript does not have a standard library,

you do have a

ess to the entire JVM standard library.

Still, this isn't quite good enough: using JVM libraries works, but they do involve using paradigms that have

not been optimized for JavaS
ript.

For Sin
erity, we de
ided that we
an do better, and so we present you with a
olle
tion of useful
ode
alled

the Sin
erity JavaS
ript Library. We should point out from the start that this is not a general-purpose JavaS
ript

library: it relies on the JVM libraries, and only works in the JVM. In
luded are also optimizations spe
i�
 to the

Nashorn and Rhino JVM JavaS
ript engines.

What follows is a general introdu
tion to the library. See the API do
umentation for full details. Also make

sure to
he
k out Sin
erity's JsDo
 plugin whi
h makes it easy for you to generate similar do
umentation for your

own JavaS
ript
odebase.

Note that the Sin
erity Foundation Library is used by at least two other JavaS
ript frameworks: the Pruden
e

JavaS
ript Library, and the Diligen
e Framework, whi
h builds on the Pruden
e JavaS
ript Library.

Obje
ts Enhan
ed support for standard JavaS
ript types: strings, arrays, di
ts and dates. This library monkey-

pat
hes the standard types with many useful methods. See the Sin
erity.Obje
ts API do
umentation.

Classes This straightforward-but-powerful library lets you use the obje
t-oriented programming (OOP) paradigm

in JavaS
ript. It lets you de�ne
lasses with publi
 and private members, inherit
lasses, and even provides a me
ha-

nism for generation of
onstru
tors. Generally, the Sin
erity JavaS
ript Library does not use OOP indis
riminately:

lasses are used only when they make sense and add elegan
e. See the Sin
erity.Classes API do
umentation.

50

http://threecrickets.com/scripturian/
http://threecrickets.com/api/javascript/?namespace=Sincerity.Objects
http://threecrickets.com/api/javascript/?namespace=Sincerity.Classes

Iterators Iterators let you write
oherent
ode that
an e�
iently
omprehend and operate on se-

quen
es of any size. Its design borrows stylisti
ally from fun
tional programming languages. See the

Sin
erity.Iterators API do
umentation.

Files Low-level a

ess to the �lesystem, in
luding high-performan
e reading and writing of �les using memory-

mapped �les. See the Sin
erity.Files API do
umentation.

Templates Straightforward and �exible string interpolation. See the Sin
erity.Templates API do
umentation.

Example:

p r i n t l n (' Hel lo , { user } ' .
a s t ({ user : ' S i n
 e r i t y ' })

JSON High-performan
e JSON parsing and rendering using the JSON JVM library, whi
h is written in Java.

See the Sin
erity.JSON API do
umentation.

XML High-performan
e XML parsing and rendering using the standard JVM libraries. See the

Sin
erity.Obje
ts API do
umentationSin
erity.XML API do
umentation.

Calendar Enhan
ements to JavaS
ript's standard Date type. See the Sin
erity.Calendar API do
umentation.

Lo
alization Easy a

ess to the JVM's lo
alization libraries, in
luding formatting for dates, times and
urren
ies.

See the Sin
erity.Lo
alization API do
umentation.

Cryptography Easy a

ess to the JVM's
ryptography libraries, in
luding short
uts for
ommon hashing, en-

ryption and de
ryption tasks. Sin
erity.Cryptography API do
umentation

JVM Easy
onversions between JVM and JavaS
ript types, and also a

ess to a few operating system servi
es.

