
The Sinerity Manual

Version 1.0-beta14

Main text written by Tal Liron

July 26, 2015

Copyright 2011-2015 by Three Crikets LLC.

This work is liensed under a

Attribution-NonCommerial-ShareAlike 4.0 International Liense.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/


Contents

I Basi Manual 4

Introdution 4

Priniples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Lather, Rinse, Repeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Why JavaSript? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Comparisons with Other Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Tutorial 10

Install Sinerity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Working with the Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Working with the Graphial User Interfae (GUI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Working with a VCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Working with Doker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

FAQ 18

II Eosystem 18

Core Plugins 19

Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Dependenies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Artifats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Pakages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Delegate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Shortuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

JavaSript Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Language Plugins 28

JavaSript Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Python Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Ruby Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

PHP Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Lua Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Groovy Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Clojure Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Feature Plugins 32

Sinerity Standalone Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Logging Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Servie Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Redistribution Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Markup Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Batik SVG Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

JsDo Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2



Skeletons 37

Nexus Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Solr Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Hadoop Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

OrientDB Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

H2 Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Jetty Web Server Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Jetty Servlet/JSP Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Restlet Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Felix Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Prudene Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Diligene Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Rails Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Django Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

LWJGL Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Libraries 50

The Sinerity JsDo Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

MongoDB JavaSript Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

III Advaned Manual 50

Programming 50

Sripturian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

The Sinerity JavaSript Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Extending Sinerity 51

Developing Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Elipse Integration 52

Installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Preferenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Sinerity Projets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Sinerity Launh Con�gurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Pakaging 52

The Sinerity Pakaging Plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

How to Create a Sinerity Pakage Using Maven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Repositories 55

Spei�ations 55

Sinerity Pakages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3



Part I

Basi Manual

Introdution

Sinerity is a tool for deploying, installing and bootstrapping software staks on top of the JVM. It makes these

tedious tasks easy, simple and fun.

From the user's perspetive, Sinerity makes it easy to install omplete produts and staks, or individual mod-

ules and libraries, into portable �ontainers,� (page 12) whih are nothing more than straightforward �le diretories.

Aording to your preferenes and onstraints, you an use either Sinerity's pretty GUI (page 12) or the powerful

CLI (page 10).

From the provider's perspetive, Sinerity is distribution system: simply host your pakages in a �repository� (a

simple web site) and let Sinerity do the rest. Con�guration and bootstrapping of appliations is easily ontrolled

via simple JavaSript ode, and Sinerity's growing eology of plugins makes it espeially easy to add features suh

as entralized logging and robust daemons with surprisingly minimal fuss.

Sinerity was born of many years of experiene writing omplex software for the JVM. The rest of this hapter

summarizes this experiene and the problemati reality that made a tool suh as Sinerity neessary. If this sounds

dreary to you, feel free to skip to the tutorial (page 10) for now, and ome bak here later!

Priniples

After using used Sinerity for a while, you'll wonder how you ould ever have lived without it.

Indeed, Sinerity arrives after years of us having to repeat the same development and deployment tasks over and

over again for every new projet: download, unzip, opy, rename and on�gure, hopefully while staying organized as

to dependenies and versions. Solutions like Maven reate their own problems (page 9): �enterprise�-style omplexity,

enormous XML on�guration �les, and a Java-entrism that is beoming a burden as more of us are developing for

the JVM without Java.

We deided that enough was enough! Sinerity intends:

1. To simplify and unify the installation of JVM appliations, servies and libraries. You should never have to

download idiosynrati distributions and read through pages of installation instrutions. We aim for a simpler

reipe.

2. To simplify and unify deployment via the JVM. It seems that every appliation and servie has its own set

of bootstrapping sripts, servie wrappers, logging on�guration, diretory strutures, et. We an't entirely

smooth out the quirks, but we an make your deployment experiene onsistent.

3. To be language agnosti. The JVM is no longer the exlusive domain of Java. A rih eosystem of languages

has grown around it, and Sinerity lets you manage installation and deployment without ever having to write

or think in Java if you don't want to.

4. To be ulturally agnosti. The JVM is not the exlusive domain of enterprise appliations. If you think

and work like an agile tehnology startup, Sinerity is here for you.

5. To ultivate an eosystem. Three Crikets, the ompany behind Sinerity, maintains a olletion of quality

plugins that do all the above, and the list keeps growing. Developing plugins is a piee of ake and you're

strongly enouraged to develop your own using the straightforward API. This Sinerity Manual ontains

everything you need to know to get started.

