The Sincerity Manual

Version 1.0-betal4
Main text written by Tal Liron

July 26, 2015

Copyright 2011-2015 by Three Crickets LLC.
This work is licensed under a
Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

[Basic Manual 4
[Introduction 4
- JR R 4

athe . 11 [4

Why JavaScriptd e e e e 8
[Comparisons with Other SolUtiond v v v i e e e e e 9
[Tutorial 10

Markup Plué}ﬂ e 37
Batik SVG PIU@itl o v o o e e e e e e e e e 37

" 50
Scripturianl L e e e e e e 50

[The Sincerity JavaSCHpt LIDIAIY - - « « « « o o o oo e e e e e e 50

51
o1

52
92
92
592
52
92

52
52
93

55

55

Part 1
Basic Manual

Introduction

Sincerity is a tool for deploying, installing and bootstrapping software stacks on top of the JVM. It makes these
tedious tasks easy, simple and fun.

From the user’s perspective, Sincerity makes it easy to install complete products and stacks, or individual mod-
ules and libraries, into portable “containers,” (page[I2]) which are nothing more than straightforward file directories.
According to your preferences and constraints, you can use either Sincerity’s pretty GUI (page[12]) or the powerful
CLI (page [10).

From the provider’s perspective, Sincerity is distribution system: simply host your packages in a “repository” (a
simple web site) and let Sincerity do the rest. Configuration and bootstrapping of applications is easily controlled
via simple JavaScript code, and Sincerity’s growing ecology of plugins makes it especially easy to add features such
as centralized logging and robust daemons with surprisingly minimal fuss.

Sincerity was born of many years of experience writing complex software for the JVM. The rest of this chapter
summarizes this experience and the problematic reality that made a tool such as Sincerity necessary. If this sounds
dreary to you, feel free to skip to the tutorial (page[I0]) for now, and come back here later!

Principles

After using used Sincerity for a while, you’ll wonder how you could ever have lived without it.

Indeed, Sincerity arrives after years of us having to repeat the same development and deployment tasks over and
over again for every new project: download, unzip, copy, rename and configure, hopefully while staying organized as
to dependencies and versions. Solutions like Maven create their own problems (page [d): “enterprise”-style complexity,
enormous XML configuration files, and a Java-centrism that is becoming a burden as more of us are developing for
the JVM without Java.

We decided that enough was enough! Sincerity intends:

1. To simplify and unify the installation of JVM applications, services and libraries. You should never have to
download idiosyncratic distributions and read through pages of installation instructions. We aim for a simpler
recipe.

2. To simplify and unify deployment via the JVM. It seems that every application and service has its own set
of bootstrapping scripts, service wrappers, logging configuration, directory structures, etc. We can’t entirely
smooth out the quirks, but we can make your deployment experience consistent.

3. To be language agnostic. The JVM is no longer the exclusive domain of Java. A rich ecosystem of languages
has grown around it, and Sincerity lets you manage installation and deployment without ever having to write
or think in Java if you don’t want to.

4. To be culturally agnostic. The JVM is not the exclusive domain of enterprise applications. If you think
and work like an agile technology startup, Sincerity is here for you.

5. To cultivate an ecosystem. Three Crickets, the company behind Sincerity, maintains a collection of quality
plugins that do all the above, and the list keeps growing. Developing plugins is a piece of cake and you're
strongly encouraged to develop your own using the straightforward API. This Sincerity Manual contains
everything you need to know to get started.

Lather, Rinse, Repeat

The free software and open source movements have utterly changed how we develop software.

Reusable libraries had existed freely before, but these movements have created a culture of sharing, fueled by
viable business models, culminating in an unprecedented wealth of solutions. For any problem you encounter in
your everyday development work there is likely a library out there to help you that you can download for free. “Your
mileage may vary,” as they say: quality may not always be up to snuff, and no warranty is provided, but the source
code is included and you can make it better, for yourself and for others. Importantly, it’s relatively future-proof to

depend on free software: you can be certain that your license to use the library will not be revoked and that bugs
could be solved, by you, by the community, or by hired help.

(You do need to worry whether the software breaks any owned patents, but that problem exists for any software,
whether it’s free or proprietary, from a third party or developed by you.)

This wealth of solutions also creates challenges. There are several packaging, versioning and delivery standards
for libraries. And when it comes to platforms and frameworks, there is no standard way to deploy software on top
of them. If your project is a composite of many of these, you will find yourself spending a lot of time making sense
of these various schemes and integrating them into a system that is maintainable by you in the long run. And if
your software is itself modular and redistributable, you will find yourself having to pick one of the many different
methods, or inventing one of your own. So, when it comes down to it, while free software can save you a lot of time
and effort in terms of development, you end up spending extra effort on integration and maintenance. Annoyingly,
you’ll find that much of this work is repetitive, unnecessarily so. If you’re a programmer used to making code
reusable, you’ll may such repetitive work especially annoying.

When it comes to the JVM, a few products have been widely adopted that make some of this work easier.
However, experience has shown them to have too small a scope: they solve very specific problems, but do not
address the complete challenge (page [@). Additionally, since they are already a few years old, they predate the
linguistic revolution that is happening in full force on the JVM: no longer is Java the only good choice for leveraging
the platform. New and popular languages like Scala, Clojure and Groovy offer a new experience and culture, while
Nashorn, Rhino, Jython, JRuby, Quercus and Luaj bring popular languages and their paradigms to the JVM.
Indeed, since version 7, the JVM has added support an opcode (invokedynamic) that cannot be normally generated
by compiling Java language code: for the first time in its history, the JVM is made for languages that aren’t Java.

With that in mind, Sincerity is designed from the ground up with multilingual support, which means that not
only is knowledge of Java code never required, but also that the culture of dynamic languages and their standards
are intrinsically supported: you can include dependencies from Ruby gems, Python’s PyPI repository and PHP’s
PEAR repository. Moreover, Sincerity has standard plugins that make installing and working with these dynamic
languages especially easy.

You might want to jump straight to the tutorial to see how it works, but you’re also invited to stay here and
look at some of the development and deployment tasks that Sincerity tackles.

Dependency Management and “DLL hell”

How do you get a library working with your application? Let’s see:
1. Find the library’s web site.
2. Look for the “download” button.

3. Download the latest version: note that you want to write down all versions of all libraries you are using, so
that you can handle upgrades and possible conflicts.

4. Open the distribution archive: you want to be organized about this, so that you can find licenses, documen-
tation, etc., later on.

5. You need to make put the jar in your classpath for the following environments:
(a) Your development environment: you might also want to link source code and documentation if they are
available in the distribution.

(b) Your deployment environment: the application needs it to run, so you to need to somehow include the
file in your bootstrapping script.

(¢) Your distribution, assuming you are distributing your application: this is optional, since you might decide
not to include this dependency, and to have the users download and install it themselves.

6. There might be configuration files (property files, XML, etc.)

(a) You might need to make different versions of these for your different environments.

(b) The configuration files might not be flexible enough for how your application runs, with too much assumed
or hardcoded, so you will need to either:

i. Document this fact for the user to handle on their own.

ii. Generate the configuration files during your application’s bootstrapping process.
iii. Patch the library to allow for the flexibility you require.

7. Once in a while you want to check for upgrades, which might mean subscribing to an RSS feed or mailing list,
or just reminding yourself to check the web site.

8. The library might have requirements, so you need to make sure to do all the above for them.

The above steps involve a lot of work. And what if you have 20 dependencies?

This is not a new problem, and there are already a few solutions for it. Firstly, there is a straightforward
standard for JVM repositories, iBiblio/Maven, which is widely used by many projects. But it requires you to use
one of two tools: Ivy, which does a good job of downloading dependencies (and is used internally by Sincerity), but
does nothing else, or Maven, which is a sophisticated, heavyweight project management tool with a steep learning
curve, and which requires you to work entirely within its domain. We’ll compare these tools in more depth to
Sincerity later on, but for now let’s just say that the former is too limited in scope, and the latter too constraining.
There are also various difficulties in configuring these tools: Sincerity “just works,” immediately and easily, and also
handles bootstrapping and assists in configuration.

There’s also the problem of being forced in the JVM bubble: if you’re using Jython, JRuby or Quercus, then
you have to also work with the repository standards of Python (PyPI), Ruby (gems) and PHP (PEAR). Sincerity
is designed to support all of these standards.

Then there’s the issue of potential conflicts, a.k.a. “DLL hell”> What if one application you're working on
requires one version of a specific library, and another application requires another? What if this happens within
different parts of the same application? Again, there are standards and tools for this—OSGi and Jigsaw—but they
require you to work entirely within the paradigms they enforce. Sincerity doesn’t stop you from using them (in
fact, it has great support for the Felix OSGi container), but definitely does not force you to play by any special
rules. From the bottom up, Sincerity is designed to be as straightforward and universal as possible. See the detailed
comparison to OSGi below for more information.

Bootstrapping

The JVM is packaged as a set of command line utilities, plus a few plugins for specialized environments. It does
come with one simple way to distribute programs—executable JAR files—but that would only suffice for the most
trivial programs.

For anything more complex, you will need to handle bootstrapping your application. This means, at the very
least, finding the right JVM on the machine (more than one may be installed), and then loading the application
via the “java” tool. Usually, however, it ends up being far more complicated: rummaging through environment
variables, detecting the host operating system and environment in order to set specialized JVM flags and load
optimized native libraries, and because this is so complex, you’ll want to responding to specialized bootstrapping
flags set by the user. Indeed, many JVM-based products won’t “just run,” but will in fact require you to set a host
of environment variables first.

All this work happens before the JVM even starts. Thus, it’s usually handled by writing a shell script, which is
almost always immediately runnable. Depending on how many operating systems you want to support, this may
mean, at the very least, writing one for *nix systems and one for Windows systems. This is highly specialized work,
and a development project with its own challenges, so some projects choose to avoid scripts and develop native
binaries that handle bootstrapping. And then there are installer products that purport to do this all for you.

And what if you want the software to run as a daemon, system service, or cron job?

And what if your software is not just one program, but also contains a set of tools that you also need to
bootstrap?

The bottom line is that bootstrapping is very hard to get right, and there are many complicated approaches
to it. It’s a shame that so many JVM products keep trying to implement the same bootstrapping solutions from
scratch. Sincerity streamlines this in two ways: first, by providing you with working shell scripts, and second, by
having these scripts delegate the process as soon as possible to a JavaScript program running in the JVM. Once
on the JVM, Sincerity offers a range of installable plugins that handle various configuration and deployment tasks,
including running the software as a daemon.

Why JavaScript and not a different scripting language? We deal with the question in length below (page).

What this means is that most products won’t have to do anything beyond what Sincerity offers out of the box,
and those with specialized bootstrapping will be able to write portable JavaScript programs, instead of having to
deal with complex shell scripting.

Configuration and “XML hell”

Between bootstrapping and reaching full usability, your product has to configure itself. Will you choose a properties
file? XML? Something else? And where is the file located?

Well, consider that all the libraries you use had to make their own choices for configuration. A non-trivial JVM
product could thus require several configuration files, in different locations, with different configuration rules.

But there’s a more serious problem to most of these approaches: they are unnecessarily rigid and static. While
there are many advantages to using text files for configuration, the choice of technologies is baffling. Possibly
the worst choice is XML. This language, ostensibly a “markup” language, is marking up nothing when used for
configuration: it’s instead used as a cumbersome format for structured textual data. And it gets far, far worse:
XML configuration files are often used programatically in the JVM world, to construct JVM classes and call JVM
methods. The best known, worst offenders are Logdj and Jetty. There, XML is used as if it were a scripting
language, the clumsiest you have ever seen.

The use of XML for configuration is part of what we call “XML hell,” which refers to programmers being swamped
with countless overly-verbose XML files. XML is also often abused as an interchange format on the Internet, and
a descriptor format in much of the JVM enterprise industry. Enough already!

The excuse for this insanity, one would guess, is that the ability to parse XML is standard on many platforms,
including the JVM. But, interpreting this XML is far more complicated that just parsing it. In essence, parsing
a general-purpose XML for something like Jetty involves writing a complete (more likely, not complete enough)
scripting language engine. Another excuse for “XML hell” could be part of the general over-enthusiasm with XML,
and the untested faith that standardizing on a single format would lead to greater interoperability. Again, this is
madness: unless you couple the XML file with the code that can make sense of it, the ability to parse them is of
little use.

Another approach, better than XML, is to create a Domain-Specific Language (DSL). But DSLs require a lot
of work, both by developers and by users who must learn them.

Sincerity is here to stop the madness: wherever possible, it standardizes on using JavaScript for configuration.
(Why JavaScript? We deal with the question in length below.) With JavaScript you can instantiate objects, call
methods, insert conditionals and loops using natural programming paradigms, instead of shoe-horning them into
XML. At its simplest, a JavaScript configuration file can look identical to a simple properties file: straightforward
assignments of values to configuration parameters. But, you also have the option of injecting interpreted code where
appropriate. And, of course, it’s still just text files that don’t need to be compiled, and can even be picked up and
re-interpreted at runtime, so you're still absolutely within the “configuration-by-text-file” paradigm.

If you’ve never tried the “configuration-by-script” approach before, you might be skeptical about its benefits or
worried about the extra weight it adds. But Sincerity’s JavaScript engine is very lightweight, and we’re convinced
that once you try this approach, you will avoid all others. For an instructive example, install Sincerity’s logging
plugin (page B2), and take a look at the logging configuration files. Now compare them to the “official” Log4j
formats.

One consequence of this approach is that the line between bootstrapping and configuration gets blurred. They
end up as one integrated phase: a bunch of JavaScript programs strapped together. This leads to both simplification
and greater flexibility for you. This approach leads to exceptionally dynamic configuration systems that can adopt
to any operating environment.

We really hope to see “configuration-by-script” used throughout the JVM world, even for projects that do not
want to or cannot use Sincerity.

Logging

The JVM has a few good, widely-used logging APIs, as well as a great glue library—SLF4J—that can bridge
between them. But there’s quite a bit of work involved in getting all these libraries working together. It seems that
every JVM product has its own way of doing this. Logging is important, and can’t be relegated to an afterthought:
if it’s not properly configured and well integrated, it’s close to useless.

Sincerity takes logging very seriously: it provides a plugin (page B2) that does much of the work for you, and
extensions that further enhance logging. For example, one extension funnels all logs to a centralized MongoDB
collection, perfect for distributed cloud deployments. And this system will work with practically any JVM library.

Note that logging configuration is handled via the “configuration-by-script” approach mentioned above, and is
well integrated with the whole ecology of Sincerity plugins.

http://www.slf4j.org/
http://www.mongodb.org/

Why JavaScript?

There are many great scripting languages for the JVM. Note that by “scripting” here we mean that these languages
are immediately runnable from the textual source code. This doesn’t have to mean that they are “interpreted”: many
of these languages compile some or all of your code on-the-fly. So, why has Sincerity standardized on JavaScript,
rather than Groovy, Scala, Clojure, Lua, Python, Ruby or others?

There’s no single answer, but rather a combination of factors that make JavaScript attractive:

1. JavaScript is very well known. Since its original introduction into web browsers, and universal adoption as a
web standard, it has gained an enormous skill share in the industry. There’s a wealth of education material
available for it.

2. Its implementations are relatively lightweight, in that JavaScript is both fairly minimal linguistically, and also
does not have anything like a standard library, of the kind you would find in Python and Ruby. This allows
Sincerity to have a much smaller footprint than if it were to use Jython, JRuby or even Groovy. Note that
not having a standard library can also be seen as a disadvantage, but in the case of Sincerity it’s dealt with
in two ways:

(a) Since we are running JavaScript on the JVM, we have full access to the Java standard library.

(b) Sincerity comes with the Sincerity JavaScript Library (pageBll) a very lightweight framework that makes
working with JavaScript on the JVM a little bit easier.

3. JavaScript is very future-proof: not only is it an open standard (where it’s called “ECMAScript”), but it is
baked into the JVM (from version 8) as the Nashorn engine.

4. JavaScript is actually a nice language. It has been the target of a lot of negativity from programmers
who had to work with it in browser environments, but we believe the fault is more of the environment (the
browser DOM’s poor API and many annoying differences between various browser implementations of it) than
the language itself. It encourages prototype-oriented programming, which can easily emulate object-oriented
programming, as well as other paradigms. In fact, JavaScript shares much of its scoping and function handling
with Scheme, a language that is generally admired. You can think of it this way: JavaScript is Scheme with
a C-like syntax.

Despite these general advantages, you might still prefer to use another scripting language for your own work.
Luckily, Sincerity, with the help of the Scripturian library (page B0), will let you write plugins in Python, Ruby,
PHP, Lua, Groovy or Clojure. The only disadvantage is that you would have to include the appropriate language
engine as a dependency. In the interest of keeping Sincerity and its ecology of plugins lean and mean, we want to
encourage the use of JavaScript for plugins that are intended to be shared with the community.

Just to be 100% clear: this preference for JavaScript only applies to Sincerity plugins, configuration scripts,
and skeletons: you are definitely welcome to write your application in whatever language you choose. In fact,
Sincerity contains great plugins for many popular JVM languages, as well as skeletons for complete language-
specific frameworks, such as Django and Rails.

JavaScript vs. Shell Scripting

This section is meant for those of you who are comfortable with shell scripting, and are wary about Sincerity’s use
of JavaScript for bootstrapping.

1. You might think that shell scripting would always be more portable than a scripting language running inside
the JVM. But, think again: the point of your bootstrapping work is to get into the JVM, in order to run your
application. If that doesn’t work, then your whole application won’t run, and portability is moot. Sincerity
does have shell scripts, but they’re designed to delegate to the JVM as soon as they can.