Sin
erity.Lo
alization API do
umentationSin
erity.JVM API do
umentation

Validation A general-purpose user input validation library for
ommonly used types, su
h as numbers and email

addresses. Sin
erity.Validation API do
umentation

Mail Easy a

ess to JavaMail, in
luding sending of mixed-media plain-text/HTML emails. Uses the templates

library to let you easily
reate email templates. Sin
erity.Mail API do
umentation

Lu
ene Easy a

ess to the Lu
ene sear
h engine. Supports the iterators library, so you
an easily index very large

olle
tions of do
uments. Sin
erity.Lu
ene API do
umentation

Platform A

ess to features of the Nashorn and Rhino JavaS
ript engines, su
h as the
all sta
k and ex
eption

details. Sin
erity.Platform API do
umentation

Extending Sin
erity

Developing Plugins

TODO

Make sure you understand that dependen
ies may be installed in arbitrary order.

do
ument . r e qu i r e (' / s i n
 e r i t y /jvm/ ')

t ry {

do
ument . r e qu i r e (' /mongo−db / ')

}
at
h (x) { /∗ the dependen
y may not have been i n s t a l l e d yet ! ∗/ }

51

http://threecrickets.com/api/javascript/?namespace=Sincerity.Iterators
http://threecrickets.com/api/javascript/?namespace=Sincerity.Files
http://threecrickets.com/api/javascript/?namespace=Sincerity.Templates
https://github.com/tliron/json-jvm
http://threecrickets.com/api/javascript/?namespace=Sincerity.JSON
http://threecrickets.com/api/javascript/?namespace=Sincerity.Objects
http://threecrickets.com/api/javascript/?namespace=Sincerity.XML
http://threecrickets.com/api/javascript/?namespace=Sincerity.Calendar
http://threecrickets.com/api/javascript/?namespace=Sincerity.Localization
http://threecrickets.com/api/javascript/?namespace=Sincerity.Cryptography
http://threecrickets.com/api/javascript/?namespace=Sincerity.Localization
http://threecrickets.com/api/javascript/?namespace=Sincerity.JVM
http://threecrickets.com/api/javascript/?namespace=Sincerity.Validation
http://threecrickets.com/api/javascript/?namespace=Sincerity.Mail
http://threecrickets.com/api/javascript/?namespace=Sincerity.Lucene
http://threecrickets.com/api/javascript/?namespace=Sincerity.Platform

E
lipse Integration

TODO

Installing

http://repository.three
ri
kets.
om/e
lipse/

Preferen
es

Using internal or external Sin
erity installation.

Sin
erity Proje
ts

Converting to Sin
erity

Adds the Sin
erity nature.

Sin
erity Classpath

Java proje
ts only.

Sin
erity Laun
h Con�gurations

Choose the program or URI.

Debugging

Breakpoints in Java Code

Breakpoints in non-Java Code

Pa
kaging

There are two main reasons you would want to
reate Sin
erity pa
kages:

1. You've
reated a useful skeleton, skeleton add-on or plugin, whi
h you would like to share with others for use

in their Sin
erity
ontainers. A pa
kage, of
ourse, is the most natural way to do so. You
ould then host

your pa
kage on your own repository, or submit it for in
lusion in other publi
 repositories.

2. Pa
kages are very useful for deploying your appli
ation internally, espe
ially in ephemeral �
loud� environ-

ments. Programmers working on di�erent modules
ould pa
kage their results, using a
lear versioning system.

You would then host the pa
kages in your own private repository, using Nexus or even a plain dire
tory. De-

ployment, in
luding upgrades, would thus involve nothing more than running �sin
erity install� on the relevant

ontainers. It also allows easy downgrading of appli
ations, or setting modules to spe
i�
 versions for testing

and debugging.

Note that �pa
kaging� here refers spe
i�
ally to
reating Sin
erity pa
kages, whi
h you
an then install

into Sin
erity
ontainers as dependen
ies. If what you want is to distribute the entire
ontainer, then

see the Distribution Plugin, and also the Sin
erity Runtime Plugin.

The Sin
erity Pa
kaging Plugin

. . . does not exist yet, as of Sin
erity 1.0. This is something on our roadmap, and te
hni
ally entirely viable. The

idea is to allow for a friendly GUI, as well as a strong CLI.