Lather, Rinse, Repeat

The free software and open soure movements have utterly hanged how we develop software.

Reusable libraries had existed freely before, but these movements have reated a ulture of sharing, fueled by

viable business models, ulminating in an unpreedented wealth of solutions. For any problem you enounter in

your everyday development work there is likely a library out there to help you that you an download for free. �Your

mileage may vary,� as they say: quality may not always be up to snu�, and no warranty is provided, but the soure

ode is inluded and you an make it better, for yourself and for others. Importantly, it's relatively future-proof to

4



depend on free software: you an be ertain that your liense to use the library will not be revoked and that bugs

ould be solved, by you, by the ommunity, or by hired help.

(You do need to worry whether the software breaks any owned patents, but that problem exists for any software,

whether it's free or proprietary, from a third party or developed by you.)

This wealth of solutions also reates hallenges. There are several pakaging, versioning and delivery standards

for libraries. And when it omes to platforms and frameworks, there is no standard way to deploy software on top

of them. If your projet is a omposite of many of these, you will �nd yourself spending a lot of time making sense

of these various shemes and integrating them into a system that is maintainable by you in the long run. And if

your software is itself modular and redistributable, you will �nd yourself having to pik one of the many di�erent

methods, or inventing one of your own. So, when it omes down to it, while free software an save you a lot of time

and e�ort in terms of development, you end up spending extra e�ort on integration and maintenane. Annoyingly,

you'll �nd that muh of this work is repetitive, unneessarily so. If you're a programmer used to making ode

reusable, you'll may suh repetitive work espeially annoying.

When it omes to the JVM, a few produts have been widely adopted that make some of this work easier.

However, experiene has shown them to have too small a sope: they solve very spei� problems, but do not

address the omplete hallenge (page 9). Additionally, sine they are already a few years old, they predate the

linguisti revolution that is happening in full fore on the JVM: no longer is Java the only good hoie for leveraging

the platform. New and popular languages like Sala, Clojure and Groovy o�er a new experiene and ulture, while

Nashorn, Rhino, Jython, JRuby, Querus and Luaj bring popular languages and their paradigms to the JVM.

Indeed, sine version 7, the JVM has added support an opode (invokedynami) that annot be normally generated

by ompiling Java language ode: for the �rst time in its history, the JVM is made for languages that aren't Java.

With that in mind, Sinerity is designed from the ground up with multilingual support, whih means that not

only is knowledge of Java ode never required, but also that the ulture of dynami languages and their standards

are intrinsially supported: you an inlude dependenies from Ruby gems, Python's PyPI repository and PHP's

PEAR repository. Moreover, Sinerity has standard plugins that make installing and working with these dynami

languages espeially easy.

You might want to jump straight to the tutorial to see how it works, but you're also invited to stay here and

look at some of the development and deployment tasks that Sinerity takles.

Dependeny Management and �DLL hell�

How do you get a library working with your appliation? Let's see:

1. Find the library's web site.

2. Look for the �download� button.

3. Download the latest version: note that you want to write down all versions of all libraries you are using, so

that you an handle upgrades and possible on�its.

4. Open the distribution arhive: you want to be organized about this, so that you an �nd lienses, doumen-

tation, et., later on.

5. You need to make put the jar in your lasspath for the following environments:

(a) Your development environment: you might also want to link soure ode and doumentation if they are

available in the distribution.

(b) Your deployment environment: the appliation needs it to run, so you to need to somehow inlude the

�le in your bootstrapping sript.

() Your distribution, assuming you are distributing your appliation: this is optional, sine you might deide

not to inlude this dependeny, and to have the users download and install it themselves.

6. There might be on�guration �les (property �les, XML, et.)

(a) You might need to make di�erent versions of these for your di�erent environments.

(b) The on�guration �les might not be �exible enough for how your appliation runs, with too muh assumed

or hardoded, so you will need to either:

i. Doument this fat for the user to handle on their own.

5



ii. Generate the on�guration �les during your appliation's bootstrapping proess.

iii. Path the library to allow for the �exibility you require.

7. One in a while you want to hek for upgrades, whih might mean subsribing to an RSS feed or mailing list,

or just reminding yourself to hek the web site.