2. You might be concerned about startup delay: starting up the JVM with all the JavaScript engine classes is
much slower than starting up a shell script. This is true, no doubt, but since version 7 the JVM is doing
better. Also consider that you have to get into the JVM anyway for your application to do anything useful.
Still, if your application has a lot of tools that do not always require the JVM, and would be adversely affected
by the JavaScript bootstrap times, then by all means write them as shell scripts! You can use all of Sincerity’s
other features when you need them.

http://openjdk.java.net/projects/nashorn/

3. Shell scripts treat most of your program as an opaque, black box. But with JavaScript running in the JVM
you can call parts of your API before the application truly starts. This can allow for much more powerful,
dynamic bootstrapping.

4. JavaScript is likely richer than your shell language. Sure, bash 4.0 and PowerShell are a leap forward compared
to what we had 20 years ago, but they’re still quite constricting.

Comparisons with Other Solutions
Sincerity vs. Maven

Apache Mavenis a comprehensive solution for managing Java projects, handling building, dependency management
and distribution. It contrastingly combines a lot flexibility on the one hand—an open plugin API built on the Plexus
IoC container—with deliberate rigidity on the other hand: a strict reactor-based, multi-phase cycle. In particular,
Maven’s design goes to great lengths to keep you from affecting the order of operations: you are supposed to
configure your project, and let Maven decide what to do when. For those used to scripting their build process,
this approach may initially seem baffling and restricting. However, there are significant benefits to this approach
when working with very large, complex projects: instead of coding and maintaining nightmarishly long build scripts
based on dozens of changing environment variables, you can sit back and let Maven analyze the entire operation
and then do the right thing.

But, for this to work, you need to play by Maven’s rules, and that’s where things get tricky. Small deviations
from the strict assumptions Maven makes throw you down the rabbit hole of plugins and hacks, as you struggle to
shoe-horn a simple procedure into a product that abhors procedure. Specifically, Maven’s ideal environment is one
in which your versioned modules are written in Java mapped to single jar files. Anything even slightly different
becomes painful and hacky.

Both Sincerity and Maven handle downloading dependencies, but other than this apparent overlap these products
have different goals and scope. Importantly, they can be very complementary. One way to think of this is that
Maven could come first and Sincerity come second: Maven could help you build your project and repositories, while
Sincerity would handle your deployment container. Maven won’t help you run your application: its output is jars of
compiled code, source code or documentation, and it doesn’t handle their bootstrapping or runtime configuration.
On the other hand, Sincerity does not build your project, nor does it make any assumptions about how its built:
you can use Maven, Ant or anything else.

Sincerity vs. OSGi

An “interface” in the JVM lets you create a standard protocol, such that you can plug in various implementations
of it—*“classes,” with “methods” as the entry points—at runtime. The protocol is enforced by the JVM, which will
not let you plug in implementations that do not fit the interface. OSGi takes this up a level, by providing a much
broader concept of “implementation.” The implementation is a “bundle” that can contain any number of classes.

So far so good, but it gets complicated fast. OSGi takes it up one level more: the protocols are published and
endorsed by a community of providers, with the idea that different providers (software vendors or departments in
a large enterprise) can provide bundles to implement them, which would all work together perfectly. With this
broader ambition, “DLL hell” suddenly becomes a far more malevolent enemy: bundles are often black boxes that
you cannot easily patch to use a shared version of a dependency. There’s thus a real need for a standard solution
of runtime code compartmentalization, which OSGi provides via a clever system of classloaders.

... Which, of course, introduces its own set of problems. To get its classloading scheme to work, OSGi requires
strict separation of classloading between bundles, which in turn adds subtle and mischievous restrictions to your
usual JVM work. This is not entirely bad: working within these limitations does encourage clean, sharp boundaries
between your modules, and goes a long way towards reducing classloading confusion. It’s not, however, trivial by
any means, and all your bundles must be designed with this in mind for OSGi to work properly.

One very useful side effect of having the framework control classloading is that entire bundles can be loaded and
unloaded during runtime. Indeed, OSGi defines protocols for starting, stopping and hotswapping services. This is a
powerful feature in itself, and is indeed the entire motivation for using OSGi in some cases. (Though, if that’s your
reason, you might want to look at other, simpler ways to enable hotswapping, rather than embracing the whole of
OSGi.)

It’s worth noting, however, that there is a more straightforward solution to the problem of “DLL hell”: Why not
run each “bundle” as a separate process? Each JVM would load its own classes as necessary, and never will they
mix or conflict. This makes a lot of sense if you're running a distributed system, since you’re already dividing your

http://maven.apache.org/

software among many machines and processes, and indeed many parts of your application may not be JVM-based at
all, and can’t be run in a single process anyway. As for starting and stopping your “bundles,” the operating system
already does a good job of managing processes, so you don’t need OSGi’s protocol for that. From this perspective,
you can see that OSGi is, in effect, creating a virtual operating system inside the JVM, where “bundles” are very
much like operating system processes.

Indeed, the original target environment for OSGi was precisely one in which all bundles ran in a single process,
in shared memory space: it is the world of embedded computing, where the runtime is variously confined, such that
you are either limited to a single process due to limited resources or security concerns. In such environments OSGi
may be your only good solution for the problem of modularity and pluggable services. Still, OSGi has also proved
popular in large enterprise environments, where it allows for modules to be treated more abstractly whether or not
they are running in a single process.

Sincerity, in itself, takes the more straightforward approach: such high-level modularity is provided through the
notion of “containers,” which you can easily create, clone and change, and start and stop as processes, specifically
the service plugin (page B4) makes it especially easy to run them as daemons and services. Containers can then
talk to each other (and to other services) using whatever technology is appropriate, be it REST, SOAP, message
queuing, Hazelcast, etc. That said, OSGi may indeed be appropriate for your project, and Sincerity provides a nice
Felix plugin to get you up and running. The point being that Sincerity was designed to be neutral to the technology
of modularity, introducing no special restrictions for users that do not need them.

Tutorial

Install Sincerity

You need a JVM, at least version 6.

If you’re an Ubuntu user, then use our repository! It would do everything for you.

Otherwise, [download a Sincerity distribution. If you’re download the Zip distribution, unpack the folder, and
put it in any standard location, for example:

e Unix: “/opt/sincerity”
e Windows: “C:\Program Files\Sincerity”
e Mac OS X: “Applications”

You can then run the “sincerity” script (Unix and Mac) from there or “sincerity.bat” (Windows).
You might want to add the Sincerity path to your system path, to allow for easy access from the command line.
In Linux, you can do this by adding the following line to your user’s .bashrc file:

PATH=$PATH: /opt /sincerity

Working with the Command Line

If you run Sincerity with a Graphical User Interface (GUI) (page [[2) using “sincerity gui”. However, it’s strongly
recommended that you learn how to use the command line. Here are the main principles:

1. All Sincerity commands exist within “plugins.” The full name of a command is its plugin name, with a colon,
and then the command name within the plugin. For example, “container:create” is the “create” command
within the “container” plugin. Use “sincerity help” to list all available commands from all plugins. Many
commands support command line arguments, both required and optional. See the command documentation
for full details.

2. As a short form, you can use only the command name. However, this will only work if there is no ambiguity,
meaning that the same command does not exist in more than one plugin. For example, “create” will be
equivalent to “container:create” if no other plugin has a “create” command. Also note that the full form of
the “help” command is “help:help”. (Plugin developers are encouraged not to use command names that would
conflict with the core plugin commands, such as “create”, “add”, “install”, etc.)

3. Some Sincerity commands can only be run while pointing to a container. Generally, it’s useful to run Sincerity
when the current directory is somewhere in the container. There are a few rules to consider:

10

http://threecrickets.com/sincerity/download/

(a) Sincerity can only point to one container at a time.

(b) You can change the container or explicitly point to one using the “container:use” command (page [19)).

(¢) Otherwise, Sincerity will attempt to find for a container in the following order:

i. The “sincerity.container.root” JVM property
ii. The “SINCERITY CONTAINER” environment variable
iii. Search up filesystem tree from current path looking for a directory that has a “.sincerity” subdirectory

4. Sincerity’s current set of available plugins, which affects the set of available commands, is a combination of
both the plugins available in the Sincerity installation as well as those available in the current container.

5. You can chain commands together using “:”. Command chains are used extensively in Sincerity.

(a) Note that a single command chain can change the current container multiple times. For example:

sincerity use containerl : install : service start web—server : use container2 : log

(b) Cousidering the above, note also that each time you switch container within a command chain the set
of available plugins and commands changes, matching whatever is the current container at the time.

(c) Also keep in mind that a single command chain is always run within the same JVM. Sincerity achieves
JVM classworld separation by swapping class loaders when it changes containers. If this behavior is not
desired, you should avoid chaining and run your commands using separate “sincerity” command lines.

6. If an argument begins with a “@” character, it will be interpreted as a shortcut, and searched for in the current
container’s “/configuration /sincerity /shortcuts.conf” file. If found, it will be expanded to the command defined
there.

(a) Expansion to a command chain is allowed, as well as recursive use of shortcuts. For example:
sincerity use containerl : @mv : start restlet
Would expand to:
sincerity use containerl : add mongovision : install : start restlet
If the following entry is in “shortcuts.conf”:

mv = add mongovision : install

(b) Some commands support implicit use of shortcuts without requiring the “@” prefix. Specifically, the
“dependencies:add” and “repositories:attach” commands will search for shortcuts with the “add#” and
“attach#” prefixes respectively. For example:

sincerity add mongovision

Will expand to:

sincerity attach three—crickets : add com.threecrickets.mongovision mongovision

If the following entry is in “shortcuts.conf”

add#mongovision = attach three—crickets : add com.threecrickets.mongovision mongovisi

From here, you can continue reading about the core plugins (page[[9) to learn about all the essential commands.

11

Working with the Graphical User Interface (GUI)

Sincerity has a Swing-based GUI that displays information about your container and lets you perform operations
on it. It can be used instead of the CLI, though each interface has its own strengths. The GUI is especially useful
for displaying data, such as the dependency tree structure.

Sincerity provides the GUI frame, but the contents are provided by plugins. This means that the whole GUI
would look differently according to whatever is the current container and what plugins it has installed. For this
reason, when you change containers from within the GUI, it will restart.

If you run “sincerity” without any command, it will default to running “shell:console” (page [27)). You can also
start the GUI via the “shell:gui” command (page 27)). For example:

sincerity use containerl : gui

A richer console, in which you can use full JavaScript, is available via the “jsshell:jsconsole” command (page 21]).
If you are designing your own Sincerity plugin, it is strongly recommend that you include GUI support if
appropriate via the optional gui() entry point.

Environment Variables

The “sincerity” script will try to find your operating system’s default JVM and your Sincerity installation. You can
modify its behavior using the following environment variables:

e SINCERITY HOME: The root of the Sincerity installation to use. If not provided, will automatically discover
it according to actual (not symlinked) location of the script file.

e SINCERITY JAVASCRIPT: To force the JavaScript engine to either “Nashorn” or “Rhino”.

e SINCERITY CONTAINER: The path of the container to use. If not specified, will search up the filesystem
tree from the current path. See also the “container:use” command (page [13]).

e SINCERITY DEBUG: An integer specifying the internal debug level. Higher numbers will display more
debugging information. Defaults to 0.

e JAVA HOME: The root of the JVM installation. If not provided, will use a platform-specific heuristic to
discover it.

e JAVA VERSION: Used only in Darwin (Mac OS X). Defaults to "CurrentJDK".

e JVM LIBRARIES: Extra libraries to add to the classpath.

e JVM BOOT _LIBRARIES: Extra libraries to prepend to the boot classpath (-Xbootclasspath/p)).
e JVM SWITCHES: Extra switches to add to the JVM command.

Components

Before detailing the core plugins and commands in the next chapter (page [[9), it’s important that you understand
a few basic components:

Container

A set of files implementing a self-contained JVM-based execution environment managed by Sincerity and by you.
The container has a root path, under which it may have a directory structure of any depth. Libraries, binary
executables, configuration files, temporary work files and logs are all by default stored within the container.

Why such an emphasis on self-containment? One goal is for the container to be deployable anywhere as a whole,
simply by copying the directory elsewhere. Another goal is for the container to be a useful playground: you can
install and try out various applications and libraries without affecting your operating system. You can undo you
work simply by deleting the container’s directory.

It is possible and sometimes useful to break this principle of self-containment by using symbolic links.

Below are some a few standard container subdirectories used by the core plugins. Other plugins and skeletons
may add more subdirectories.

12

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/java.html

/.sincerity/ Reserved for Sincerity’s internal use. It’s most essential use is to mark a directory as a container
root.
If you are using a VCS, make sure to commit this hidden directory (page [I5l).

/cache/ Files put here should be considered deletable without any negative effects.

Two subdirectories are most common: “/cache/sincerity/” is where Sincerity will store information about down-
loaded dependencies, and “/cache/javascript/” is where Scripturian (page B0l will store its compiled JavaScript
code.

You likely do not want to commit this directory to a VCS (page [I3]).

/logs/ Files put here should be considered deletable without any negative effects. This is used by the logging

plugin (page B2)).
You likely do not want to commit this directory to a VCS (page [13]).

/configuration/ Container-wide configuration files for various libraries are found here. Note that generally
Sincerity prefers “configuration by script,” so that most of these files will be in JavaScript code. However, some
libraries may require XML, property sheets, or other unfortunately idiosyncratic formats.

Various libraries will use their subdirectories here: for example, “/configuration/logging/” for the logging plugin

(page[32).

/configuration /sincerity/ Here you can configure your container: repositories, dependencies, installed artifacts,
and shortcuts. Note that you usually will not have to edit these files directory: many Sincerity core commands will
manipulate these files for you.

For the format of “repositories.conf”, see the Ivy documentation for resolvers. For the format of “dependen-
cies.conf”, see the Ivy documentation for dependencies.

/libraries/ Sincerity will install dependencies here, but you can also add your own files manually.
Note that the Sincerity installation also has a “/libraries/” subdirectory, which is considered in addition to the
one found in your container.

/libraries/jars/ Sincerity will recursively add all Java archives (.jar files) here to the classpath. Those dependen-
cies installed by Sincerity will follow the “/organization/name/version/name.jar” directory structure, for example:
“org.slfdj/slf4j-api/1.6.6/slf4j-api.jar”. It is not required that you follow the same structure for jars you install
manually: all jars found under this directory will be added.

/libraries/classes/ Sincerity adds this path to the classpath, expecting to find JVM class files (“.class”).
The directory structure must be “/package/sub-package/.../classname.class”. For example, the JVM class
“org.myorg.Frame” would be in “/org/myorg/Frame.class”.

/libraries/javascript/, /libraries/python/, etc. These subdirectories are for libraries for specific program-
ming languages to use directly. Note that these are slightly different from the “/libraries/scripturian/” subdirectory,
which also contains programming language libraries, but is intended to use only from within Scripturian (page [B0).

/libraries/scripturian/ Sincerity, as well as other products that use Scripturian (page B0, will look for ex-
ecutable documents here (and possibly in other places). Most libraries and frameworks will create their own
subdirectory underneath. For example, Prudence (page @) libraries are under “/libraries/scripturian/prudence-
scriptlet-resources/”.

/libraries/scripturian/plugins/ This subdirectory is reserved for Sincerity plugins. Each document here rep-
resents a single plugin, and each plugin may implement any number of commands.

/libraries/scripturian/installers/ This subdirectory is reserved for Sincerity installers. Installers are run by
the “artifacts:install” command (page 23]), and are included in some dependencies as a way to execute arbitrary
installation tasks. A common use case is for the install hook to manipulate the unpacked files in order to tailor
them for the specific environment in which the container is running.

13

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html
http://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependencies.html

/libraries/web/ Files here are intended to be served over the web as static files, for example: images, HTML
files, CSS, etc. Various web servers will look for files here (and possibly in other places). Various client-side web
frameworks (such as jQuery, Ext JS) will thus install here, and be made available for various web servers you may
have installed.

/programs,/ The “delegate:start” (page 25]) command will look for Scripturian (page B0) documents to run from
here.

/executables/ The “delegate:execute” (page 25l) command will look for executables to run from here.

/reference/ Reference material, for use by humans or by software, will be available here.

/reference/documentation/ Here you'll find reference manuals and API documentation for installed dependen-
cies. Files installed by Sincerity will be placed in “/organization/name/version/” directory structure, for example:
“org.slf4j/slf4j-api/1.6.6/”.

/reference/licenses/ Here you'll find licenses for installed dependencies. Files installed by Sincerity will be
placed in “/organization/name/version/” directory structure, for example: “org.slf4j/slf4j-api/1.6.6/”.
See also the “dependencies:licenses” command (page 21]).

/reference/sources/ Here you'll find source code for installed dependencies. Files installed by Sincerity will be
placed in “/organization/name/version/” directory structure, for example: “org.slf4j/slf4j-api/1.6.6/”.

Dependency

A contained, versioned, installable set of files (called “artifacts”), which can in turn have its own list of dependen-
cies. Dependencies are deployable software bundles, representing things like libraries, frameworks, platforms and
skeletons, including complete applications and services.

All dependencies in Sincerity are identified by a two-part name, composed of a “group” prefix plus a unique
“name” within the group, plus a version specifier. Different dependencies might have their own versioning schemes,
but Sincerity is good at guessing these for the purposes of comparing versions.

Note that a dependency can also have none of its own files, and only a list of its own dependencies, allowing for a
convenient shortcut for installing several dependencies together. These are sometimes called “meta-dependencies.”

You can list all installed dependencies using the “dependencies:dependencies” command (page [21I). However,
note that dependencies are structured as a nested tree that may be better visualized using the GUI (page [12)).

Artifact

There are files within a dependency. Sincerity supports a specific set of artifact types: JVM libraries (jars),
language-specific libraries (Python eggs, Ruby gems, PHP packages, etc.), documentation bundles, source code
bundles, software licenses, installers, dependency descriptors and more generic “packages” (see below).