Until then, you
an use Maven, as detailed below. It's slightly awkward, in that it requires editing
omplex

XML �les, but for the purpose of
reating simple pa
kages it should be very straightforward.

52

How to Create a Sin
erity Pa
kage Using Maven

It's relatively easy to use Apa
he Maven to
reate a Sin
erity pa
kage, with the help of the maven-assembly-plugin.

You
an start with the following �pom.xml� �le as a skeleton:

<?xml ve r s i on ="1.0" en
oding="UTF−8"?>

<pro j e
 t

xmlns="http ://maven . apa
he . org/POM/4 . 0 . 0 "

xmlns : x s i="http ://www.w3 . org /2001/XMLS
hema−i n s tan
e "

x s i : s
hemaLo
ation="http ://maven . apa
he . org/POM/4 . 0 . 0 http ://maven . apa
he . org/maven−v4_0_0 . xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>org . myorg .myapp</groupId>

<a r t i f a
 t I d >myapp</a r t i f a
 t I d >

<vers ion >1.0.0</vers ion>

<pa
kaging>pom</pa
kaging>

<name>My Cool Appl i
at ion</name>

<de s
 r i p t i on>This i s an app l i
 a t i on pa
kaged f o r use with S i n
 e r i t y .</ de s
 r i p t i on>

<dependen
ies>

<dependen
y>

<groupId>
om . t h r e e
 r i
 k e t s . savory</groupId>

<a r t i f a
 t I d >savory−framework</a r t i f a
 t I d >

<vers ion >1.0−beta1</vers ion>

</dependen
y>

</dependen
ies>

<bui ld>

<di r e
 to ry>
a
he</d i r e
 to ry>

<plug ins>

<plugin>

<groupId>org . apa
he .maven . p lug ins </groupId>

<a r t i f a
 t I d >maven−assembly−plugin </a r t i f a
 t I d >

<vers ion >2.2.1</vers ion>

<exe
ut ions>

<exe
ut ion>

<id>jar </id>

<phase>pa
kage</phase>

<goal s>

<goal>s i ng l e </goal>

</goa l s>

<
on f i gura t i on >

<appendAssemblyId>f a l s e </appendAssemblyId>

<ar
h ive>

<man i f e s tEnt r i e s>

<Pa
kage−Folders>pa
kage</Pa
kage Folders>

</man i f e s tEnt r i e s>

</ar
h ive>

<de s
 r i p t o r s>

<des
 r ip to r >pa
kage . xml</des
 r ip to r >

</de s
 r i p t o r s>

</
on f i gura t i on >

</exe
ut ion>

</exe
ut ions>

</plugin>

</plug ins>

</bui ld>

53

http://maven.apache.org/
http://maven.apache.org/plugins/maven-assembly-plugin/

</pro j e
 t>

Some things you'll want to
ustomize:

• You
an add as many dependen
ies as you like. Note that they
an plain JVM jars, Sin
erity pa
kages,

Python pa
kages, Ruby gems, et
.: anything supported by Sin
erity. In this
ase, we are in
luding the Savory

Framework, whi
h is a Sin
erity pa
kage (whi
h in turn has dependen
ies). You
an also have no dependen
ies

at all.

• Under <manifestEntries> you
an add anything that adheres to the pa
kaging spe
i�
ation (page 55). For

example, you may want to
all a pa
kage installation s
ript, like so:

<Pa
kage−I n s t a l l e r >
om . t h r e e
 r i
 k e t s . s i n
 e r i t y . S i n
 e r i t y de l ega t e : s t a r t / l i b r a r i e s / s
 r i p t u r i a n / i n s t a l l e r s /myapp/</Pa
kage I n s t a l l e r >

(If you do so, you'll need a �libraries/s
ripturian/installers/myapp.js� �le in your pa
kage, otherwise Sin
erity

will report an error when trying to install it.)

• The <dire
tory> is a work dire
tory used by Maven for
reating your �nal pa
kage. You may want to spe
ify

it as �/tmp�. It is relative to the lo
ation of the �pom.xml� �le.