8. The library might have requirements, so you need to make sure to do all the above for them.

The above steps involve a lot of work. And what if you have 20 dependenies?

This is not a new problem, and there are already a few solutions for it. Firstly, there is a straightforward

standard for JVM repositories, iBiblio/Maven, whih is widely used by many projets. But it requires you to use

one of two tools: Ivy, whih does a good job of downloading dependenies (and is used internally by Sinerity), but

does nothing else, or Maven, whih is a sophistiated, heavyweight projet management tool with a steep learning

urve, and whih requires you to work entirely within its domain. We'll ompare these tools in more depth to

Sinerity later on, but for now let's just say that the former is too limited in sope, and the latter too onstraining.

There are also various di�ulties in on�guring these tools: Sinerity �just works,� immediately and easily, and also

handles bootstrapping and assists in on�guration.

There's also the problem of being fored in the JVM bubble: if you're using Jython, JRuby or Querus, then

you have to also work with the repository standards of Python (PyPI), Ruby (gems) and PHP (PEAR). Sinerity

is designed to support all of these standards.

Then there's the issue of potential on�its, a.k.a. �DLL hell�: What if one appliation you're working on

requires one version of a spei� library, and another appliation requires another? What if this happens within

di�erent parts of the same appliation? Again, there are standards and tools for this�OSGi and Jigsaw�but they

require you to work entirely within the paradigms they enfore. Sinerity doesn't stop you from using them (in

fat, it has great support for the Felix OSGi ontainer), but de�nitely does not fore you to play by any speial

rules. From the bottom up, Sinerity is designed to be as straightforward and universal as possible. See the detailed

omparison to OSGi below for more information.

Bootstrapping

The JVM is pakaged as a set of ommand line utilities, plus a few plugins for speialized environments. It does

ome with one simple way to distribute programs�exeutable JAR �les�but that would only su�e for the most

trivial programs.

For anything more omplex, you will need to handle bootstrapping your appliation. This means, at the very

least, �nding the right JVM on the mahine (more than one may be installed), and then loading the appliation

via the �java� tool. Usually, however, it ends up being far more ompliated: rummaging through environment

variables, deteting the host operating system and environment in order to set speialized JVM �ags and load

optimized native libraries, and beause this is so omplex, you'll want to responding to speialized bootstrapping

�ags set by the user. Indeed, many JVM-based produts won't �just run,� but will in fat require you to set a host

of environment variables �rst.

All this work happens before the JVM even starts. Thus, it's usually handled by writing a shell sript, whih is

almost always immediately runnable. Depending on how many operating systems you want to support, this may

mean, at the very least, writing one for *nix systems and one for Windows systems. This is highly speialized work,

and a development projet with its own hallenges, so some projets hoose to avoid sripts and develop native

binaries that handle bootstrapping. And then there are installer produts that purport to do this all for you.

And what if you want the software to run as a daemon, system servie, or ron job?

And what if your software is not just one program, but also ontains a set of tools that you also need to

bootstrap?

The bottom line is that bootstrapping is very hard to get right, and there are many ompliated approahes

to it. It's a shame that so many JVM produts keep trying to implement the same bootstrapping solutions from

srath. Sinerity streamlines this in two ways: �rst, by providing you with working shell sripts, and seond, by

having these sripts delegate the proess as soon as possible to a JavaSript program running in the JVM. One

on the JVM, Sinerity o�ers a range of installable plugins that handle various on�guration and deployment tasks,

inluding running the software as a daemon.

Why JavaSript and not a di�erent sripting language? We deal with the question in length below (page 8).

What this means is that most produts won't have to do anything beyond what Sinerity o�ers out of the box,

and those with speialized bootstrapping will be able to write portable JavaSript programs, instead of having to

deal with omplex shell sripting.

6



Con�guration and �XML hell�

Between bootstrapping and reahing full usability, your produt has to on�gure itself. Will you hoose a properties

�le? XML? Something else? And where is the �le loated?

Well, onsider that all the libraries you use had to make their own hoies for on�guration. A non-trivial JVM

produt ould thus require several on�guration �les, in di�erent loations, with di�erent on�guration rules.