You can list all installed artifacts using the “artifacts:artifacts” command (page 23]).

Package

This is a special kind of Sincerity-specific jar artifact that can contain other files, and can additionally have special
install /uninstall hooks.

Sincerity contains tools to help you easily create your own packages, as well as documentation about the package
specification, so that you can manually create your own.

Packages are automatically unpacked using the “artifacts:install” command (page23]), but you can also explicitly
unpack them using “packages:unpack” (page 24]).

14

Repository

A store for dependencies and their artifacts. Repositories usually contain indexes of available dependencies and
versions. Some repositories also have friendly human-facing web frontends which you can use to search for depen-
dencies. Sincerity supports several repository technologies, and can also help you deploy your own dependencies to
them.

You can list all repositories attached to your container using the “repositories:repositories” command (page 20]).

Working with a VCS

Because Sincerity containers are all in a single directory tree, it’s very easy to use them with Version Control
Systems (VCSes), such as [git, Mercuriall and [Subversionl.

One quick issue to note is that your “/.sincerity /” directory will often be empty, and many VCSes, such as [Git),
tend to ignore empty directories. To force Git to commit it, simply add a “.gitignore” file in that directory:

touch .sincerity /.gitignore

Otherwise, there are two recommended strategies for working with a VCS:

Strategy #1: Commit (Almost) Everything

This strategy is safest in terms of testing and debugging, because it guarantees that all developers and deployments
are sharing the exact same files.

You might just want to make sure that you don’t commit the deployment-specific directories. Here’s an example
of a “.gitignore™

/cache
/logs

The problem with this strategy—and it can be serious—is that distributed VCSes often require you to clone the
repository with its entire history. Every time you change a large binary, it will increase the size of the repository.
If this happens a lot, the repository can become quite unwieldy.

Some VCS have workarounds for this problem, though they would only work in environments where developers
have access to these files via a shared directory. Consider, for example, [git-annex for Git.

Strategy #2: Commit Only Your Work

This strategy makes good use of Sincerity and allows for compact repositories. The idea is that users of the
repository will just have to run “sincerity install” to fill in all the missing files.

In order for this to work well, you will need some discipline. You will need to have your VCS explicitly ignore all
files that are managed by Sincerity. A good way to do this a blanket ignore on all standard container and skeleton
directories, and then add exceptions for files you add or change. Care must be taken during the commit phase to
make sure that your changes have indeed been committed, and that you have not forgotten to add an exception. If
you forget, your changes will not be committed and can be lost.

One small but important issue is that you want to make sure that “/configuration /sincerity /artifacts.cont” file
is ignored. This file is managed by Sincerity specifically in order to keep track of files changed during “sincerity
install” (and “sincerity unpack”).

Here’s an example .gitignore for a container based around a Prudence skeleton (page H6):

Ignore everything by default, allowing Sincerity to manage it
/cache

/component

/configuration

/executables

/libraries

/logs

/programs

/reference

Our applications

15

http://git-scm.com/
http://mercurial.selenic.com/
http://subversion.apache.org/
http://git-scm.com/
http://git-annex.branchable.com/

!/ component /applications/myappl
!/ component /applications/myapp2

Modifications to installed applications
!/ component/applications/prudence—admin/routing.js

Our shared libraries
!/libraries/scripturian/minjson.py

Component modifications and additions
!/ component/servers
!/component/services/database

Logging configuration
!/ configuration/logging /appenders/common—file .js

Sincerity configuration

!/ configuration/sincerity /repositories.conf
!/ configuration/sincerity /dependencies.conf
!/ configuration /sincerity/shortcuts.conf

Note how we added exceptions for both new directories added to the container as well as changes to specific files.
Also note that the “/configuration/sincerity /artifacts.conf” file is ignored, as required, due to the blanket ignore on
“/configuration”.

There are two possible disadvantages for this strategy:

First, unless you specify dependency versions precisely for all dependencies, every time a user runs “sincerity
install” they may get different versions, and thus have a different container. For some testing strategies, this is a
disadvantage. However, for more “agile” continuous build strategies, this can actually be seen as an advantage, as
it makes sure that you are always at the cutting edge. As long as your tests are run before deployment, then this
should not be a problem. However, it could still be a problem for coordinating debugging if multiple developers are
working on the same VCS repository but are using different versions of dependencies. To work around this potential
problem, you can of course maintain your own repository and coordinate its use with the development team, with
the same care used for coordinating VCS repository use. Alternatively, for the particular problem of debugging,
you can make sure to copy over files from the deployment in which the bug has been discovered, or possibly include
a full “sincerity dependencies” dump with the bug report, allowing developers to precisely replicate its environment.

The second problem is that because you need to run “sincerity install”’, you would potentially be dependent on
third-party repositories (Three Crickets, Maven Central, PyPI) to turn your VCS repository into a runnable system.
A good solution is to use a repository proxy, such as Nexus (page [38), that would guarantee that you control access
to all binaries within your organization, even if the third party repositories fail.

Working with Docker

Machine virtualization brought about a revolution in deployment strategies. And then came LXC| providing a more
limited set of features via built-in isolation features in Linux: think chroot, but with filesystem and networking
containment. LXC allows for much lighter containers as compared to virtualization.

So lightweight, in fact, that it makes sense to package and distribute applications via LXC. That’s exactly
what Docker does, by providing an easy-to-use set of tools, standardized packaging, repository management, and a
curated catalog of ready-to-run base images. Many workload distribution systems, such as Mesos, support Docker
packages, allowing you to deploy applications with exceptional flexibility, robustness, and economical utilization of
resources.

(It’s also interesting to see LXC encroaching into the data center market, which until now was dominated
virtualization: [LXD! will allow you to manage a cloud of “machines” that are actually LXC containers, offering
much greater density on existing hardware. It will even integrate with OpenStack, allowing data centers a smooth
transition to this exciting technology.)

16

https://linuxcontainers.org/
https://www.docker.com/
http://mesos.apache.org/
https://linuxcontainers.org/lxd/introduction/
https://www.openstack.org/

Running in Docker

Because Sincerity puts your entire container in one root directory, it’s trivial to run your Sincerity container in a
Docker image. In this example, we’ll create a container with the Prudence example application, and then run it
inside the ready-made “java” Docker image:

sincerity create /path/to/mycontainer : add prudence.example : install

sudo docker run —rm —it \

—v /path/to/mycontainer /:/opt/mycontainer/ \

—p 8080:8080 \

java:8udb—jre \

/opt/mycontainer/sincerity use /opt/mycontainer/ : start prudence

If you haven’t used the “java:8udb-jre” Docker image yet, it will have to download it.

In this example, we’ve mapped our Sincerity container to “/opt/sincerity /” in the Docker image, and Prudence’s
default HTTP port to a port in the host, so that we could access the site at http://localhost:8080/. We’ve also
enabled an interactive pseudo-TTY (“-it”) so that we can press CTRL+C to quit.

The result seems identical to running “normally”: and that’s the beauty of Docker.

What good is this? Well, for one, it allows you to easily test your Sincerity container in various versions of the
JVM without having to install them on your main operating system. But also, Docker can offer tighter security
more easily than just, for example, running your Sincerity container under a custom user.

Packaging in Docker

Once you'’ve tested your Sincerity container in Docker, it’s time to package it for deployment.
First, create a “Dockerfile” in your container’s directory. For our example:

FROM java:8ud5—jre
MAINTAINER Three Crickets
ADD . /opt/mycontainer/

CMD /opt/mycontainer/sincerity use /opt/mycontainer/ : start prudence
EXPOSE 8080
You'll also want to create a “.dockerignore” file (which uses the same syntax as “.gitignore”). For our example:
/cache
/logs

Now we can build it:
sudo docker build —t threecrickets:mycontainer

That’s it! It was very fast, because Docker uses a transaction system: our new package is only a small diff over
the original image. Running it is very similar to before:

sudo docker run —it —p 8080:8080 threecrickets :mycontainer

You can also run it in “detached” mode (like a daemon) using “docker run -d”. Use “docker ps” to list existing
running images, and “docker stop” to stop any.
To save the image into a self-contained, redistributable file:

sudo docker save threecrickets:mycontainer | bzip2 > mycontainer.tar.bz2
To load it:
cat mycontainer.tar.bz2 | bunzip2 | sudo docker load

Note that because the image is self-contained, the environment loading it does not need access to the repository
where “java:8udb-jre” came from (it essentially includes the JVM). However, because all transactions have GUIDs,
it would be identical to having retrieved “java:8ud5-jre”. So, if that environment were to be running 100 images
based on “java:8ud5-jre”, it would only keep the actual installation once. (You can also “flatten” your image, as if it
were a single commit, using “docker export”.)

Also note that “save” does not keep the tags, though you can re-tag the image via its ID like so:

17

http://localhost:8080/

sudo docker images

sudo docker tag ... threecrickets:mycontainer

See the Docker documentation for more information about how to work with repositories.

FAQ

Please also refer to the FAQ for Scripturian.

The wrong version of a dependency is being installed. Why, and how do I fix it?

First, diagnose what is going on by viewing the dependency tree, via either the “dependencies:dependencies”’
command (page 1)) or the GUL

If the problem is with an explicit dependency that you added, it could be that it is also being included as an
implicit dependency with different version restrictions, and Ivy has done its best to resolve the conflict within the
restrictions. You can overcome Ivy’s compromise by using the “—force” when adding the explicit dependency. For
example:

sincerity add com.tanukisoftware wrapper—linux 3.5.20 —force

If the problem is with an implicit dependency, you can override the version by using the “dependencies:override”
command (page[22). For example:

sincerity override com.tanukisoftware wrapper—linux 3.5.20

Another option is to use the “—only” switch when adding the explicit dependency that pulls in the wrong implicit
dependency, and then explicitly adding the sub-dependencies in the versions you want. You can, in fact, only use
“—only” for all your adds, making 100% sure that only explicit dependencies are used.

I’m getting “java.lang.OutOfMemoryError: PermGen space” exceptions!

This is likely because you are chaining several of Sincerity commands together while also using the “heavier” language
engines (Jython, JRuby). The easy solution in most cases is simply separating your commands. For example, instead
of this:

sincerity add rails : install : add django : install : start django
Run this:

sincerity add rails : install

sincerity add django : install

sincerity start django

If you’re using the Oracle JVM, you can also increase the PermGen space by setting the JVM SWITCHES
environment variable (page [[2) before running Sincerity:

JVM_SWITCHES=—XX: MaxPermSize=128m sincerity

This problem should completely disappear in JVM 8, which removes the PermGen feature entirely.

How do I force the use of Rhino with JVM 87?
There is an environment variable (page [[2) for it:

SINCERITY JAVASCRIPT=Rhino sincerity install

By default, Sincerity will prefer Nashorn, even if Rhino is also on the classpath.

18

http://threecrickets.com/scripturian/manual/faq/
http://openjdk.java.net/jeps/122

Part 11
Ecosystem

Core Plugins

These are the plugins that come with the Sincerity installation and implement its most essential commands.

Since these commands are used so often, it’s a good idea to avoid implementing these command names in your
own custom plugins, so that there would never be ambiguity for the essentials. In other words, treat “add”, “install”,
etc. as reserved command names.

We’ve organized them here in the order by which you’d likely use them.

Optional arguments are marked by square brackets.

Container

Manages Sincerity containers.

container:create

Creates a new container using a container template and points Sincerity to it, making it the new current container.

Arguments

1. Container root directory: If the directory does not exist, this command will create a new container there.
If the directory already exists and is a container, points Sincerity at it.

2. [Template name]: This is the name of a subdirectory under your Sincerity installation’s “/templates,/”
subdirectory. Will default to “default”. Sincerity will recursively copy the files from the template into your
new container. Use the “templates:templates” command (page 26]) to see available templates.

Switches
e —force: With this switch, even if the directory already exists, the command would still copy the template

into it. Note that this might overwrite existing files.

container:use

Changes the current container to which Sincerity is pointing.

Arguments
1. Container root directory: The path must point to a valid container root, meaning that it must have a

“/.sincerity /” subdirectory.

container:clone

Creates a clone of the current container.

Arguments

1. Target container root directory: If the directory does not exist, this command will create a new container
there, recursively copying all files from the current container to it. Note that Sincerity will not switch to the
new container: use the “container:use” command if you need to do that.

Switches

e —force: With this switch, even if the target directory already exists, the command would still copy the files
into it. Note that this might overwrite existing files.

19

container:clean

This command is the same as “artifacts:uninstall” (page 4]) but also deletes the “/cache/” subdirectory.

Repositories

Manages repositories within the current container. Adds a “Repositories” tab to the Sincerity GUI.
The “artifacts:install” (page 23)) command searches for dependencies in all attached repositories, in order.
Instead of using these commands, you can also edit the container’s “/configuration/sincerity /repositories.conf”
file directly. See the Ivy documentation for resolvers.

repositories:repositories

List all repositories attached to the current container in order by section.

repositories:attach

Attaches (adds) a repository to the current container. This command modifies the “/configuration /sincerity /repos-
itories.conf” file.

Arguments

1. Section: Repositories are searched in the order they are added, but are first ordered by section. By default
Sincerity containers have two sections: “private” and then “public”; in that order. Thus, any repositories you
attach to the “private” section will be searched before any repositories attached in the “public” section.

2. Name: The repository name must be unique per its section.

3. Type: Sincerity currently supports two types of repositories: “maven” (you can also use the “ibiblio” alias)
and “pypi” (you can also use the “python” alias).

Arguments after the first three depend on the type of repository attached. However, both currently supported types
require one additional argument: the repository base URL.
Note that this command supports implicit shortcuts that begin with the “attach#” prefix. For example:

sincerity attach maven—central

Will expand to:

sincerity attach public maven—central maven http://repol.maven.org/maven2/

If the following entry is in “shortcuts.conf™

attach#maven—central = attach public maven—central maven http://repol.maven.org/maven2/

To see all available “attach#” shortcuts in your container use the “shortcuts:shortcuts” command.

repositories:detach

Detaches (removes) a repository from the current container. This command modifies the “/configuration/sinceri-
ty /repositories.cont” file.

Arguments
1. Section: See the “repositories:attach” command.

2. Name: See the “repositories:attach” command.

Dependencies

Manages dependencies for the current container. Adds “Dependencies” and “Licenses” tabs to the Sincerity GUI.
Instead of using these commands, you can also edit the container’s “/configuration /sincerity /dependencies.conf”
file directly. See the Ivy documentation for dependencies.

20

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html
http://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependencies.html

dependencies:dependencies

Lists all dependencies in the current container as a tree structure. Dependencies that are not installed will be listed
in parentheses.
For a large dependency tree, it may be easier to use the Sincerity GUI instead of this command.

dependencies:licenses

Lists all licenses per all dependencies in the current container. Note that dependencies may be available via more
than one license.

Please be aware that you should not treat the output of this command as legal advice. Package maintain-
ers do their best to provide you with correct and useful information, but you should yourself investigate
the licensing available per each library you use to avoid breaking the law.

Switches

e —verbose: By default only the name of the license will be printed. With this switch, the URL will be printed,
too, if available.

dependencies:add

Adds a dependency to the current container. Note that this does not download artifacts: all it does is modify the
“/configuration /sincerity /dependencies.conf” file.

The reason this command doesn’t install files is that installation requires a resolution phase that goes over
all dependencies and their sub-dependencies and selected the highest possible versions of dependencies. Use
“artifacts:install” (page 23) to download and install artifacts. It will also delete artifacts no longer used in the
revised dependency tree.

Arguments

1. Group: The dependency group name. This is sometimes also called an “organization,” though it may be a
bit misleading, because a group can refer to a set of products within an organization. Group names tend to
follow the Java package naming format. For example, Prudence’s group name is “com.threecrickets.prudence”.
Unfortunately, group names are not standardized and many projects follow their own conventions.

2. Name: This is the name of the dependency within the group. It is usually a simple string, possibly with
dashes, the project. For example, the name for the “Prudence Example” application within the Prudence
group is “prudence-example”.

3. [Version]: If you do not specify a specific version (or use the special “latest” string), Sincerity will resolve
for the highest available version. Sincerity supports range specifications for versions. For example. “[1.0,2.0[”
will match versions that are greater than or equal to 1.0 but lesser than 2.0.

Switches

e —only: Ignores all implicit dependencies of this dependency
e —force: Forces the specified version, even if a different version is preferred by a different dependency

Important: Sincerity uses Ivy’s dynamic revision format| for versions, which look similar to Maven’s
but is in fact interpreted quite differently. This is a cause for many mistakes in using version constraints
in Sincerity!

Note that this command supports implicit shortcuts that begin with the “add#” prefix. For example:
sincerity add velocity 1.7

Will expand to:

sincerity attach three—crickets : add org.apache.velocity velocity 1.7

If the following entry is in “shortcuts.conf”:

add#velocity = attach three—crickets : add com.org.apache.velocity velocity

To see all available “add#” shortcuts in your container use the “shortcuts:shortcuts” command.

21

http://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependency.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-dependencies.html#pom-relationships-sect-version-ranges

dependencies:revise

Allows you to change the version of a previously added dependency. The format is identical to “dependencies:add”
(page [2I)): the difference is that a new dependency cannot be added with this command, only revised. For example:

sincerity add org.apache.velocity velocity 1.7
sincerity revise org.apache.velocity velocity latest

dependencies:remove

Removes a dependency from the current container. Note that this does not delete installed artifacts: all it does is
modify the “/configuration/sincerity /dependencies.conf” file.

Use “artifacts:install” (page 23]) or “artifacts:prune” (page 24)) to delete artifacts no longer used in the revised
dependency tree, or “artifacts:uninstall” (page 24)) to delete all artifacts.