• If you want to share your pa
kage in a publi
 repository, you'd likely want to add additional information

about your pa
kage. Consult the Maven pom.xml guide for more options.

You will also need to
reate a �pa
kage.xml� �le in the same dire
tory:

<?xml ve r s i on ="1.0" en
oding="UTF−8"?>

<assembly

xmlns="http ://maven . apa
he . org/ p lug in s /maven−assembly−plug in /assembly /1 . 1 . 2 "

xmlns : x s i="http ://www.w3 . org /2001/XMLS
hema−i n s tan
e "

x s i : s
hemaLo
ation="http ://maven . apa
he . org/ p lug in s /maven−assembly−plug in /assembly /1 . 1 . 2 http ://maven . apa
he . org/xsd/assembly 1 .1 . 2 . xsd">

<id>jar </id>

<formats>

<format>jar </format>

</formats>

<baseDire
tory>pa
kage</baseDire
tory>

<f i l e S e t s >

<f i l e S e t >

<di r e
 to ry>path−to−pa
kage</d i r e
 to ry>

<outputDire
tory >.</outputDire
tory >

<in
 lude s>

<in
 lude ></in
 lude>

</in
 lude s>

</ f i l e S e t >

</ f i l e S e t s >

</assembly>

You'll want to
hange �path-to-pa
kage� to point to the base of your distribution dire
tory. Note that it is

relative to the lo
ation of �pa
kage.xml� �le, and must have the �nal dire
tory stru
ture you want in the Sin
erity

ontainer into whi
h your pa
kage will be installed.

Note that you
an
reate mu
h more
omplex <�leSets> than this one. Consult the

assembly des
riptor format do
umentation for more information.

You
an now build and deploy your pa
kage into a lo
al �le repository by running the following Maven
ommand

from the dire
tory in whi
h you have your �pom.xml� �le:

mvn deploy −DaltDeploymentRepository=myrepo : : d e f au l t : : f i l e : / path−to−l o
 a l−r epo s i t o r y /

Note that if this is the �rst time you've run Maven, it will take some time to download all the ne
essary plugins

it needs. Consequent runs will be mu
h faster.

Of
ourse, you
an also deploy to a repository server, su
h as Nexus, whi
h you
an easily install with Sin
erity's

Nexus skeleton. You
an also
on�gure Maven to always use a default target repository for deployment.

Maven is a
omplex tool that
an do a whole lot more than this, but this should get you started.

[TODO: Add note about support for -SNAPSHOT℄

54

http://maven.apache.org/plugins/maven-assembly-plugin/assembly.html

Repositories

TODO

Sin
erity
an work with a any arbitrary repository for whi
h it has the supported te
hnology. That said, here's

an overview of some repositories that you are most likely to work with:

The Three Cri
kets Repository

See link.

iBiblio/Maven Repositories

Python and PyPI (a.k.a. �The Cheese Fa
tory�)

Ruby and Gems

PHP and PEAR

Community Repositories

Spe
i�
ations

Sin
erity Pa
kages

Pa
kages are
olle
tions of artifa
ts. They are de�ned using spe
ial tags in standard JVM resour
e manifests.

Additionally, pa
kages support spe
ial install/uninstall hooks for
alling arbitrary entry points, allowing for
ustom

behavior. Indeed, a pa
kage
an in
lude no artifa
ts, and only implement these hooks.

Pa
kages allow you to work around various limitations in repositories su
h as iBiblio/Maven, in whi
h the

smallest deployable unit is a Jar. The pa
kage spe
i�
ation allows you to in
lude as many �les as you need in a

single Jar, greatly simplifying your deployment s
heme.

Note that two di�erent ways are supported for spe
ifying artifa
ts: they
an spe
i�ed as �les, thus referring to

a
tual zipped entries with the Jar �le in whi
h the manifest resides, or that
an be spe
i�ed as general resour
es, in

whi
h
ase they will be general resour
e URLs to be loaded by the
lassloader, and thus they
an reside anywhere

in the
lasspath.