But there's a more serious problem to most of these approahes: they are unneessarily rigid and stati. While

there are many advantages to using text �les for on�guration, the hoie of tehnologies is ba�ing. Possibly

the worst hoie is XML. This language, ostensibly a �markup� language, is marking up nothing when used for

on�guration: it's instead used as a umbersome format for strutured textual data. And it gets far, far worse:

XML on�guration �les are often used programatially in the JVM world, to onstrut JVM lasses and all JVM

methods. The best known, worst o�enders are Log4j and Jetty. There, XML is used as if it were a sripting

language, the lumsiest you have ever seen.

The use of XML for on�guration is part of what we all �XML hell,� whih refers to programmers being swamped

with ountless overly-verbose XML �les. XML is also often abused as an interhange format on the Internet, and

a desriptor format in muh of the JVM enterprise industry. Enough already!

The exuse for this insanity, one would guess, is that the ability to parse XML is standard on many platforms,

inluding the JVM. But, interpreting this XML is far more ompliated that just parsing it. In essene, parsing

a general-purpose XML for something like Jetty involves writing a omplete (more likely, not omplete enough)

sripting language engine. Another exuse for �XML hell� ould be part of the general over-enthusiasm with XML,

and the untested faith that standardizing on a single format would lead to greater interoperability. Again, this is

madness: unless you ouple the XML �le with the ode that an make sense of it, the ability to parse them is of

little use.

Another approah, better than XML, is to reate a Domain-Spei� Language (DSL). But DSLs require a lot

of work, both by developers and by users who must learn them.

Sinerity is here to stop the madness: wherever possible, it standardizes on using JavaSript for on�guration.

(Why JavaSript? We deal with the question in length below.) With JavaSript you an instantiate objets, all

methods, insert onditionals and loops using natural programming paradigms, instead of shoe-horning them into

XML. At its simplest, a JavaSript on�guration �le an look idential to a simple properties �le: straightforward

assignments of values to on�guration parameters. But, you also have the option of injeting interpreted ode where

appropriate. And, of ourse, it's still just text �les that don't need to be ompiled, and an even be piked up and

re-interpreted at runtime, so you're still absolutely within the �on�guration-by-text-�le� paradigm.

If you've never tried the �on�guration-by-sript� approah before, you might be skeptial about its bene�ts or

worried about the extra weight it adds. But Sinerity's JavaSript engine is very lightweight, and we're onvined

that one you try this approah, you will avoid all others. For an instrutive example, install Sinerity's logging

plugin (page 32), and take a look at the logging on�guration �les. Now ompare them to the �o�ial� Log4j

formats.

One onsequene of this approah is that the line between bootstrapping and on�guration gets blurred. They

end up as one integrated phase: a bunh of JavaSript programs strapped together. This leads to both simpli�ation

and greater �exibility for you. This approah leads to exeptionally dynami on�guration systems that an adopt

to any operating environment.

We really hope to see �on�guration-by-sript� used throughout the JVM world, even for projets that do not

want to or annot use Sinerity.

Logging

The JVM has a few good, widely-used logging APIs, as well as a great glue library�SLF4J�that an bridge

between them. But there's quite a bit of work involved in getting all these libraries working together. It seems that

every JVM produt has its own way of doing this. Logging is important, and an't be relegated to an afterthought:

if it's not properly on�gured and well integrated, it's lose to useless.

Sinerity takes logging very seriously: it provides a plugin (page 32) that does muh of the work for you, and

extensions that further enhane logging. For example, one extension funnels all logs to a entralized MongoDB

olletion, perfet for distributed loud deployments. And this system will work with pratially any JVM library.

Note that logging on�guration is handled via the �on�guration-by-sript� approah mentioned above, and is

well integrated with the whole eology of Sinerity plugins.

7

http://www.slf4j.org/
http://www.mongodb.org/


Why JavaSript?

There are many great sripting languages for the JVM. Note that by �sripting� here we mean that these languages

are immediately runnable from the textual soure ode. This doesn't have to mean that they are �interpreted�: many

of these languages ompile some or all of your ode on-the-�y. So, why has Sinerity standardized on JavaSript,

rather than Groovy, Sala, Clojure, Lua, Python, Ruby or others?

There's no single answer, but rather a ombination of fators that make JavaSript attrative:

1. JavaSript is very well known. Sine its original introdution into web browsers, and universal adoption as a

web standard, it has gained an enormous skill share in the industry. There's a wealth of eduation material

available for it.