Arguments

1. Group: The dependency group name. This is sometimes also called an “organization,” though it may be a
bit misleading, because a group can refer to a set of products within an organization. Group names tend to
follow the Java package naming format. For example, Prudence’s group name is “com.threecrickets.prudence”.
Unfortunately, group names are not standardized and many projects follow their own conventions.

2. Name: This is the name of the dependency within the group. It is usually a simple string, possibly with
dashes, the project. For example, the name for the “Prudence Example” application within the Prudence
group is “prudence-example”.

For example:

sincerity add org.apache.velocity velocity 1.7
sincerity remove org.apache.velocity velocity

dependencies:exclude

Forcibly excludes an implicit dependency from being downloaded. The format is identical to “dependencies:remove”
(page 22]). For example:

sincerity exclude org.apache.velocity velocity

dependencies:override

Overrides the version of an implicit dependency. Note that this does not actually add the dependency. If the
dependency is not in the tree, then the override has no effect. The format is identical to “dependencies:add” (page

210):

sincerity override org.apache.velocity velocity 1.6

dependencies:freeze

Overrides the versions of all explicit and implicit dependencies to be their currently installed versions. This ensure
that future runs of “artifacts:install” (page 23)) will result in exactly the same version installations.

dependencies:reset

Removes all dependencies from the current container. Note that this does not delete installed artifacts: all it does
is empty the “/configuration/sincerity /dependencies.conf” file. Use “artifacts:uninstall” (page 24)) to delete installed
files.

Artifacts

Manages artifacts in the current container. Adds an “Artifacts” tab to the Sincerity GUL

22

artifacts:artifacts
Lists artifacts available for each dependency of the current container. If the dependency is not installed, it will be
listed in parentheses.
Switches
e —packages: Shows artifacts within packages (by default these are not shown).
e —verbose: In non-verbose mode (the default) only the type of artifact is shown. In verbose mode you’ll see
the complete relative path to the artifact as well as its size in bytes.
artifacts:install

This powerful command downloads and installs artifacts belonging to the current container’s dependencies and
their sub-dependencies from the online repositories to which the container is attached. It should thus be used
after “dependencies:add” (page21l) and “repositories:attach” (page 20) have been used. This command also handles
upgrades and resolves dependency version conflicts.

Installation happens in seven phases:

1. Checking: First, it searches for your dependencies in all attached repositories in order. It uses the “/configu-
ration/sincerity /dependencies.conf” and “/configuration/sincerity /repositories.conf” files as a starting point.
Though you can edit these directly (or copy them from elsewhere), you may prefer to use the “dependen-
cies:add” and “repositories:attach” commands to manipulate them instead.

2. Meta-data: When found, the meta-data (in Maven this is a .pom file) for the package is downloaded and
stored in a local cache (under “/cache/sincerity/packages/”).

3. Recursion: If your dependency has sub-dependencies, they are added. Phases 1 to 3 are repeated for each.

4. Resolution: Now that we have a complete dependency tree, it will be “resolved.” This means that duplicate
dependencies will be skipped and highest possible versions for dependencies will be selected. Note that
upgrades are handled by this phase: if a newer version of a certain dependency is found, it will be selected
instead of the previously installed one. Rarely, this phase may fail with an error due to version conflicts that
cannot be resolved.

5. Download/Delete: The dependencies selected for installation in the resolution phase will be downloaded,
and those that were previously installed and are no longer needed (for an upgrade) will be deleted. You can
use the “dependencies:dependencies” command to see the whole dependency tree, including dependencies that
were selected to not be installed by the resolution phase. A more detailed report will be made available in
“/cache/sincerity /resolution /threecrickets-sincerity-container-default.xml”. Note that this XML report uses
XSL and CSS to make it nicely readable in a web browser.

6. Unpack: Installed packages will be unpacked. This is identical to the “packages:unpack” command, and may
cause new artifacts to appear in your container, as well as arbitrary code to be executed via installer hooks
in a package. It will not by default overwrite existing files.

7. Prune: Unused artifacts will be deleted, unless you have changed them. This is identical to the “arti-
facts:prune” command.

Under the hood, Sincerity relies on [Ivy| to handle phases 1 to 5, and it may be useful to refer to its documentation
if you require specialized configuration and handling.

Note that remote repositories introduce consider delay for phases 1, 2 and 5. Furthermore, the more repositories
you attach, the longer phase 1 will take, as each repository is checked in sequence. For these reasons, as well as
saving you from network /server failure by 3rd party providers, it is strongly recommend that you run a local proxy
for the repositories you use. You can install one easily with Sincerity using the Nexus skeleton.

Switches

e —overwrite: This affects phase 6. See “packages:unpack” (page 24 for more information.

e —verify: This affects phase 6. See “packages:unpack” (page 24]) for more information.

23

http://ant.apache.org/ivy/

artifacts:uninstall

This command deletes all artifacts installed by “artifacts:install” (page 23)), unless these artifacts have been changed
since they’ve been installed. This behavior ensures that you do not lose your custom work. If a package has an
uninstaller hook, it will be executed after its artifacts are deleted.

This command is useful for leaving your container clean of any dependencies. Though the artifacts are deleted,
they are still added to your container. Thus, this command is entirely reversible by issuing a “artifacts:install”
command.

Also see the “container:clean” command (page [20).

artifacts:prune

Deletes artifacts that were previously installed by “artifacts:install” (page 23]) but for which their dependencies no
longer exist. Artifacts that were changed since installation will not be deleted. This behavior ensures that you do
not lose your custom work.

You usually would not have to run this command by itself, because it is part of “artifacts:install”. However, it
may be useful in case you are manipulating the contents of *“/libraries/jars/” manually.

Packages

Manages packages in the current container.

packages:unpack

Unpacks all Sincerity packages in “/libraries/jars/”. If a package has an installer hook, it will be executed after its
artifacts are unpacked.

You usually would not have to run this command by itself, because it is part of “artifacts:install” (page 23)).
However, it may be useful in case you are manipulating the contents of “/libraries/jars/” manually.

It is also useful in case you’ve made various changes to unpacked artifacts and want to restore them to their
initial unpacked state. A good way to do this is to delete all the files that you want to restore and then run “sincerity
unpack”.

Arguments

1. [Filter]: Currently unused.

Switches

e —overwrite: By default the command will not overwrite existing files, unless these files were previously
installed by Sincerity and have not been modified since. This behavior ensures that you do not lose your
custom work. However, you can override this behavior using this switch. Be careful: this will overwrite files
unpacked by all packages. If you only want to overwrite a select few files, it is best to delete them and then
run “unpack” without this switch.

e —verify: Verifies that artifacts have been unpacked correctly. Slower but safer.

Delegate

Manages entry points into the current container, and is the primary means to run applications in it. Adds a
“Programs” tab to the Sincerity GUI.

delegate:main

Calls the main() method within a JVM class. The class may exist anywhere within the current container, within
the Sincerity installation, or elsewhere in the JVM classpath.

24

Arguments

1. Classname: This is the fully qualified JVM class name. For example, “org.myapplication.Service”. Note that
the class has to have a method named “main” with the correct signature (public, returns void, with an array
of strings as its only argument).

Additional command arguments after the first will be sent as arguments to the main() method.

delegate:start

Executes a Scripturian (page B0) document.

Though Sincerity comes with support for JavaScript, documents can be written in any installed programming
language that support Scripturian. The document extension will tell Scripturian which language engine to use: “.js”
for JavaScript, “.py” for Python, “rb” for Ruby, etc. Use the “delegate:languages” command (page 26]) to list all
supported languages.

Your code will have full access to Sincerity’s execution environment and API. See the chapter on Programming
for more information.

Scripturian will store compiled code in the “/cache/” subdirectory, speeding up subsequent runs. For example,

JavaScript classes will be stored under */cache/javascript/”. You can safely delete this files.

Arguments

1. Document name: The argument is a document name, either beginning with a *“/” and relative to the
current container root, or a simple string specifying a filename in the “/programs/” subdirectory. Use the
“delegate:programs” command to list all files under */programs/”. As usual with Scripturian, filename exten-
sions should not be used. If the name points to a directory, then a file named “default” (with the appropriate
programming language extension) in that directory will be executed. For example, “sincerity start /com-
ponent/” would execute “/component/default.js” from within the current container, while “sincerity start
component” would execute */programs/component.js”.

Additional command arguments after the first will be ignored by Sincerity, but will be forwarded to the program
and can be accessed from within its code using the application.arguments API.

delegate:execute

This command starts a new process, which would be a child process of Sincerity. Standard output and input from
the child process are piped to the current standard output and input.

This command is useful not only for integrating non-JVM code into Sincerity, but also for hashtag support,
allowing you to incorporate dynamic language scripts, for Python, Ruby, etc. Since Sincerity controls the environ-
ment of the child process, it can guarantee that environment variables and other properties are set according to the
current container.

Arguments

1. Executable name: The argument is a filename relative to the current container’s “/executables/” subdi-
rectory. The file must be executable by the underlying operating system. On *nix this includes support for
hashtag script files.

Switches

e —background: By default this command will block until the child process exits. However, using this switch
Sincerity will not block and continue processing its command chain. Note that this would not stop the child
process from ending when the Sincerity parent process ends.

delegate:programs

Lists all available programs in the current container (documents in the “/programs/” subdirectory). Use the
“delegate:start” command (page 23] to start them.

25

http://threecrickets.com/api/javascript/?namespace=application

delegate:languages

Lists all languages installed in the current container that support Scripturian (page B0).

Templates

Manages templates in the Sincerity installation. Adds a “Templates” tab to the Sincerity GUI.
Templates are used by the “container:create” command (page [I9) to initialize new containers.

templates:templates

Lists all templates available in the Sincerity installation.

templates:templatize

Turns the current container into a Sincerity template. This works by simply recursively copying the current container
into your Sincerity installation’s “/templates/” subdirectory. Note that you must have write permissions there in
order for this to work.

Note that you can manipulate the “/templates/” subdirectory directly. This command is merely for convenience.

Arguments

1. Template name: A new subdirectory to be created under your Sincerity installation’s “/templates/” subdi-
rectory. Note that this command will not copy over an existing template! If the directory already exists, you
will get an error. You must manually delete the directory if you want to change an existing template using
this command.

Shortcuts

Manages shortcuts for the current container. Adds a “Shortcuts” tab to the Sincerity GUI
Your shortcuts are defined in your container’s “/configuration /sincerity /shortcuts.conf” file.

shortcuts:shortcuts

Lists all available shortcuts in the current container.

Help

Provides general information about your Sincerity installation. Adds a “Commands” tab to the Sincerity GUI.

help:version

Lists Sincerity version information. This includes the numerical version and the build timestamp. An example of
output:

built=Jun 18 2013, 15:28:46, TZ+0800
version—=1.0—dev)

help:help

Lists all available Sincerity commands (in full form) from all available Sincerity plugins. This includes both plugins
installed in the current container and those available in the Sincerity installation.

26

help:verbosity

If no argument is provided, prints out the current Sincerity output verbosity. If an argument is provided (integer
>=0) then changes the current verbosity. Note that the default verbosity is 1, and you can change the verbosity
several times within a chained Sincerity command.
Verbosity is interpreted individually by individual commands, though 0 usually means “silent,” 1 means “only
important messages” and 2 means “quite chatty.” Higher values usually include more minute debugging information.
Note that verbosity is only used to control messages to standard output and standard error. Configuring logging
should be done separately, via the logging plugin (page 32)).

Shell

User interfaces to Sincerity.

shell:console

A straightforward console in which you can run Sincerity commands. The console supports basic command com-
pletion using the TAB key and persistent command history using the UP and DOWN keys.

Use “exit” (or CTRL+C) to exit the console. Use “reset” to reset the command history. The history is available
in the “/cache/shell /console.history” file.

See “sshell:jsconsole” (page 27) for a richer console, in which you can use full JavaScript code.

Switches

e —script—: If present, the console will load this script file, run it one line at a time, and then exit. Empty
lines and lines beginning with a “#” (comments) will be ignored. In the script, you may separate commands
via “” or a newline, with the same final effect.

shell:gui

Starts the Sincerity Sincerity GUI (page [[2]). The GUI will go through all available plugins and try to call the
optional gui() entry point if they have them, allowing plugins to enhance the GUI as is appropriate.
Note that this command blocks until the GUI is shut down.

Switches

e —ui—: Let’s you change the Swing look-and-feel. Look-and-feels supported on most JVMs are: “metal” and
“nimbus”. Note that if no look-and-feel is specified, or the specified look-and-feel is not found, then Sincerity
will attempt to default to the native look-and-feel, unless the native platform is GTK. We found the GTK
look-and-feel to be so riddled with bugs that we decided to spare you from it.

JavaScript Shell

User interfaces to Sincerity using JavaScript.

jsshell:jsconsole

A JavaScript console in which you can run JavaScript code, with full access to all JavaScript and JVM libraries
in the container. The console supports basic command completion using the TAB key and persistent command
history using the UP and DOWN keys.

As a shortcut, any line beginning with a “” will execute a Sincerity command, similar to using the basic
“shell:console” (page 27]).

Use “exit” (or CTRL+C) to exit the console. Use “reset” to reset the command history. The history is available
in the “/cache/jsshell /jsconsole.history” file.

Switches

e —script=: If present, the console will load this script file, run it all at once, and then exit. Note that you

cannot use the “”7 shortcut to run Sincerity commands here, because this file is pure JavaScript. However,
you can run Sincerity commands using sincerity.run(...) calls.

27

Java

Support for the Java programming language.

java:compile
Compiles Java source files (“.java”) into JVM class files (“.class”) using the current container’s classpath.

Note that you must have a full JDK to use this command: a JRE usually does not come with a Java compiler.

Arguments

1. [Source directory]: Recursively compiles all “.java” files in this directory (relative to the container root).
Defaults to ““/libraries/java/”.

2. [Classes directory]: Output “.class” files here. Defaults to “/libraries/classes/”. Note that Sincerity will
always include this directory in its classpath, so it may be a good idea to keep this default.

Language Plugins

These plugins add a language engine to your container. In some cases, this also means support for standard tools
that come with the language distribution, such as a CLI, a REPL, and tools for compilation and packaging.

Most of these language engines support the Scripturian (pageB0]) standard, meaning that with a language plugin
installed you can:

e Write Scripturian programs and Sincerity programs in this language. For example, with Python installed, you
can write a “/programs/fish.py” program and start it via “sincerity start fish”. Note that the service plugin
(page 4) can also be used to run programs as daemons or services.

e Write Sincerity plugins in this language. For example, with Ruby installed, you can write a */libraries/scrip-
turian/plugins/fish.rb” plugin.

The “delegate:languages” command (page [28) will list all Scripturian-supported languages in the container.

JavaScript Plugin

Though JavaScript was originally designed to be run in web browsers, it is a powerful general-purpose C-syntax
language with Scheme-like closures that supports many programming paradigms, and has proved useful and popular
outside the browser. Sincerity runs JavaScript code via either Nashorn (available from JVM 8) or Rhinol

Note: You do not need this plugin to install JavaScript support in a Sincerity container. All it does is
provide you with a new command to get easy access to a JavaScript shell.

To install:
sincerity add javascript : install
To start a shell:

sincerity javascript

Fleshing Out

The shell can run script files and also evaluate inline scripts as arguments. Use “sincerity javascript -h” to see the
command’s possible arguments. An example of an inline script:

sincerity create mycontainer : add javascript : install : javascript —e "print (’Hello, world’

Note that this “javascript” does not use Scripturian (page [B0]), nor does it have access to any Sincerity APIs. To
run JavaScript files in Sincerity’s Scripturian environment use the “delegate:start” command (page [25]).

28

http://openjdk.java.net/projects/nashorn/
https://developer.mozilla.org/en/docs/Rhino

Python Plugin

Python is a general-purpose multi-paradigm dynamic language with an exceptionally clean syntax and a rich
ecosystem. Sincerity implements Python via Jython, and also has limited support for Jeppl
To install:

sincerity add python : install
To start a shell:

sincerity python

Ruby note: Due to conflicts in their implementations, you cannot currently use the Python and Ruby
plugins in the same container.

Fleshing Out

The shell can run script files and also evaluate inline scripts as arguments. Use “sincerity python -h” to see the
command’s possible arguments. An example of an inline script:

sincerity create mycontainer : add python : install : python —c "print ’Hello, world

Note that this “python” command does not use Scripturian (page B0)), nor does it have access to any Sincerity
APIs. To run Python files in Sincerity’s Scripturian environment use the “delegate:start” command.

Python has a very extensive ecosystem hosted on PyPI (a.k.a. “The Cheese Factory”) in “egg” format. You can
install libraries, frameworks and applications into your Sincerity container using a special version of “easy _install”
included in this plugin as a Sincerity command. For example, let’s install |Beej’s Flickr API:

sincerity easy install flickrapi

Eggs will be installed into your container under the */libraries/python/Lib/site-packages/” subdirectory.

Note that not all software written for CPython runs well on the Jython engine. See the software’s documentation
for more details.

The Sincerity Python plugin also include a “python” command (under “/executables/python”) to allow for proper
integration with Python software that starts Python subprocesses. You can run this command directly, and even
use it with a shebang for executable files. For example, this file is executable:

#!/path/to/mycontainer /executables /python
print ’hello world’

You can also place such files in your “/executables/” subdirectory and run them wusing Sincerity’s
“delegate:execute” command (page 25]).

Ruby Plugin

Ruby is a general-purpose multi-paradigm dynamic language with a exceptionally full set of features and a rich
ecosystem.

Sincerity implements Ruby via JRuby) an exceptionally robust implementation.

To install:

sincerity add ruby : install
To start a shell:

sincerity ruby

Python note: Due to conflicts in their implementations, you cannot currently use the Python and Ruby
plugins in the same container.