Also note what �volatile� means in this
ontext: a �volatile� artifa
t is one that should be installed on
e and only

on
e. This means that subsequent attempts to install the pa
kage, beyond the �rst, should ignore these artifa
ts.

This is useful for marking
on�guration �les, example �les, and other �les that the user should be allow to delete

without worrying that they would reappear on every
hange to the dependen
y stru
ture.

The Manifest

Supported manifest tags:

• Pa
kage-Files: a
omma separated list of �le paths within this Jar.

• Pa
kage-Folders: a
omma separated list of folder paths within this Jar. Spe
i�es all artifa
ts under these

folders, re
ursively.

• Pa
kage-Resour
es: a
omma separated list of resour
e paths to be retrieved via the
lassloader.

• Pa
kage-Volatile-Files: all these artifa
ts will be marked as volatile.

• Pa
kage-Volatile-Folders: all artifa
ts under these paths will be marked as volatile.

• Pa
kage-Installer: spe
i�es a
lass name whi
h has a main() entry point. Simple string arguments
an be

optionally appended, separated by spa
es. The installer will be
alled when the pa
kage is to be installed,

after all artifa
ts have been unpa
ked. Any thrown ex
eption would
ause installation to fail.

• Pa
kage-Uninstaller: spe
i�es a
lass name whi
h has a main() entry point. Simple string arguments
an be

optionally appended, separated by spa
es. The uninstaller will be
alled when the pa
kage is to be uninstalled.

For example, here is a �/META-INF/MANIFEST.MF� �le:

55

http://threecrickets.com/repository/

Manifest−Version : 1 . 0

Pa
kage−Folders : pa
kage

All pa
kaged �les would be expe
ted under the �/pa
kage/� dire
tory inside the Jar.

Note that manifests
an often be automati
ally
reated by pa
kaging tools. See the Maven example (page 53).

56

	I Basic Manual
	Introduction
	Principles
	Lather, Rinse, Repeat
	Why JavaScript?
	Comparisons with Other Solutions

	Tutorial
	Install Sincerity
	Working with the Command Line
	Working with the Graphical User Interface (GUI)
	Environment Variables
	Components
	Working with a VCS
	Working with Docker

	FAQ

	II Ecosystem
	Core Plugins
	Container
	Repositories
	Dependencies
	Artifacts
	Packages
	Delegate
	Templates
	Shortcuts
	Help
	Shell
	JavaScript Shell
	Java

	Language Plugins
	JavaScript Plugin
	Python Plugin
	Ruby Plugin
	PHP Plugin
	Lua Plugin
	Groovy Plugin
	Clojure Plugin

	Feature Plugins
	Sincerity Standalone Plugin
	Logging Plugin
	Service Plugin
	Redistribution Plugin
	Markup Plugin
	Batik SVG Plugin
	JsDoc Plugin

	Skeletons
	Nexus Skeleton
	Solr Skeleton
	Hadoop Skeleton
	OrientDB Skeleton
	H2 Skeleton
	Jetty Web Server Skeleton
	Jetty Servlet/JSP Skeleton
	Restlet Skeleton
	Felix Skeleton
	Prudence Skeleton
	Diligence Skeleton
	Rails Skeleton
	Django Skeleton
	LWJGL Skeleton

	Libraries
	The Sincerity JsDoc Template
	MongoDB JavaScript Driver

	III Advanced Manual
	Programming
	Scripturian
	The Sincerity JavaScript Library

	Extending Sincerity
	Developing Plugins

	Eclipse Integration
	Installing
	Preferences
	Sincerity Projects
	Sincerity Launch Configurations
	Debugging

	Packaging
	The Sincerity Packaging Plugin
	How to Create a Sincerity Package Using Maven

	Repositories
	Specifications
	Sincerity Packages