2. Its implementations are relatively lightweight, in that JavaSript is both fairly minimal linguistially, and also

does not have anything like a standard library, of the kind you would �nd in Python and Ruby. This allows

Sinerity to have a muh smaller footprint than if it were to use Jython, JRuby or even Groovy. Note that

not having a standard library an also be seen as a disadvantage, but in the ase of Sinerity it's dealt with

in two ways:

(a) Sine we are running JavaSript on the JVM, we have full aess to the Java standard library.

(b) Sinerity omes with the Sinerity JavaSript Library (page 50) a very lightweight framework that makes

working with JavaSript on the JVM a little bit easier.

3. JavaSript is very future-proof: not only is it an open standard (where it's alled �ECMASript�), but it is

baked into the JVM (from version 8) as the Nashorn engine.

4. JavaSript is atually a nie language. It has been the target of a lot of negativity from programmers

who had to work with it in browser environments, but we believe the fault is more of the environment (the

browser DOM's poor API and many annoying di�erenes between various browser implementations of it) than

the language itself. It enourages prototype-oriented programming, whih an easily emulate objet-oriented

programming, as well as other paradigms. In fat, JavaSript shares muh of its soping and funtion handling

with Sheme, a language that is generally admired. You an think of it this way: JavaSript is Sheme with

a C-like syntax.

Despite these general advantages, you might still prefer to use another sripting language for your own work.

Lukily, Sinerity, with the help of the Sripturian library (page 50), will let you write plugins in Python, Ruby,

PHP, Lua, Groovy or Clojure. The only disadvantage is that you would have to inlude the appropriate language

engine as a dependeny. In the interest of keeping Sinerity and its eology of plugins lean and mean, we want to

enourage the use of JavaSript for plugins that are intended to be shared with the ommunity.

Just to be 100% lear: this preferene for JavaSript only applies to Sinerity plugins, on�guration sripts,

and skeletons: you are de�nitely welome to write your appliation in whatever language you hoose. In fat,

Sinerity ontains great plugins for many popular JVM languages, as well as skeletons for omplete language-

spei� frameworks, suh as Django and Rails.

JavaSript vs. Shell Sripting

This setion is meant for those of you who are omfortable with shell sripting, and are wary about Sinerity's use

of JavaSript for bootstrapping.

1. You might think that shell sripting would always be more portable than a sripting language running inside

the JVM. But, think again: the point of your bootstrapping work is to get into the JVM, in order to run your

appliation. If that doesn't work, then your whole appliation won't run, and portability is moot. Sinerity

does have shell sripts, but they're designed to delegate to the JVM as soon as they an.

2. You might be onerned about startup delay: starting up the JVM with all the JavaSript engine lasses is

muh slower than starting up a shell sript. This is true, no doubt, but sine version 7 the JVM is doing

better. Also onsider that you have to get into the JVM anyway for your appliation to do anything useful.

Still, if your appliation has a lot of tools that do not always require the JVM, and would be adversely a�eted

by the JavaSript bootstrap times, then by all means write them as shell sripts! You an use all of Sinerity's

other features when you need them.

8

http://openjdk.java.net/projects/nashorn/


3. Shell sripts treat most of your program as an opaque, blak box. But with JavaSript running in the JVM

you an all parts of your API before the appliation truly starts. This an allow for muh more powerful,

dynami bootstrapping.

4. JavaSript is likely riher than your shell language. Sure, bash 4.0 and PowerShell are a leap forward ompared

to what we had 20 years ago, but they're still quite onstriting.

Comparisons with Other Solutions

Sinerity vs. Maven

Apahe Mavenis a omprehensive solution for managing Java projets, handling building, dependeny management

and distribution. It ontrastingly ombines a lot �exibility on the one hand�an open plugin API built on the Plexus

IoC ontainer�with deliberate rigidity on the other hand: a strit reator-based, multi-phase yle. In partiular,

Maven's design goes to great lengths to keep you from a�eting the order of operations: you are supposed to

on�gure your projet, and let Maven deide what to do when. For those used to sripting their build proess,

this approah may initially seem ba�ing and restriting. However, there are signi�ant bene�ts to this approah

when working with very large, omplex projets: instead of oding and maintaining nightmarishly long build sripts

based on dozens of hanging environment variables, you an sit bak and let Maven analyze the entire operation

and then do the right thing.