29

n

http://www.jython.org/
http://jepp.sourceforge.net/
https://pypi.python.org/pypi
http://stuvel.eu/flickrapi
http://jruby.org/

Fleshing Out

The shell can run script files and also evaluate inline scripts as arguments. Use “sincerity ruby -h” to see the
command’s possible arguments. An example of an inline script:

sincerity create mycontainer : add ruby : install : ruby —e "puts ’Hello, world’"

Note that this “ruby” command does not use Scripturian (page B0, nor does it have access to any Sincerity
APIs. To run Ruby files in Sincerity’s Scripturian environment use the “delegate:start” command (page 25).

Ruby has a very extensive ecosystem hosted on RubyGems in “gem” format. You can install libraries, frameworks
and applications into your Sincerity container using a version of “gem” included in this plugin as a Sincerity
command. For example, let’s install Flickraw, an API for accessing Flickr:

sincerity gem install flickraw

Gems will be installed into your container under the “/libraries/ruby/lib/ruby/gems/shared/” subdirectory.

Note that not all software written for Ruby runs well on the JRuby engine (though in some cases it may actually
run better in JRuby). See the software’s documentation for more details.

Other standard Ruby commands supported by the plugin are: “ast”, “irb”, “rake”, “rdoc”, “ri” and “testrb”.

The Sincerity Ruby plugin makes sure that the execution environment will work with the JRuby ecosystem.
Specifically, JRuby executable files start with the “env” shebang, for example:

#!/usr/bin/env jruby
puts ’Hello, world’

You can place such files in your “/executables/” subdirectory and run them using Sincerity’s “delegate:execute”
command (page 25]).

PHP Plugin

Though PHP was designed for generating web pages, it is also useful as a general-purpose templating language.
Sincerity implements PHP via|Quercus. Note that the free version of Quercus is included, but you may easily swap
it for a purchased professional release if you have it.

To install:
sincerity add php : install

To start a shell:

sincerity php

Fleshing Out

The shell can run script files provided as arguments. Use “sincerity php -h” for more information. For example,
let’s create a file named “test.php”:

<?php
print "Hello, World!\n";
7>

And then run it like so:
sincerity create mycontainer : add php : install : php test.php

Note that this “php” command does not use Scripturian (page[B50l), nor does it have access to any Sincerity APIs.
To run PHP files in Sincerity’s Scripturian environment use the “delegate:start” command (page [259]).

PHP has a very extensive ecosystem hosted on PEAR) often in PHP archive (.phar) format. Though Sincerity
does not yet support PEAR directly, you can install PEAR libraries using standard PHP and then copy them over
to your Sincerity container.

30

http://rubygems.org/
http://hanklords.github.io/flickraw/
http://quercus.caucho.com/
http://pear.php.net/

Lua Plugin

Lua is an especially lightweight multi-paradigm dynamic language, which shares many features with JavaScript, but
is nevertheless simpler to implement due to its minimalist design. The simple implementation allows for a register-
rather than stack-based virtual machine and famously fast performance. Sincerity implements Lua via |Luaj, which
outperforms even the standard Lua in many situations and allows integration with JVM libraries.

To install:

sincerity add lua : install
To start a shell:

sincerity lua

Fleshing Out

The shell can execute Lua files provides as arguments, and also evaluate inline scripts as arguments. Use “sincerity
lua -h” to see the command’s possible arguments. An example of an inline script:

sincerity create mycontainer : add lua : install : lua —e "print ’'Hello, world’"

Note that this “lua” command does not use Scripturian (page[B0), nor does it have access to any Sincerity APIs.
To run Lua files in Sincerity’s Scripturian environment use the “delegate:start” command (page 25).

Additionally, the plugin supports a “luac” command to compile Lua source files into portable Lua bytecode, and
a “luajc” command to compile into JVM classes.

Groovy Plugin

Groovy is a dynamic language with a syntax familiar to Java programmers, but with features inspired by Python,
Ruby and Smalltalk. It provides exceptionally good integration with libraries written in Java, such that any JVM
library is immediately also a Groovy library.

To install:

sincerity add groovy : install
To start shell:
sincerity groovy

Note that the Groovy plugin requires at least JVM 7 by default, because it depends on the invokedynamic
version of Groovy. If you need to run on JVM 6, you can switch to the non-invokedynamic version with the
following command:

sincerity exclude org.codehaus.groovy groovy—indy : add org.codehaus.groovy groovy install
Fleshing Out

The shell can run script files and also evaluate inline scripts as arguments. Use “sincerity groovy” to see the
command’s possible arguments. An example of an inline script:

sincerity create mycontainer : add groovy : install : groovy —e "println ’Hello, world’"

Note that this “groovy” command does not use Scripturian (page B0), nor does it have access to any Sincerity
APIs. To run Groovy files in Sincerity’s Scripturian environment use the “delegate:start” command (page [23]).

Clojure Plugin

Clojure is a modern Lisp designed for concurrency and performance. It is a superbly expressive language that
supports robust functional programming as well as other paradigms.
To install:

sincerity add clojure : install
To start a REPL:

sincerity clojure

31

http://luaj.org/luaj/README.html
http://groovy.codehaus.org/
http://clojure.org/

Fleshing Out

The REPL can run script files and also evaluate inline scripts as arguments. Use “sincerity clojure -h” to see the
command’s possible arguments. An example of an inline script:

sincerity create mycontainer : add clojure : install : clojure —e ’(println "Hello, World")’

Note that the REPL does not use Scripturian (page B0), nor does it have access to any Sincerity APIs. To run
Clojure files in Sincerity’s Scripturian environment use the “delegate:start” command (page 25).

Clojure has a very extensive ecosystem hosted on Clojars. It is a standard Maven-type repository that is
naturally supported by Sincerity, and attached by default if you use the “add clojure” shortcut. For example, let’s
install the flickr-clj, an API to access Flickr:

sincerity add clojure : add org.clojars.stanistan flickr—clj : install
A shortcut is also available for attaching Clojars explicitly:
sincerity attach clojars : attach maven—central

Note that many Clojars libraries also rely on Maven Central, so it’s a good idea to attach it as well. Both are
attached when you use the “add clojure” shortcut.

Feature Plugins

Sincerity Standalone Plugin

See also the redistribution plugin for a different approach to distribution.

Logging Plugin

This plugin makes it exceptionally easy to unify and configure your logging across a diverse set of technologies and
dependencies. In most cases, simply installing this plugin into your container should handle all logging with sensible
defaults. Should you need to customize and configure logging, you’ll find Sincerity’s scheme especially flexible and
powerful.

Though the JVM includes a standard logging API, in the “java.util.logging Interface” (“JULI”) package, the
greater JVM ecology has adopted a few incompatible standards. In particular, Apache Log4j, which was the
inspiration for JULI, enjoys broad support and a more robust implementation. Especially since Log4j 2.0, it
provides state-of-the-art scalability for high loads using innovative asynchronous handling. We’ve thus preferred to
use Log4j for our actual implementation, and rely on the excellent SLF4.J library for bridging JULI to it. SLF4J has
become popular enough that several libraries support it directly, so that we can avoid even the minimal overhead
introduced by bridging.

To install:

sincerity add logging : install

To initialize logging, you can execute the “logging” command from within your programs. An example in
JavaScript:

// Will do nothing if the logging plugin is not installed:
try { sincerity.run(’logging:logging’) } catch(x) {}

You can also test logging simply using the “log” command, which sends an “info” level message to the “sincerity”
logger:

sincerity add logging : install : log "This is a test!"

Logs will appear under the “/logs/” directory. By default, all loggers are appended to “/logs/common.log”, which
is a rolling log file with a size of 5MB per file, and a maximum of 10 files.

Note for Restlet users: If you're using the Restlet skeleton, it’s recommended to install the Restlet
skeleton logging add-on (page E3l), which adds a Restlet extension library that provides direct chute to
SLF4J.

High CPU usage? On some rare combinations of operating systems and JVMs, Log4j 2.0 (well,
actually the LMAX Disruptor] library it uses) may use too much CPU time, even when idle. You can

32

https://clojars.org/
https://github.com/stanistan/flickr-clj
http://logging.apache.org/log4j/
http://www.slf4j.org/
http://lmax-exchange.github.io/disruptor/

reduce CPU usage in these cases, at the expense of affecting the high-scalability profile, by using the
following JVM switch:

—DAsyncLoggerConfig. WaitStrategy=Block

Fleshing Out

“Officially,” Log4j configuration is based either on JVM properties files or XML. Both are hardcoded, inflexible and
difficult to scale. Sincerity’s logging plugin instead uses a powerful JavaScript-based scheme, which allows you to
dynamically configure your loggers according to your operating environment.

Configure your loggers under “/configuration/logging/loggers/” and your appenders under “/configuration/log-
ging/appenders/”. Any JavaScript file you add to these directories will be executed upon logging initialization.
Take a look at the defaults to get a sense of how this works: the |/sincerity/log4j/ library makes it especially easy
to use.

For example, here’s a definition of a rolling file appender:

var logFile = sincerity.container.getLogsFile(’main.log’)
logFile .parentFile . mkdirs ()

configuration .rollingFileAppender ({
name: ’main’,
layout: {
pattern: *%d: %5p [%c]| Yadin’
}

fileName: String(logFile),
filePattern: String(logFile) + " %i’,
policy: {

size: ’5MB’
s

strategy: {
min: 17,
max: 9’

H

Note that you can also use “official” Log4j configuration if you are more comfortable with it. If the file “/config-
uration/logging.conf” is present, it will be used. This file can either be a properties file, a JSON file, or an XML file
(in which case it must begin with the “<?xml” header). The plugin comes with an example “logging.conf” named
“logging.alt.conf”) which you can rename to “logging.cont” if you wish to use it.

The logging plugin also comes with a simple “log” command to test your logging configuration. Example usage:

sincerity log "Hello, log!"

Extras

In distributed environments, such as grids and clouds, you may prefer to centralize your logging. To aid this common
use case, Sincerity comes with two logging server solutions.

Log4j Server You can create a simple Logdj TCP-based socket server, which comes with the logging plugin:
sincerity create logserver : add logging : install : start logd4j—server

Note that we’re creating the Logdj server in a separate container, and starting it as a separate process.

On this Log4j server, you want to configure your actual appenders. Then, on all your client processes, you want to
disable all the appenders except the socket appender (“/configuration/logging/appenders/socket.js”). Uncomment
all the code there to enable it and make it the default root appender.

The result is that all logging messages will be sent from the clients to the server, where they will be actually
logged.

It’s recommend to run the Log4j server with Sincerity’s service plugin (page [B4):

33

http://threecrickets.com/api/javascript/?namespace=Sincerity.Log4j.Configuration

sincerity create logserver : add logging : add service : install : service log4j—server start

MongoDB Appender You can install a MongoDB-backed appender:
sincerity add logging.mongodb : install

To configure the MongoDB connection, edit “/configuration/logging/appenders/common-mongo-db.js”. By de-
fault, it connects to localhost at the default port (27017) without security, and logs to database “logs”, collection
“common”.

It is strongly recommended that you use a|capped collection|for your log. This guarantees both excellent write
performance as well as automatic rolling. You can create it from the “mongo” shell tool like so:

db.createCollection (’common’, {capped: true, size: 100000})
Or, convert an existing collection to capped:
db . runCommand ({ convertToCapped ’: ’common’, size: 100000})
This plugin also provides you with a very useful tool to “tail” your central log (works only with capped collections):
sincerity logtail
Press CTRL+C to quit. To test that this works, open another terminal and send a log message:
sincerity log "This is a test!"
You can provide “logtail” with the MongoDB connection parameters:

sincerity logtail —uri=localhost:27017 —username=admin —password=adminl23 —db=logs ——coll

Service Plugin

This plugin lets you easily start and control any program as a daemon or service running in the background.
This is achieved using Tanuki Software’s excellent Java Service Wrapper| (JSW). JSW deploys a native process to
monitor your daemon’s health, is able to detect failures and hangs, and restarts in such cases. It supports many
configuration options to control the JVM process, as well as JMX-based management for the wrapper. While you
can start any program using the “sincerity start” command, it is strongly recommended that you use this plugin
instead for production environments. It’s so well-designed, we wish it were included in the JVM!

JSW runs on an impressive array of JVM-capable operating systems: Linux, Mac OS X, Windows, Solaris,
ATX, FreeBSD, HPUX, z/0S and z/Linux, supporting several 32-bit and 64-bit machine architectures for each. Of
course, you do not want to install support for all of these platforms in your container, and so this plugin cleverly
detects the underlying operating system and downloads the necessary native libraries on-demand the first time it
is run. An error message will be displayed on unsupported platforms.

To install:

sincerity add service : install
To start a program as a daemon:
sincerity service myprogram start

The above assumes that you have a “/programs/myprogram.js” file. (Programs can be written in languages
other than JavaScript if they are installed in your container.) See the service wrapper’s log at “/logs/service-
myprogram.log”.

To stop the daemon:

sincerity service myprogram stop
To restart it:

sincerity service myprogram restart
To check its status:

sincerity service myprogram status

34

http://www.mongodb.org/
http://www.mongodb.org/display/DOCS/Capped+Collections
http://wrapper.tanukisoftware.com/

Additionally, you can run the wrapper in “console mode,” which outputs the wrapper’s log to the console, and
lets you easily stop it using CTRL+C. This is very useful for testing and debugging:

sincerity service myprogram console

Note that Sincerity uses the Community Edition of JSW, which is licensed under the GPL (v2). Make
sure that you understand the special implications of this license if you intend to redistribute your product.
Furthermore, some Windows platforms (64bit x86 and Itanium) supported by the Standard/Professional
Editions are not supported by the Community Edition. A commercial license is available for purchase
without these limitations. See the license guide for more information.

Fleshing Out

This plugin generates some parts of the JSW configuration on the fly, but it can furthermore merge your custom
settings into this configuration. To do so, edit “/configuration/service/service.cont”. In particular, you might want
to control the memory profile of your JVM, or configure the wrapper’s logging (which works independently of JVM
logging). See the JSW |documentation/ for a complete guide.

Additionally, this plugin provides a flexible way for you to send arguments to the wrapped JVM. Any files under
“/configuration /service/jvm/” with a “.conf” extension will be merged and added. The plugin comes installed with
a few sensible defaults, and additionally other plugins may add their own “.conf” files to support the service plugin.
These “.conf” files all support string interpolation using any JVM system property or environment variable. For
example, here’s a way to add garbage collection logging:

—Xlogge:{sincerity .container.root}/logs/gc.log
—XX:4+PrintGCDetails
—XX:4+PrintTenuringDistribution

It may furthermore be useful to run your Sincerity service as an operating system service. On Unix-like systems,
you can use a “system init script.” Below is a script template you may use, meant for the Restlet skeleton (page
E4). It adds a special “##+#” comment block used by Linux’s Standard Base (LSB) specification. Let’s name it
“/etc/init.d/restlet”:

#!/bin/sh

BEGIN INIT INFO

Provides: restlet

Required—Start : $local fs $remote fs $network $syslog

Required—Stop: $local fs $remote fs $network $syslog

Default—Start: 2345

Default—Stop: 016

Short—Description: starts the Restlet component

Description: starts the Restlet component using start—stop—daemon

44 END INIT INFO

SINCERITY=/path/to/sincerity /sincerity
CONTAINER=/path/to/container
SERVICE=restlet

OWNER=myuser

COMMAND=$1

sudo —u "$SOWNER" "$SINCERITY" use "$CONTAINER" : service "$SERVICE" "$COMMAND"
exit O

For consistency, make sure to change the “Provides:” entry to match the name of the file.

You can start/stop this service by running the above script directly, for example: “sudo /etc/init.d /restlet start”.
On some operating systems, you may also use your “service” command, for example: “sudo service restlet start”.

Make sure to edit the variables to point to the paths on your system. Note that the “OWNER” user will be used
to run your service, and that for security reasons you are strongly advised not to use “root”: it is best to create a

35

http://wrapper.tanukisoftware.com/doc/english/licenseOverview.html
http://wrapper.tanukisoftware.com/doc/english/properties.html
http://refspecs.linuxbase.org/LSB_3.1.1/LSB-Core-generic/LSB-Core-generic/initscrcomconv.html

special user for your service, and to set its permissions according to only what it needs: read access to Sincerity
and the container, and write access to the container’s “/cache/”, “/logs/” and other relevant directories.

To make your service start automatically when the system starts depends on your operating system. The above
script should work on most Linux-based operating systems due to the “###” comment block. To process this file
and the block, effectively installing the service into the operating system, run “sudo update-rc.d restlet defaults”.
That command uses “insserv” internally, so run “man insserv” to get documentation for the comment block format.

Extras

JMX is a powerful technology for remote monitoring and management of your JVM and applications. Local JMX
(using pipes) is automatically supported, however you may also need remote JMX over the network. To add it:

sincerity add service.remote—jmx : install

The default configuration is adequate for accessing JMX via SSH tunneling, which is very secure. To create the
tunnel, use the “-L” switch of SSH when connecting to your remote server:

ssh —L 1650:1localhost:1650 —L 1651:localhost:1651 mysite.org

Note that we actually create two tunnels, one for JMX on port 1650 and one for the RMI registry on port 1651.
With the tunnel in place, start VisualVM! (it’s included with the JDK), choose “Add JMX Connection,” and use
“localhost:1650” for the connection string. Note that you do not want to use “Add Remote Host”: tunneling makes
the remote host appear local. Of course, you will need to keep the tunnel open for as long as you’re connected with
Visual VM.

If this is your first time using Visual VM, it is recommended that you install its “VisualVM-MBean” plugin, which
will, among other things, allows you to access JSW’s bean (“org.tanukisoftware.wrapper”) for remotely restarting
your service.

You can configure remote JMX by editing “/configuration /service/jvm/remote-jmx.conf”. For example, you may
change the port numbers, enable authentication, and also SSL if you prefer it to SSH tunneling.

Important note if you are using a version of the JVM prior to 7u4: Unfortunately, old versions
of the JVM do not support the “com.sun.management.jmxremote.rmi.port” property, without which the
RMI registry port is assigned randomly, thus making it difficult to use SSH tunneling. To solve this
problem, this Sincerity add-on comes with a special “firewall-friendly-agent” library that allows for this
functionality. You must specifically enable it in “/configuration/service/jvm/remote-jmx.conf”.

Redistribution Plugin

This plugin lets you package your Sincerity container for convenient redistribution. See the Sincerity standalone
plugin for a different approach to distribution.

Currently, it supports creating a powerful cross-platform JVM-based graphical installer, using the excellent
IzPack! library. In the future, we hope to support additional distribution media.

To install:

sincerity add redistribution : install
To use:
sincerity izpack [application name]| [version (optional, defaults to "1.0")]
For example, in a single command let’s create an installable Nexus repository manager with a few plugins:
sincerity create nexus : add nexus : add logging : add service : add redistribution : install

The result will be an “installer.jar” file in your container’s root directory, which you can distribute. To install
your application from this jar:

java —jar installer.jar

(Note that on some desktop environments double-clicking this file would also run it.)
The installed directory will contain a convenient “uninstaller.jar”.

36

http://docs.oracle.com/javase/tutorial/jmx/
http://visualvm.java.net/
http://izpack.org/

Fleshing Out

To change the license, edit “/configuration/izpack/license.txt”.

The “/configuration /izpack/installer.xml” included with this plugin has sensible defaults that should work fine
for many use cases, but you’ll likely want to customize it. By default, it merges your Sincerity install in, and
excludes IzPack itself, as well as the “/cache/” and “/logs/” directory. This guarantees that it would “just work”
cleanly on any JVM with no pre-requisites.

Please see the [zPack documentation for full details. IzPack is very powerful, and can let you create modular,
flexible distributions.

Markup Plugin

Need to quickly render markup text into HTML? Markdown, Confluence, MediaWiki, Twiki, Trac, Textile and
Bugzilla Textile are all supported by this plugin. Markdown is supported by the |Pegdown engine, and the rest by
Mylyn WikiText. (While useful in itself, this plugin is intended to serve as a code example for using these libraries.)
The rendering engines themselves are not at first installed: the plugin will make sure that the engine you need
is available, and install it if it’s not, on demand.
To install:

sincerity add markup : install
To use:

sincerity render [language]| [marked up source path] [rendered output path]
For example:

sincerity render markdown README.md readme. html

Batik SVG Plugin

Need to quickly render SVG into PDF, PNG or JPEG? This plugin uses |Apache Batik to do so. (While useful in
itself, this plugin is intended to serve as a code example for using Batik.)
To install:

sincerity add batik : install
To use:

sincerity render [SVG source path]| [rendered output path]
The output path extension will determine the output type. For example:

sincerity render test.svg test.pdf

JsDoc Plugin

Uses lJsDoc Toolkitl
‘“9sdoc.sincerity”
See JsDoc template (page B0)).

Skeletons

You’ve most likely come to Sincerity for the skeletons: they provide the easiest way to get started with all kinds
of frameworks, servers and libraries, while Sincerity lets you easily add more features, more libraries and more
languages as your project grows.

37

http://izpack.org/documentation/installation-files.html
https://github.com/sirthias/pegdown
http://wiki.eclipse.org/Mylyn/Incubator/WikiText
http://xmlgraphics.apache.org/batik/
http://code.google.com/p/jsdoc-toolkit/

Web Platforms
e Prudence (page 46

e Restlet (page @)
e Jetty: static web (page [42))

e Jetty: servlet/JSP container (page 43])

Web Frameworks
e Diligence (page [47)
e Rails (page ET)
e Django (page [48)

Databases
e OrientDB (page Q)
e H2 (page HII)
Middleware
e Hadoop (page HQ)
e Solr (page B9)
o Felix (page [46])
e Nexus (page B8)

Nexus Skeleton

Sonatype’s Nexus repository manager is a recommended companion for Sincerity. At its most basic, it provides
you with a proxy for accessing remote repositories, such as the Three Crickets repository in which many Sincerity
packages are stored. Accessing repositories via a proxy provides you with much better performance and reliability.
Nexus is a very powerful tool, and learning how to use it well will can go a long way towards improving your
Sincerity experience.

With Sincerity, it’s a piece of cake to install a working Nexus instance:

sincerity add nexus : install

Give this a minute or two: Nexus has a lot of dependencies, though most are tiny.
To start the server:

sincerity start jetty

The default port is 8080, so point your browser to http://localhost:8080 to see your new Nexus repository
manager. The default user is “admin” with password “adminl23”. You probably want to log in and change that
password. Nexus provides a rich web-based interface and includes excellent documentation.

Note that the Nexus skeleton relies on the standard Jetty servlet skeleton, to which you can indeed install other
“contexts” (web applications).

Fleshing Out

You may want to change the default port from 8080, which you can do by editing “/server/connectors/default.js”.

Otherwise, the default configuration should be quite sensible. It includes support for the standard repositories
used by Sincerity, in addition to the Nexus defaults. Logging has also been configured to adhere to Sincerity’s
container structure, so that logs will appear under “/logs/”. Note that Nexus itself will not use Sincerity’s logging
plugin (page [32), but you can configure Nexus logging right in the user interface.

38

http://www.sonatype.org/nexus/
http://localhost:8080

Extras

Two plugins are strongly recommended: logging (page B2)) and service (page B4)). To install them:

sincerity add logging : add service : install

Note that the Nexus application uses its own logging implementation, which must be configured internally.
However, the logging plugin (page [B2) will be put to good use by the containing Jetty server.

The following command will install a Nexus repository with the recommended plugins into a Sincerity container
created in the current directory, and then start it a service:

sincerity create mycontainer : add nexus : add logging : add service : install : service jett
To stop it:
sincerity use mycontainer : service jetty stop

Solr Skeleton

Apache Solr/is a popular distributed textual search platform. It runs on the JVM and relies on the excellent Lucene
library for indexing and searching, but is accessed via simple network APIs, making it perfect for distributed
deployments and heavy loads. Client libraries are available for many platforms, and are even integrated into the
backends of many web development frameworks, such as Django and Ruby on Rails.

With Sincerity, it’s a piece of cake to install a working Solr instance:

sincerity add solr : install
To start the server:
sincerity start jetty

The default port is 8080, so point your browser to http://localhost:8080/solr/admin/ to see the main Solr
administration page.

Fleshing Out

The skeleton comes with the example configuration supplied with the official Solr distribution, and should serve as
a good starting point for the majority of project. The configuration is available under “/configuration/solr/conf/”,
and indexing and other data is stored in “/data/solr/”.

Solr is very configurable, both in terms of performance fine-tuning and language analysis and indexing. It also
enjoys a range of useful plugins. See the official site for more information on fleshing out your skeleton.

Extras

The logging plugin (page B2)) is strongly recommended. To install it:

sincerity add service : install

Note that the logging plugin (pageB2) is already included in the skeleton, because Solr relies on SLF4J.
The following command will install a Solr server with the recommended plugins into a Sincerity container created
in the current directory, and then start it a service:

sincerity create mycontainer : add solr : add service : install : service jetty start
To stop it:
sincerity use mycontainer : service jetty stop

39

http://lucene.apache.org/solr/
http://lucene.apache.org/
http://localhost:8080/solr/admin/

Hadoop Skeleton

Apache Hadoop|is a powerful platform for distributed computing, well known for its scalable distributed filesystem
and popular map-reduce module. It provides the underlying infrastructure for several data storage and analysis
platforms, such as Cassandral, HBasel, Hivel and Pig,.

Hadoop runs best on Linux, where it relies on native libraries. This skeleton detects the underlying architecture
and downloads the necessary native libraries on-demand.

With Sincerity, it’s a piece of cake to install a working Hadoop instance. Note that we need to format the node
first:

sincerity add hadoop : install : hadoop namenode —format

(Note that the “namenode -format” command exits the JVM when done, so you cannot chain more commands
after it.)
Then, to start the node:

sincerity hadoop start

If this is the only node in your Hadoop cluster, you will need to wait about 30 seconds for the services to fully
initialize. To test copying files to and from the Hadoop filesystem:

sincerity hadoop fs —put myfile.txt test.txt
sincerity hadoop fs —get test.txt test.txt

To stop the node:
sincerity hadoop stop

To see the status of the node services:
sincerity hadoop status

Note that Hadoop uses the logging plugin (page B2]) to manage the node services.

Fleshing Out

The skeleton comes with a plugin that supports the full list of Hadoop commands, and additionally supports “start”,
“stop” and “status” to manage the services.

All logs are under “/logs/”, and the data is stored in “/data/”.

To configure your instance, see “/configuration/hadoop/”. The default configuration is based on that of the
official Hadoop distribution| on ports 8000 (name node) and 8001 (job tracker). The logging configuration is based
on the logging plugin (page B2)), but its essential setup has likewise been copied over from the official distribution.

OrientDB Skeleton

OrientDBl is a powerful document- and graph-oriented (“NoSQL”) database server designed for scalability. As a
graph database, it supports the entire Tinkerpop stack, including the |Gremlin| graph traversal language, allowing
you to easily port your application between different database implementations. For users needing features from
traditional RDBMS, OrientDB also supports SQL and allows enforcing schemas on your collections.

If you’re interested in a more traditional RDBMS, check out Sincerity’s H2 skeleton.

The Sincerity OrientDB skeleton makes it easy to set up and run a single OrientDB instance, which can run on
its own or as a node in a multi-master cluster. To install an OrientDB instance:

sincerity add orientdb : install
To start the server:
sincerity start orientdb

The default web port is 2480, so point your browser to http://localhost:2480/studio/ to see the OrientDB Studio
application.
To start the console:

sincerity console

In the console, to connect to the demo “tinkerpop” database:

40

http://hadoop.apache.org/
http://hadoop.apache.org/hdfs/
http://hadoop.apache.org/mapreduce/
http://cassandra.apache.org/
http://hbase.apache.org/
http://hive.apache.org/
http://pig.apache.org/
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SingleCluster.html
http://www.orientdb.org/
http://tinkerpop.com/
https://github.com/tinkerpop/gremlin/wiki
http://localhost:2480/studio/

orientdb > connect remote:localhost/tinkerpop admin admin
orientdb> gremlin g.V[1]

Fleshing Out

The OrientDB plugin also supports a “gremlin” command to get a pure Gremlin console, though note you can also
run Gremlin code in the general OrientDB console by prefixing it with the “gremlin” command.

To configure your instance, start with “/configuration/orientdb/server.conf” (XML). The default “server.conf”
also references “database.conf” (JSON) and “hazelcast.conf” (XML).

Additionally, “properties.conf” (properties sheet) can be used to set JVM system properties used by OrientDB.

Databases will be stored in the “/databases/” directory in your Sincerity container.

Extras

Two plugins are strongly recommended: logging (page B2)) and service (page B4)). To install them:

sincerity add logging : add service : install

The following command will install an OrientDB node with the recommended plugins into a Sincerity container
created in the current directory, and then start it a service:

sincerity create mycontainer : add orientdb : add logging : add service : install : service
To stop it:
sincerity use mycontainer : service orientdb stop

H2 Skeleton

H2lis a lightweight-yet-powerful relational database management system (RDBMS). It can run both as a standalone
server (supporting a PostgreSQL compatibility mode), or embedded in your JVM program.

If you’re interested in non-relational (“NoSQL”) databases, check out Sincerity’s OrientDB skeleton.

The Sincerity H2 skeleton is specifically designed to make it easy to run H2 in standalone server mode. To
install an H2 instance:

sincerity add h2 : install
To start the server:
sincerity start h2

The default web port is 8082, so point your browser to http://localhost:8082/ to see the H2 Console application.
Note that the web console application is useful not just for H2: it be used to connect to any JDBC URI, as long as
you have the JDBC driver installed in your Sincerity container.

Fleshing Out

The H2 plugin supports all the tools that come with H2. You can use “sincerity help” to get a list of them. For
example, to create a cluster:

sincerity create—cluster \
—urlSource jdbc:h2:tcp://localhost:9101/test \
—urlTarget jdbc:h2:tcp://localhost:9102/test \
—user sa \
—serverList localhost:9101,localhost:9102

To configure your server, see “/configuration/h2/server.conf”. Lines that are not empty and do not begin with
“#” will be added as command line arguments to the “server” tool. In fact, you can create “.conf” files for all the
H2 tools if you wish to set default command arguments for them. For example, “create-cluster.conf”.

By default, databases will be stored in the “/databases/” directory in your Sincerity container. However, note
that H2’s JDBC URI allows you to access database stored anywhere in the filesystem. If this is a security concern,
you may want to consider running the H2 server in a locked-down operating system user.

41

O

http://www.h2database.com/
http://localhost:8082/

Extras

Two plugins are strongly recommended: logging (page B2)) and service (page B4)). To install them:

sincerity add logging : add service : install

The following command will install an H2 database server with the recommended plugins into a Sincerity
container created in the current directory, and then start it a service:

sincerity create mycontainer : add h2 : add logging : add service : install : service h2 star
To stop it:
sincerity use mycontainer : service h2 stop

Jetty Web Server Skeleton

Need a web server for static files? No problem:
sincerity add jetty.web : install

Jetty| is a very robust, modular web server with excellent asynchronous performance, and lots of features and
extensions. With this skeleton we’ve provided you with the lightweight, bare minimum dependencies to serve just
static files for a single web site.

To start you server:

sincerity start jetty

The default port is 8080, so point your browser to http://localhost:8080 to see the default welcoming page.

Jetty allows for much more sophistication than just serving a single web site, and for that we’ve provided a sep-
arate skeleton: “jetty.servlet”. That skeleton supports multiple “contexts” under the server, as well as configuration
of connectors, and of course servlets and web applications packaged as WAR files.

Additionally, Jetty is a recommended connector for Restlet. It’s available as a skeleton add-on, “restlet.jetty”.

The Jetty skeletons use Jetty 9.3, which requires a JVM of at least version 8.

Fleshing Out

Just put your files under the container’s “/web/” directory, using the usual rules for web servers: URLs are mapped
to file paths under “/web/”, and directory URLs are mapped to “index.html” files in that directory. MIME types
are automatically guessed according to the common filename extensions.

You can configure the server by editing “/configuration /jetty/default.js”. For example, you can change the port,
enable SSL, and also HTTP/2. Note that support for SPDY must be added as an “extra” (see below).

For SSL, the example comes with a self-signed key stored in a Java KeyStore (JKS) at “/configuration /jetty /-
jetty.jks”. You should use it only for testing! Otherwise, you will want to create or import your own key using the
“keytool” utility| that is bundled with most JDKs. Here’s how to create a new, unique key:

keytool —keystore jetty.jks —alias jetty —genkey —keyalg RSA

Such self-created keys are useful for controlled intranet environments, in which you can provide clients with the
public key, but for Internet applications you will likely want a key created by one of the “certificate authorities”
trusted by most web browsers. Some of these certificate authorities may conveniently let you download a key in
JKS format. Otherwise, if they support PKCS12 format, you can use keytool (only JVM version 6 and later) to
convert PKCS12 to JKS. For example:

keytool —importkeystore —srcstoretype PKCS12 —srckeystore mysite.pkcsl2 —
destkeystore jetty.jks

If your certificate authority won’t even let you download PKCS12 file, you can create one from your “.key” and
“.crt” (or “.pem”) files using [OpenSSL:

openssl pkecsl2 —inkey /path/mykey.key —in /path/mykey.crt —export —out mysite.
pkcsl2

(Note that in this case you must give your new PKCS12 a non-empty password, or else keytool will fail with an
unhelpful error message.)

42

http://www.eclipse.org/jetty/
http://localhost:8080
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://www.openssl.org/

Extras

Two plugins are strongly recommended: logging (page B2)) and service (page B4)). To install them:

sincerity add logging : add service : install

It is also possible to add HTTP/2| support: this protocol, supported by many web browsers, can improve the
user experience as well as reduce server load when using “https”.
To install support for HTTP /2, as well as the required ALPNI support:

sincerity add jetty.http2 : install

To enable ALPN, you need to specify your “alpn-boot.jar” in the JVM BOOT LIBRARIES environment
variable (page[12), for example:

JVM_BOOT_LIBRARIES=/path/to/mycontainer/libraries /jars/org.mortbay.jetty .alpn/alpn—boot/8.1.3
sincerity : start jetty

It’s a bit awkward, but necessary due to the way ALPN is securely implemented in the JVM.
The following command will install a web server with the recommended plugins into a Sincerity container created
in the current directory, and then start it a service:

sincerity create mycontainer : add jetty.web : add logging : add service : install : service
To stop it:
sincerity use mycontainer : service jetty stop

Jetty Servlet/JSP Skeleton

Servlets let you generate dynamic content for a web site, usually using the Java language. There is a very large
ecosystem of free servlets out there, including complete frameworks, that can help you develop dynamic applications.
To install a bare servlet skeleton, based on |Jetty:

sincerity add jetty.servlet : install
To start you server:
sincerity start jetty

The default port is 8080, so point your browser to http://localhost:8080. But, you won’t see anything yet:
this is a bare skeleton waiting for you to add your application to it. You might want to start by installing
“jetty.servlet.example” first.

Note that if you only intend to install Jetty as a simple web server for static files, then you can use a simpler
skeleton: “jetty.web”.

As useful as servlets are, we recommend you take a look at the Restlet skeleton (page [d4)) if you want to build
a dynamic web application in Java. And Restlet can use Jetty as its underlying connector.

And why stop there? Prudence (paged6l) builds on Restlet, letting you do all of that and more with your choice
of JavaScript, Python, Ruby, PHP, Lua, Groovy or Clojure. (Disclosure: Prudence has also been created by Three
Crickets.)