But, for this to work, you need to play by Maven's rules, and that's where things get triky. Small deviations

from the strit assumptions Maven makes throw you down the rabbit hole of plugins and haks, as you struggle to

shoe-horn a simple proedure into a produt that abhors proedure. Spei�ally, Maven's ideal environment is one

in whih your versioned modules are written in Java mapped to single jar �les. Anything even slightly di�erent

beomes painful and haky.

Both Sinerity and Maven handle downloading dependenies, but other than this apparent overlap these produts

have di�erent goals and sope. Importantly, they an be very omplementary. One way to think of this is that

Maven ould ome �rst and Sinerity ome seond: Maven ould help you build your projet and repositories, while

Sinerity would handle your deployment ontainer. Maven won't help you run your appliation: its output is jars of

ompiled ode, soure ode or doumentation, and it doesn't handle their bootstrapping or runtime on�guration.

On the other hand, Sinerity does not build your projet, nor does it make any assumptions about how its built:

you an use Maven, Ant or anything else.

Sinerity vs. OSGi

An �interfae� in the JVM lets you reate a standard protool, suh that you an plug in various implementations

of it��lasses,� with �methods� as the entry points�at runtime. The protool is enfored by the JVM, whih will

not let you plug in implementations that do not �t the interfae. OSGi takes this up a level, by providing a muh

broader onept of �implementation.� The implementation is a �bundle� that an ontain any number of lasses.

So far so good, but it gets ompliated fast. OSGi takes it up one level more: the protools are published and

endorsed by a ommunity of providers, with the idea that di�erent providers (software vendors or departments in

a large enterprise) an provide bundles to implement them, whih would all work together perfetly. With this

broader ambition, �DLL hell� suddenly beomes a far more malevolent enemy: bundles are often blak boxes that

you annot easily path to use a shared version of a dependeny. There's thus a real need for a standard solution

of runtime ode ompartmentalization, whih OSGi provides via a lever system of lassloaders.

. . .Whih, of ourse, introdues its own set of problems. To get its lassloading sheme to work, OSGi requires

strit separation of lassloading between bundles, whih in turn adds subtle and mishievous restritions to your

usual JVM work. This is not entirely bad: working within these limitations does enourage lean, sharp boundaries

between your modules, and goes a long way towards reduing lassloading onfusion. It's not, however, trivial by

any means, and all your bundles must be designed with this in mind for OSGi to work properly.

One very useful side e�et of having the framework ontrol lassloading is that entire bundles an be loaded and

unloaded during runtime. Indeed, OSGi de�nes protools for starting, stopping and hotswapping servies. This is a

powerful feature in itself, and is indeed the entire motivation for using OSGi in some ases. (Though, if that's your

reason, you might want to look at other, simpler ways to enable hotswapping, rather than embraing the whole of

OSGi.)

It's worth noting, however, that there is a more straightforward solution to the problem of �DLL hell�: Why not

run eah �bundle� as a separate proess? Eah JVM would load its own lasses as neessary, and never will they

mix or on�it. This makes a lot of sense if you're running a distributed system, sine you're already dividing your

9

http://maven.apache.org/


software among many mahines and proesses, and indeed many parts of your appliation may not be JVM-based at

all, and an't be run in a single proess anyway. As for starting and stopping your �bundles,� the operating system

already does a good job of managing proesses, so you don't need OSGi's protool for that. From this perspetive,

you an see that OSGi is, in e�et, reating a virtual operating system inside the JVM, where �bundles� are very

muh like operating system proesses.

Indeed, the original target environment for OSGi was preisely one in whih all bundles ran in a single proess,

in shared memory spae: it is the world of embedded omputing, where the runtime is variously on�ned, suh that

you are either limited to a single proess due to limited resoures or seurity onerns. In suh environments OSGi

may be your only good solution for the problem of modularity and pluggable servies. Still, OSGi has also proved

popular in large enterprise environments, where it allows for modules to be treated more abstratly whether or not

they are running in a single proess.