The Jetty skeletons use Jetty 9.3, which requires a JVM of at least version 8.

Fleshing Out

Jetty’s official distribution (which doesn’t rely on Sincerity... yet) is a perfect example of why Sincerity needs to
exist. “Official” Jetty configuration is a morass of XML files that effectively duplicate what a lightweight scripting
language, like JavaScript does far more comprehensibly and with far greater power. If you’re switching from “official”
Jetty, then you're in for a treat, as well as a sigh of relief.

Configuration is handled similarly to the Jetty web server skeleton (page@2)): in the same way, you can add SSL
and SPDY support.

Though Jetty can use the logging plugin (see below), it also supports its own internal logging mechanism for the
web (NCSAlstyle) log. To configure it, see “/server/services/web-log.js”. By default, these logs will appear under
the “/logs/web/” directory, and will be named according to the date.

43

https://http2.github.io/
https://en.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation
http://www.eclipse.org/jetty/
http://localhost:8080
http://en.wikipedia.org/wiki/Common_Log_Format

Extras

Two add-ons are available: “jetty.servlet.jsp” adds support for JSP (JavaServer Pages), and “jetty.servlet.jmx” adds
JMX support to your Jetty server, allowing you to manage it via VisualVM or JConsole. To install both add-ons:

sincerity add jetty.servlet.jsp : add jetty.servlet.jmx : install

(You can test JSP support in the example WAR below, at http://localhost:8080/test/jsp/\)
It is also possible to add SPDY]support: this protocol, supported by many web browsers, can improve the user
experience as well as reduce server load when using “https”. For instructions, see the Jetty web server skeleton (page

E3).
A nice example of a Jetty server with multiple contexts is also provided, which includes a static web server, a
servlet container, and a web application installed as a WAR file:

sincerity add jetty.servlet.example : install

(You can install this on its own, and it will pull in the basic skeleton as a dependency.)

The example “/server/contexts/servlet-example/” is the most elaborate: it shows you how you can drop in Java
source code for your servlets and have them compiled as the server starts.

Additionally, two plugins are strongly recommended: logging (page B2)) and service (page [34)). To install them:

sincerity add logging : add service : install

The following command will install the servlet examples with the recommended plugins into a Sincerity container
created in the current directory, and then start it a service:

sincerity create mycontainer : add jetty.servlet.example : add logging : add service
To stop it:
sincerity use mycontainer : service jetty stop

Restlet Skeleton

The Restlet library| (“Restlet” is a registered trademark of Restlet S.A.S.)) lets you dynamically generate web content,
but it goes beyond just responding to client requests: it lets you map RESTful resources to URIs, while handling all
the tricky HTTP mechanics involved (content negotiation, conditional HT'TP) and providing full, rich abstractions
for routing, filtering and data presentation.

To install the minimal skeleton:

sincerity add restlet : install
To start your Restlet component and its servers:
sincerity start restlet

The default port is 8080, so point your browser to http://localhost:8080.

Restlet, on its own, requires you to code in Java, but Prudence (page [4@) builds on Restlet, letting you do all of
the above with your choice of JavaScript, Python, Ruby, PHP, Lua, Groovy or Clojure. (Disclosure: Prudence has
also been created by Three Crickets.)

Fleshing Out

While Restlet requires you to write your resources in Java, there is no reason for your bootstrapping code—the
code that assembles your component, servers, clients, hosts and routes—to be so rigid. The API for boostrapping
your component is simple and elegant enough, but without Sincerity you would have to likely have to write it in
Java, or implement your own bootstrapping mechanism or use la DSLL

JavaScript, Sincerity’s natural language, provides a lightweight solution, and one that does not require you to
recompile anything when all you want to change is your configuration. Of course, once your component is up and
running, JavaScript plays no more role. We mention that in case you’re worried about performance, though you
shouldn’t be: the language engine is likely not the source of any bottlenecks in your application’s live performance.

The skeleton follows the network structure of Restlet, which in turn closely adheres to Roy Fielding’s original
terminology for Representational State Transfer (REST):

The “/component/” directory is the basis for your REST component.

44

instal

http://localhost:8080/test/jsp/
http://www.chromium.org/spdy/spdy-whitepaper
http://www.restlet.org/
http://www.restlet.com/
http://localhost:8080
http://code.google.com/p/groovy-restlet/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Under “/component/servers/” you can create files for HTTP servers bound to your component. See the
API documentationl The default is a single HTTP server is created on port 8080, but you can create additional
servers. The technology used for the servers is called a “connector,” and is pluggable in Restlet. Connectors cannot
be selected by API calls; rather, they are installed automatically if they are discovered in the classpath. By default,
the Sincerity skeleton for Restlet relies on Restlet’s internal connector, but it is not recommended for production
applications. See “Extras” (page M5l on how to install other connectors.

A quick and easy way to change the port for the default server is to set the environment variable is “REST-
LET PORT” (or the “restlet.port” JVM property):

RESTLET PORT—80 sincerity start restlet

Under “/component/hosts/” you can create files for virtual hosts. See the API documentation. The default host
has no filters, meaning that all requests from all servers will be routed to it. If you need several virtual hosts,
you will want to make the default host less inclusive, or do away with a default host entirely. (The default host is
merely a Restlet convenience and is not required for a component.) Applications can be attached to one or more
hosts (see below).

Under “/component/clients/” you can create files for clients supported by your component. See the
API documentationl As with servers, client technologies are “connectors” installed on the classpath. Each con-
nector handles a specific URI protocol, such as “http:”, “https:” and “file:”. The skeleton defines no clients by
default, but you can create files here for each client you need. Install the Restlet example (page M3 to see usage
of a “file:” client. (The “file:” client is required internally by the Restlet Directory resource.) Note that the Restlet
internal connector can handle “http:”, but not “https:”. To add support for “https:”, you can install the Apache
HttpClient connector (page [45]).

The “/component /services/” is used to configure Restlet services, such as ConnegService, TunnelService, En-
coderService, etc., but can be used for any additional work to be done before applications are configured. By default
only the LogService is configured.

Finally, “/component/applications/” is where you can create your Restlet applications. See the
API documentation. Though you can attach applications directly to your component, it is recommended that
you attach them to virtual hosts, even if it’s just the default host, as it allows you more routing flexibility. Also,
though there is no requirement to do so, most Restlet applications will probably have a Router| as their inbound
root. It is crucial that you understand how routing works in Restlet: from server, through host, through application,
through router, and finally to your RESTful resources. Please refer to the Restlet documentation for full details.
Note that the skeleton does not include any application by default, but one is available for you to install (page E3).

It may be useful during development to start only a few select applications. This can be done by providing the
application directory names you wish to start as arguments to the “start restlet” command:

sincerity start restlet restlet —example myapp

Alternatively, you can set the “RESTLET APPLICATIONS” environment variable (or the “restlet.applications”
JVM property) to a comma-separated list of application directory names:

RESTLET APPLICATIONS=restlet —example ,myapp sincerity start restlet

Extras
A simple example Restlet application, with a custom resource as well as static content:
sincerity add restlet.example : install

(You can install this on its own, and it will pull in the basic skeleton as a dependency.)

The example at “/component /applications/example/” shows you how you can drop in Java source code for your
resources and have it compiled automatically.

The skeleton does not install any connectors by default, relying instead on the default Restlet connectors. To
install the Jetty server connector, you have the choice of either Jetty 9.3 (requires JVM 8) or Jetty 9.2 (requires
JVM 7). For 9.3:

sincerity add restlet.jetty : install
For 9.2:
sincerity add restlet.jetty.legacy : install

45

http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/Server.html
http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/routing/VirtualHost.html
http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/Client.html
http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/service/package-summary.html
http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/Application.html
http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/routing/Router.html
http://www.eclipse.org/jetty/

It is possible to add HTTP /2 support to Jetty 9.3: this protocol, supported by many web browsers, can improve
the user experience as well as reduce server load when using “https”. For instructions, see the Jetty web server

skeleton (page [{3)).
To install the Apache HttpClient| connector:

sincerity add restlet.httpclient : install

Other shortcuts include “restlet.simple” (the Simple Framework server connector).
Additionally, two plugins are strongly recommended: logging (page B2)) and service (page B4)). To install them:

sincerity add restlet.logging : add service : install

(Note that “restlet.logging” is used here in preference over Sincerity’s “logging” plugin. The former depends on
the latter, but adds a Restlet library that provides a direct chute to SLF4J, which is more efficient than bridging.)

The following command will install the Restlet example with the recommended plugins into a Sincerity container
created in the current directory, and then start it a service:

sincerity create mycontainer : add restlet.example : add restlet.jetty : add restlet.logging
To stop it:
sincerity use mycontainer : service restlet stop

Felix Skeleton

Apache Felix]is flexible, straightforward OSGi (R4)| container.
To install:

sincerity add felix : install
To start the Gogo console:
sincerity felix
(You can also use “sincerity gogo” instead.) As an example, let’s install the web console via Gogo:

install http://archive.apache.org/dist/felix /org.apache.felix . http.jetty —2.2.0.jar
start 5
install http://archive.apache.org/dist/felix /org.apache.felix .webconsole —3.1.8.jar
start 6

In this example you may need to change the IDs in the “start” command to match the bundle IDs that Gogo
reports. Then, point your browser to http://localhost:8080/system/console/. The default user is “admin” with
password “admin”.

Prudence Skeleton

Prudencel is a platform on which you can build scalable web frontends and network services. It lets you write
your server-side code in JavaScript, Python, Ruby, PHP, Lua, Groovy or Clojure. Though minimalistic, Prudence
addresses real-world, practical web development needs, from virtual hosting and URI rewriting to state-of-the-art
server- and client-side caching. Your applications can support rich clients (AJAX), thin clients (pure HTML), and
happy mixes between the two.

Prudence is distributed exclusively as a Sincerity skeleton with a large collection of tightly integrated add-ons.
It is an extension of the Restlet skeleton (page [d4]), so the documentation there applies here. It is, in turn, the
underlying platform for Diligence (page ET).

Since version 2.0, Prudence is designed from the ground-up around Sincerity, and such provides the primary
example for how Sincerity can reform product distribution.

Historically, it was actually the other way around. Sincerity was designed by Three Crickets precisely in
order to make Prudence 2.0 sanely modular, building on many lessons learned while deploying Prudence
1.0 and 1.1. It was clear during development that there was nothing in the proposed solution that was
specific to Prudence. And so Sincerity was born as a generic tool useful for many JVM projects.

Quick start to see the Prudence example:
sincerity add prudence.example : install : start prudence

And then browse to http://localhost:8080/.

46

http://hc.apache.org/httpcomponents-client-ga/
http://www.simpleframework.org/
http://felix.apache.org/
http://www.osgi.org/Specifications/HomePage
http://localhost:8080/system/console/
http://threecrickets.com/prudence/
http://threecrickets.com/prudence/download/#sincerity
http://localhost:8080/

Diligence Skeleton

Diligence| lets you develop scalable data-driven web applications in server-side JavaScript, using [MongoDB]| as its
data provider and Prudence (page [46]) as its RESTful base. It features strong integration with client-side “AJAX”
notably [Ext JS and Sencha Touch, and clean-room integration with Facebook, Twitter, Google, etc. Services
include a scalable email notification system, robust sitemap generation (with special support for very large sites),
authentication and authorization, and support for several markup languages.

Diligence is distributed exclusively as a Sincerity skeleton, It is an extension of the Prudence skeleton (page [46])
and the Restlet skeleton (page @), so the documentation there applies here.

(Disclosure: Like Sincerity and Prudence, Diligence is developed by Three Crickets. The three products together
form a powerful web application stack on top of the JVM.)

Quick start to see the Diligence example:

sincerity add diligence .example : install : start prudence

And then browse to http://localhost:8080/diligence-example/. Note that the example expects an unprotected
MongoDB instance running at localhost.

Rails Skeleton

Ruby on Rails|, or just “Rails,” is a popular web development framework for the Ruby programming language. It
combines a traditional MVC approach with a RESTful orientation backed by relational database stores (MySQL,
Postgres). Rails enjoys the elegant, often-imitated, ActiveRecord ORM, and a powerful “scaffolding” feature that
automatically generates models, views and controllers to which you can add your code.

Rails is known to work very well on the JVM, but it can sometimes be painful to install everything and get it
running. The Sincerity skeleton can do it all for you with one command:

sincerity add rails : install

This may take a few minutes: Rails is quite massive.
To start you server:

sincerity start rails

The default port is 3000, so point your browser to fhttp://localhost:3000.
If you’re looking for a more strictly RESTful, minimalist alternative to Rails, while sticking to Ruby, take a
look at Prudence (page [6]). (Disclosure: Prudence has also been created by Three Crickets.)

Fleshing Out

The skeleton will create an application for you under “/app/”, so you don’t have to run “rails new” to create one.
Indeed, the correct way to start a new Rails project in Sincerity is simply to create a new container for it. That’s
the whole point of Sincerity!

The skeleton comes with a plugin to handle the “rails” tool for you, similarly to how Sincerity’s Ruby plugin adds
commands for common Ruby tools, such as “gem” and “rake”. The benefit of this approach is that you do not have
to explicitly change to the “/app/” directory to run the tool, and indeed you can chain it as is usual with Sincerity
commands. It should work identically to the usual “rails” command: simple prefix “sincerity” to it. Examples:

sincerity rails generate controller home index
sincerity rails generate scaffold Post name:string title:string content:text
sincerity rake db:migrate

Or as one Sincerity command:
sincerity use mycontainer : rails generate controller home index : rails generate scaffold Pc

A quick note: Ruby is a bit sluggish to start up on the JVM, which you will notice when running “rails”.
However, don’t let this worry you: once it’s up and running, your Rails application will perform marvelously.

And that’s it: from here on, it’s all standard Rails goodness. You can go ahead with the [tutorial, skipping step
3.2 (“Creating the Blog Application”).

MySQL, PostgreSQL and SQLite are all supported out of the box, identically to how Rails works on other
platforms.

If you need to access the Rails source code, you'll find it under */libraries/ruby/lib/ruby/gems/1.8/gems/”,
which is where all Ruby gems will be installed in your container.

47

http://threecrickets.com/diligence/
http://www.mongodb.org/
http://www.sencha.com/products/extjs
http://www.sencha.com/products/touch/
http://threecrickets.com/diligence/download/#sincerity
http://localhost:8080/diligence-example/
http://rubyonrails.org/
http://localhost:3000
http://guides.rubyonrails.org/getting_started.html

Extras

Though the “rails” tool does support a daemon mode, Sincerity’s logging plugin (page B2]) is far more powerful and
is strongly recommended. To install:

sincerity add service : install

The following command will install the Rails skeleton with the recommended plugins into a Sincerity container
created in the current directory, and then start it a service:

sincerity create mycontainer : add rails : add service : install : service rails start
To stop it:
sincerity use mycontainer : service rails stop

Note that Sincerity’s logging plugin (page B2) won’t do you much good out of the box, because Rails uses
Ruby’s logging system, not the JVM’s. However, it should be easy implement your own Ruby logger that delegates
to standard JVM logging if that seems exciting to you.

Django Skeleton

Django is a popular web development framework for the Python programming language. It relies on a traditional
MVC approach backed by relational database stores (MySQL, Postgres). Django enjoys a large ecosystem of drop-in
features and snippets, but already provides many features right out of the box. Much the appeal of Django is the
Python programming language: elegant, clean and supported by what must be the friendliest and most welcoming
community of any programming language.

There are many advantages for running Django on the JVM instead of on the CPython reference platform:
great performance, much improved scalability (there is no GIL in Jython), as well as access to any JVM library in
addition to Python libraries. Of course, Sincerity makes it extremely easy and transparent to add both kinds of
libraries as dependencies.

If you’re looking for RESTful, minimalist alternative to Django, while sticking to Python, take a look at Prudence
(page [0]). (Disclosure: Prudence has also been created by Three Crickets.)

Django can be difficult to install and get running on Jython, but of course it’s trivial with Sincerity:

sincerity add django : install

This may take a few minutes: Django is quite massive!
To start you server:

sincerity start django

The default port is 8000, so point your browser to http://localhost:8000.

Fleshing Out

The skeleton already has a minimal project ready for you under “/project/”, so you don’t have to run “django-
admin.py startproject” to create one. Indeed, the correct way to start a new Django project in Sincerity is simply
to create a new container for it. That’s the whole point of Sincerity!

However, if you need to access “django-admin.py”, it is located under your “/executables/” directory, so:

sincerity execute django—admin.py

Much of the work with Django involves running “manage.py”, which in this skeleton is located under “/projec-
t/manage.py”. You can run it easily, from anywhere in the container, with a handy plugin:

sincerity manage

Note that Python is a bit sluggish to start up on the JVM, which you will notice when running “manage”.
However, don’t let this worry you: once it’s up and running, your Django application will perform very well.

And that’s it: from here on, it’s all standard Django goodness. You can go ahead with the tutorial, skipping
the short “Creating a project” step.

Well, just one quick note: the database backend uses JDBC drivers (the JVM’s relational database interface)
instead of Python drivers, so the database engine names in your “settings.py” are a little bit different than in
the official tutorial. You’ll see the supported options commented in “settings.py”. JDBC drivers for MySQL and

48

https://www.djangoproject.com/
http://localhost:8000
https://docs.djangoproject.com/en/1.4/intro/tutorial01/

PostgreSQL are included in the skeleton, but you must install the Oracle JDBC driver on your own. Also note that
SQLite is not supported at this time.

If you need to access the Django source code, you’ll find it under “/libraries/python/Lib/site-packages/”, which
is where all Python libraries will be installed in your container.