Sinerity, in itself, takes the more straightforward approah: suh high-level modularity is provided through the

notion of �ontainers,� whih you an easily reate, lone and hange, and start and stop as proesses, spei�ally

the servie plugin (page 34) makes it espeially easy to run them as daemons and servies. Containers an then

talk to eah other (and to other servies) using whatever tehnology is appropriate, be it REST, SOAP, message

queuing, Hazelast, et. That said, OSGi may indeed be appropriate for your projet, and Sinerity provides a nie

Felix plugin to get you up and running. The point being that Sinerity was designed to be neutral to the tehnology

of modularity, introduing no speial restritions for users that do not need them.

Tutorial

Install Sinerity

You need a JVM, at least version 6.

If you're an Ubuntu user, then use our repository! It would do everything for you.

Otherwise, download a Sinerity distribution. If you're download the Zip distribution, unpak the folder, and

put it in any standard loation, for example:

• Unix: �/opt/sinerity�

• Windows: �C:\Program Files\Sinerity�

• Ma OS X: �Appliations�

You an then run the �sinerity� sript (Unix and Ma) from there or �sinerity.bat� (Windows).

You might want to add the Sinerity path to your system path, to allow for easy aess from the ommand line.

In Linux, you an do this by adding the following line to your user's .bashr �le:

PATH=$PATH:/ opt / s i n  e r i t y

Working with the Command Line

If you run Sinerity with a Graphial User Interfae (GUI) (page 12) using �sinerity gui�. However, it's strongly

reommended that you learn how to use the ommand line. Here are the main priniples:

1. All Sinerity ommands exist within �plugins.� The full name of a ommand is its plugin name, with a olon,

and then the ommand name within the plugin. For example, �ontainer:reate� is the �reate� ommand

within the �ontainer� plugin. Use �sinerity help� to list all available ommands from all plugins. Many

ommands support ommand line arguments, both required and optional. See the ommand doumentation

for full details.

2. As a short form, you an use only the ommand name. However, this will only work if there is no ambiguity,

meaning that the same ommand does not exist in more than one plugin. For example, �reate� will be

equivalent to �ontainer:reate� if no other plugin has a �reate� ommand. Also note that the full form of

the �help� ommand is �help:help�. (Plugin developers are enouraged not to use ommand names that would

on�it with the ore plugin ommands, suh as �reate�, �add�, �install�, et.)

3. Some Sinerity ommands an only be run while pointing to a ontainer. Generally, it's useful to run Sinerity

when the urrent diretory is somewhere in the ontainer. There are a few rules to onsider:

10

http://threecrickets.com/sincerity/download/


(a) Sinerity an only point to one ontainer at a time.

(b) You an hange the ontainer or expliitly point to one using the �ontainer:use� ommand (page 19).

() Otherwise, Sinerity will attempt to �nd for a ontainer in the following order:

i. The �sinerity.ontainer.root� JVM property

ii. The �SINCERITY_CONTAINER� environment variable

iii. Searh up �lesystem tree from urrent path looking for a diretory that has a �.sinerity� subdiretory

4. Sinerity's urrent set of available plugins, whih a�ets the set of available ommands, is a ombination of

both the plugins available in the Sinerity installation as well as those available in the urrent ontainer.

5. You an hain ommands together using �:�. Command hains are used extensively in Sinerity.

(a) Note that a single ommand hain an hange the urrent ontainer multiple times. For example:

s i n  e r i t y use onta ine r1 : i n s t a l l : s e r v i  e s t a r t web−s e r v e r : use onta ine r2 : l og " t e s t l og message"

(b) Considering the above, note also that eah time you swith ontainer within a ommand hain the set

of available plugins and ommands hanges, mathing whatever is the urrent ontainer at the time.

() Also keep in mind that a single ommand hain is always run within the same JVM. Sinerity ahieves

JVM lassworld separation by swapping lass loaders when it hanges ontainers. If this behavior is not

desired, you should avoid haining and run your ommands using separate �sinerity� ommand lines.

6. If an argument begins with a ��� harater, it will be interpreted as a shortut, and searhed for in the urrent

ontainer's �/on�guration/sinerity/shortuts.onf� �le. If found, it will be expanded to the ommand de�ned

there.