Extras

Adding the service plugin (page B4)) is strongly recommended. To install:

sincerity add service : install

The following command will install the Django skeleton with the recommended plugins into a Sincerity container
created in the current directory, and then start it a service:

sincerity create mycontainer : add django : add service : install : service django start
To stop it:
sincerity use mycontainer : service django stop

Note that Sincerity’s logging plugin (page B2)) won’t do you much good out of the box, because Django uses
Python’s logging system, not the JVM’s. However, it should be easy implement your own Python logger that
delegates to standard JVM logging if that seems exciting to you.

OutOfMemoryError? Installing and starting Django in the same Sincerity command may exhaust
your JVM’s PermGen space. Try installing and starting via separate commands. For more tips, see the

FAQ (page [18]).

LWJGL Skeleton

The JVM is growing in popularity as a platform for game designers, due to its ability to easily have the game run
on many operating systems, as well as in browsers. Much of this growth is due to the excellent LWJGL library,
which makes easy to use hardware-accelerated features, such as 3D graphics and 3D sound, and to accept input
from gaming controllers. LWJGL relies on native extensions to the JVM, and supports Linux, Windows, Mac OS
X and Solaris. (This author’s favorite game, Minecraft) is based on it!)

To install the barebones skeleton:

sincerity add lwjgl : install
To start your game:
sincerity start lwjgl

This “Iwjgl” program will detect your operating system, install the relevant native binaries into the container
(if they aren’t already installed), and then start the “game” program... except that with this barebones skeleton,
there is no game to start (page B0)).

Fleshing Out

Create a “/programs/game.js” that starts up your game. If you want your game to be written only in Java, this
likely means delegating to your main class, like this:

sincerity .run(’delegate :main’, [’org.mycoolgame.Main’])

However, don’t rule out writing your game in JavaScript, or the host of other languages easily installable in
Sincerity! You can even “drop down” to Java when you some low-level work, and keep the main game logic in a
higher-level language.

This is especially useful if you want to provide a way for the community to provide plugins for your game: it
would make it easier for novice programmers to contribute, and also allow such plugins to be distributed as simple
text files. If you go this route, consider using Scripturian (page B0) to allow high-performance, muli-threaded
integration of the language engines.

49

http://www.lwjgl.org/
http://www.minecraft.net/

Extras
For something to play with, see the “lwjgl.example” add-on. It includes a simple Space Invaders clone:

sincerity add lwjgl.example : install : start lwjgl

Libraries

The Sincerity JsDoc Template
TODO
sincerity add jsdoc.sincerity : install

Note that you need to host the documentation via HTTP. File does not work.
See JsDoc plugin (page B7).

MongoDB JavaScript Driver

sincerity add mongodb.javascript : install

Part 111
Advanced Manual

Programming

Scripturian

TODO
See link.

The Sincerity JavaScript Library

Sincerity relies on JavaScript for bootstrapping and plugins, and while JavaScript does not have a standard library,
you do have access to the entire JVM standard library.

Still, this isn’t quite good enough: using JVM libraries works, but they do involve using paradigms that have
not been optimized for JavaScript.

For Sincerity, we decided that we can do better, and so we present you with a collection of useful code called
the Sincerity JavaScript Library. We should point out from the start that this is not a general-purpose JavaScript
library: it relies on the JVM libraries, and only works in the JVM. Included are also optimizations specific to the
Nashorn and Rhino JVM JavaScript engines.

What follows is a general introduction to the library. See the API documentation for full details. Also make
sure to check out Sincerity’s JsDoc plugin which makes it easy for you to generate similar documentation for your
own JavaScript codebase.

Note that the Sincerity Foundation Library is used by at least two other JavaScript frameworks: the Prudence
JavaScript Library, and the Diligence Framework, which builds on the Prudence JavaScript Library.

Objects Enhanced support for standard JavaScript types: strings, arrays, dicts and dates. This library monkey-
patches the standard types with many useful methods. See the Sincerity.Objects API documentation.

Classes This straightforward-but-powerful library lets you use the object-oriented programming (OOP) paradigm
in JavaScript. It lets you define classes with public and private members, inherit classes, and even provides a mecha-
nism for generation of constructors. Generally, the Sincerity JavaScript Library does not use OOP indiscriminately:
classes are used only when they make sense and add elegance. See the [Sincerity.Classes APT documentation.

30

http://threecrickets.com/scripturian/
http://threecrickets.com/api/javascript/?namespace=Sincerity.Objects
http://threecrickets.com/api/javascript/?namespace=Sincerity.Classes

Iterators Iterators let you write coherent code that can efficiently comprehend and operate on se-
quences of any size. Its design borrows stylistically from functional programming languages. See the
Sincerity.Iterators APT documentationl.

Files Low-level access to the filesystem, including high-performance reading and writing of files using memory-
mapped files. See the Sincerity.Files API documentation.

Templates Straightforward and flexible string interpolation. See the Sincerity.Templates API documentation.
Example:

println ("Hello, {user}’.cast({user: ’Sincerity’})

JSON High-performance JSON parsing and rendering using the |JSON JVM library, which is written in Java.
See the Sincerity.JSON API documentation.

XML High-performance XML parsing and rendering using the standard JVM libraries. See the
Sincerity.Objects API documentationSincerity. XML API documentation.

Calendar Enhancements to JavaScript’s standard Date type. See the Sincerity.Calendar API documentationl

Localization Easy access to the JVM’s localization libraries, including formatting for dates, times and currencies.
See the Sincerity.Localization APT documentation.

Cryptography Easy access to the JVM’s cryptography libraries, including shortcuts for common hashing, en-
cryption and decryption tasks. Sincerity.Cryptography API documentation

JVM Easy conversions between JVM and JavaScript types, and also access to a few operating system services.
Sincerity.Localization API documentationSincerity.JVM API documentation

Validation A general-purpose user input validation library for commonly used types, such as numbers and email
addresses. Sincerity.Validation API documentation

Mail Easy access to JavaMail, including sending of mixed-media plain-text/HTML emails. Uses the templates
library to let you easily create email templates. Sincerity.Mail API documentation

Lucene Easy access to the Lucene search engine. Supports the iterators library, so you can easily index very large
collections of documents. Sincerity.Lucene API documentation

Platform Access to features of the Nashorn and Rhino JavaScript engines, such as the call stack and exception
details. |Sincerity.Platform API documentation

Extending Sincerity

Developing Plugins
TODO

Make sure you understand that dependencies may be installed in arbitrary order.

document.require(’/sincerity /jvm/’)

try {
document . require (’/mongo—db/’)

} catch(x) { /* the dependency may not have been installed yet! */ }

o1

http://threecrickets.com/api/javascript/?namespace=Sincerity.Iterators
http://threecrickets.com/api/javascript/?namespace=Sincerity.Files
http://threecrickets.com/api/javascript/?namespace=Sincerity.Templates
https://github.com/tliron/json-jvm
http://threecrickets.com/api/javascript/?namespace=Sincerity.JSON
http://threecrickets.com/api/javascript/?namespace=Sincerity.Objects
http://threecrickets.com/api/javascript/?namespace=Sincerity.XML
http://threecrickets.com/api/javascript/?namespace=Sincerity.Calendar
http://threecrickets.com/api/javascript/?namespace=Sincerity.Localization
http://threecrickets.com/api/javascript/?namespace=Sincerity.Cryptography
http://threecrickets.com/api/javascript/?namespace=Sincerity.Localization
http://threecrickets.com/api/javascript/?namespace=Sincerity.JVM
http://threecrickets.com/api/javascript/?namespace=Sincerity.Validation
http://threecrickets.com/api/javascript/?namespace=Sincerity.Mail
http://threecrickets.com/api/javascript/?namespace=Sincerity.Lucene
http://threecrickets.com/api/javascript/?namespace=Sincerity.Platform

Eclipse Integration

TODO

Installing
http:/ /repository.threecrickets.com/eclipse/

Preferences

Using internal or external Sincerity installation.

Sincerity Projects
Converting to Sincerity

Adds the Sincerity nature.

Sincerity Classpath

Java projects only.

Sincerity Launch Configurations

Choose the program or URI.

Debugging
Breakpoints in Java Code

Breakpoints in non-Java Code

Packaging

There are two main reasons you would want to create Sincerity packages:

1. You’ve created a useful skeleton, skeleton add-on or plugin, which you would like to share with others for use

in their Sincerity containers. A package, of course, is the most natural way to do so. You could then host
your package on your own repository, or submit it for inclusion in other public repositories.

. Packages are very useful for deploying your application internally, especially in ephemeral “cloud” environ-
ments. Programmers working on different modules could package their results, using a clear versioning system.
You would then host the packages in your own private repository, using Nexus or even a plain directory. De-
ployment, including upgrades, would thus involve nothing more than running “sincerity install” on the relevant
containers. It also allows easy downgrading of applications, or setting modules to specific versions for testing
and debugging.

Note that “packaging” here refers specifically to creating Sincerity packages, which you can then install
into Sincerity containers as dependencies. If what you want is to distribute the entire container, then
see the Distribution Plugin, and also the Sincerity Runtime Plugin.

The Sincerity Packaging Plugin

...does not exist yet, as of Sincerity 1.0. This is something on our roadmap, and technically entirely viable. The
idea is to allow for a friendly GUI, as well as a strong CLIL.

Until then, you can use Maven, as detailed below. It’s slightly awkward, in that it requires editing complex
XML files, but for the purpose of creating simple packages it should be very straightforward.

92

How to

Create a Sincerity Package Using Maven

It’s relatively easy to use Apache Maven| to create a Sincerity package, with the help of the maven-assembly-plugin.
You can start with the following “pom.xml” file as a skeleton:

<?xml version="1.0" encoding="UTF-8"7>

<project

xmlns="http://maven.apache.org/POM/4.0.0"

xmlns: xsi="http://www.w3.o0rg /2001 /XMLSchema—instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven—v
<modelVersion >4.0.0</modelVersion>

<groupld>org.myorg.myapp</groupld>
<artifactld >myapp</artifactId >
<version >1.0.0</version>
<packaging>pom</packaging>

<name>My Cool Application </name>
<description>This is an application packaged for use with Sincerity.</description>

<dependencies >
<dependency >
<groupld>com. threecrickets .savory</groupld>
<artifactId >savory—framework</artifactId >
<version >1.0—betal </version>
</dependency >
</dependencies >

<build >
<directory >cache</directory >
<plugins >
<plugin>
<groupld>org.apache.maven. plugins </groupld >
<artifactld >maven—assembly—plugin </artifactId >
<version >2.2.1</version>
<executions>
<execution>
<id>jar </id>
<phase>package</phase>
<goals>
<goal>single </goal>
</goals>
<configuration >
<appendAssemblyld >false </appendAsseml
<archive>
<manifestEntries>
<Package—Folders>pack
</manifestEntries>
</archive>
<descriptors >
<descriptor >package.xml</desc
</descriptors>
</configuration >
</execution>
</executions>
</plugin>
</plugins>
</build >

33

http://maven.apache.org/
http://maven.apache.org/plugins/maven-assembly-plugin/

</project >
Some things you’ll want to customize:
e You can add as many dependencies as you like. Note that they can plain JVM jars, Sincerity packages,
Python packages, Ruby gems, etc.: anything supported by Sincerity. In this case, we are including the Savory

Framework, which is a Sincerity package (which in turn has dependencies). You can also have no dependencies
at all.

e Under <manifestEntries> you can add anything that adheres to the packaging specification (page Bal). For
example, you may want to call a package installation script, like so:

<Package—Installer >com. threecrickets .sincerity.Sincerity delegate:start /libraries/script

(If you do so, you’ll need a “libraries/scripturian /installers/myapp.js” file in your package, otherwise Sincerity
will report an error when trying to install it.)

e The <directory> is a work directory used by Maven for creating your final package. You may want to specify
it as “/tmp”. It is relative to the location of the “pom.xml” file.

e If you want to share your package in a public repository, you'd likely want to add additional information
about your package. Consult the Maven pom.xml guide for more options.

You will also need to create a “package.xml” file in the same directory:

<?xml version="1.0" encoding="UTF-8"7>

<assembly
xmlns="http://maven.apache.org/plugins /maven—assembly—plugin/assembly /1.1.2"
xmlns: xsi="http://www.w3.org /2001 /XMLSchema—instance"
xsi:schemalLocation="http://maven.apache.org/plugins /maven—assembly—plugin /assembly /1.

<id>jar </id>
<formats>
<format>jar </format>
</formats>
<baseDirectory>package</baseDirectory >
<fileSets >
<fileSet >
<directory >path—to—package</directory >
<outputDirectory >.</outputDirectory >
<includes>
<include ></include>
</includes>
</fileSet >
</fileSets >
</assembly >

You’ll want to change “path-to-package” to point to the base of your distribution directory. Note that it is
relative to the location of “package.xml” file, and must have the final directory structure you want in the Sincerity
container into which your package will be installed.

Note that you can create much more complex <fileSets> than this one. Consult the
assembly descriptor format documentation for more information.

You can now build and deploy your package into a local file repository by running the following Maven command
from the directory in which you have your “pom.xml” file:

mvn deploy —DaltDeploymentRepository=myrepo:: default :: file :/path—to—local —repository/

Note that if this is the first time you’ve run Maven, it will take some time to download all the necessary plugins
it needs. Consequent runs will be much faster.

Of course, you can also deploy to a repository server, such as Nexus, which you can easily install with Sincerity’s
Nexus skeleton. You can also configure Maven to always use a default target repository for deployment.

Maven is a complex tool that can do a whole lot more than this, but this should get you started.

[TODO: Add note about support for -SNAPSHOT]

o4

http://maven.apache.org/plugins/maven-assembly-plugin/assembly.html

Repositories

TODO
Sincerity can work with a any arbitrary repository for which it has the supported technology. That said, here’s
an overview of some repositories that you are most likely to work with:

The Three Crickets Repository
See link.

iBiblio/Maven Repositories

Python and PyPI (a.k.a. “The Cheese Factory”)
Ruby and Gems

PHP and PEAR

Community Repositories
Specifications

Sincerity Packages

Packages are collections of artifacts. They are defined using special tags in standard JVM resource manifests.
Additionally, packages support special install/uninstall hooks for calling arbitrary entry points, allowing for custom
behavior. Indeed, a package can include no artifacts, and only implement these hooks.

Packages allow you to work around various limitations in repositories such as iBiblio/Maven, in which the
smallest deployable unit is a Jar. The package specification allows you to include as many files as you need in a
single Jar, greatly simplifying your deployment scheme.

Note that two different ways are supported for specifying artifacts: they can specified as files, thus referring to
actual zipped entries with the Jar file in which the manifest resides, or that can be specified as general resources, in
which case they will be general resource URLs to be loaded by the classloader, and thus they can reside anywhere
in the classpath.

Also note what “volatile” means in this context: a “volatile” artifact is one that should be installed once and only
once. This means that subsequent attempts to install the package, beyond the first, should ignore these artifacts.
This is useful for marking configuration files, example files, and other files that the user should be allow to delete
without worrying that they would reappear on every change to the dependency structure.

The Manifest
Supported manifest tags:
e Package-Files: a comma separated list of file paths within this Jar.

e Package-Folders: a comma separated list of folder paths within this Jar. Specifies all artifacts under these
folders, recursively.

e Package-Resources: a comma separated list of resource paths to be retrieved via the classloader.
e Package-Volatile-Files: all these artifacts will be marked as volatile.
e Package-Volatile-Folders: all artifacts under these paths will be marked as volatile.

e Package-Installer: specifies a class name which has a main() entry point. Simple string arguments can be
optionally appended, separated by spaces. The installer will be called when the package is to be installed,
after all artifacts have been unpacked. Any thrown exception would cause installation to fail.

e Package-Uninstaller: specifies a class name which has a main() entry point. Simple string arguments can be
optionally appended, separated by spaces. The uninstaller will be called when the package is to be uninstalled.

For example, here is a “/META-INF/MANIFEST.MF” file:

35

http://threecrickets.com/repository/

Manifest —Version: 1.0
Package—Folders: package

All packaged files would be expected under the “/package/” directory inside the Jar.
Note that manifests can often be automatically created by packaging tools. See the Maven example (page B3)).

96

	I Basic Manual
	Introduction
	Principles
	Lather, Rinse, Repeat
	Why JavaScript?
	Comparisons with Other Solutions

	Tutorial
	Install Sincerity
	Working with the Command Line
	Working with the Graphical User Interface (GUI)
	Environment Variables
	Components
	Working with a VCS
	Working with Docker

	FAQ

	II Ecosystem
	Core Plugins
	Container
	Repositories
	Dependencies
	Artifacts
	Packages
	Delegate
	Templates
	Shortcuts
	Help
	Shell
	JavaScript Shell
	Java

	Language Plugins
	JavaScript Plugin
	Python Plugin
	Ruby Plugin
	PHP Plugin
	Lua Plugin
	Groovy Plugin
	Clojure Plugin

	Feature Plugins
	Sincerity Standalone Plugin
	Logging Plugin
	Service Plugin
	Redistribution Plugin
	Markup Plugin
	Batik SVG Plugin
	JsDoc Plugin

	Skeletons
	Nexus Skeleton
	Solr Skeleton
	Hadoop Skeleton
	OrientDB Skeleton
	H2 Skeleton
	Jetty Web Server Skeleton
	Jetty Servlet/JSP Skeleton
	Restlet Skeleton
	Felix Skeleton
	Prudence Skeleton
	Diligence Skeleton
	Rails Skeleton
	Django Skeleton
	LWJGL Skeleton

	Libraries
	The Sincerity JsDoc Template
	MongoDB JavaScript Driver

	III Advanced Manual
	Programming
	Scripturian
	The Sincerity JavaScript Library

	Extending Sincerity
	Developing Plugins

	Eclipse Integration
	Installing
	Preferences
	Sincerity Projects
	Sincerity Launch Configurations
	Debugging

	Packaging
	The Sincerity Packaging Plugin
	How to Create a Sincerity Package Using Maven

	Repositories
	Specifications
	Sincerity Packages