(a) Expansion to a ommand hain is allowed, as well as reursive use of shortuts. For example:

s i n  e r i t y use onta ine r1 : �mv : s t a r t r e s t l e t

Would expand to:

s i n  e r i t y use onta ine r1 : add mongovision : i n s t a l l : s t a r t r e s t l e t

If the following entry is in �shortuts.onf�:

mv = add mongovision : i n s t a l l

(b) Some ommands support impliit use of shortuts without requiring the ��� pre�x. Spei�ally, the

�dependenies:add� and �repositories:attah� ommands will searh for shortuts with the �add#� and

�attah#� pre�xes respetively. For example:

s i n  e r i t y add mongovision

Will expand to:

s i n  e r i t y attah three− r i  k e t s : add om . t h r e e  r i  k e t s . mongovision mongovision

If the following entry is in �shortuts.onf�:

add#mongovision = attah three− r i  k e t s : add om . t h r e e  r i  k e t s . mongovision mongovision

From here, you an ontinue reading about the ore plugins (page 19) to learn about all the essential ommands.

11



Working with the Graphial User Interfae (GUI)

Sinerity has a Swing-based GUI that displays information about your ontainer and lets you perform operations

on it. It an be used instead of the CLI, though eah interfae has its own strengths. The GUI is espeially useful

for displaying data, suh as the dependeny tree struture.

Sinerity provides the GUI frame, but the ontents are provided by plugins. This means that the whole GUI

would look di�erently aording to whatever is the urrent ontainer and what plugins it has installed. For this

reason, when you hange ontainers from within the GUI, it will restart.

If you run �sinerity� without any ommand, it will default to running �shell:onsole� (page 27). You an also

start the GUI via the �shell:gui� ommand (page 27). For example:

s i n  e r i t y use onta ine r1 : gu i

A riher onsole, in whih you an use full JavaSript, is available via the �jsshell:jsonsole� ommand (page 27).

If you are designing your own Sinerity plugin, it is strongly reommend that you inlude GUI support if

appropriate via the optional gui() entry point.

Environment Variables

The �sinerity� sript will try to �nd your operating system's default JVM and your Sinerity installation. You an

modify its behavior using the following environment variables:

• SINCERITY_HOME: The root of the Sinerity installation to use. If not provided, will automatially disover

it aording to atual (not symlinked) loation of the sript �le.

• SINCERITY_JAVASCRIPT: To fore the JavaSript engine to either �Nashorn� or �Rhino�.

• SINCERITY_CONTAINER: The path of the ontainer to use. If not spei�ed, will searh up the �lesystem

tree from the urrent path. See also the �ontainer:use� ommand (page 19).

• SINCERITY_DEBUG: An integer speifying the internal debug level. Higher numbers will display more

debugging information. Defaults to 0.

• JAVA_HOME: The root of the JVM installation. If not provided, will use a platform-spei� heuristi to

disover it.

• JAVA_VERSION: Used only in Darwin (Ma OS X). Defaults to "CurrentJDK".

• JVM_LIBRARIES: Extra libraries to add to the lasspath.

• JVM_BOOT_LIBRARIES: Extra libraries to prepend to the boot lasspath (-Xbootlasspath/p).

• JVM_SWITCHES: Extra swithes to add to the JVM ommand.

Components

Before detailing the ore plugins and ommands in the next hapter (page 19), it's important that you understand

a few basi omponents:

Container

A set of �les implementing a self-ontained JVM-based exeution environment managed by Sinerity and by you.

The ontainer has a root path, under whih it may have a diretory struture of any depth. Libraries, binary

exeutables, on�guration �les, temporary work �les and logs are all by default stored within the ontainer.

Why suh an emphasis on self-ontainment? One goal is for the ontainer to be deployable anywhere as a whole,

simply by opying the diretory elsewhere. Another goal is for the ontainer to be a useful playground: you an

install and try out various appliations and libraries without a�eting your operating system. You an undo you

work simply by deleting the ontainer's diretory.

It is possible and sometimes useful to break this priniple of self-ontainment by using symboli links.

Below are some a few standard ontainer subdiretories used by the ore plugins. Other plugins and skeletons

may add more subdiretories.

12

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/java.html


/.sinerity/ Reserved for Sinerity's internal use. It's most essential use is to mark a diretory as a ontainer

root.

If you are using a VCS, make sure to ommit this hidden diretory (page 15).

/ahe/ Files put here should be onsidered deletable without any negative e�ets.

Two subdiretories are most ommon: �/ahe/sinerity/� is where Sinerity will store information about down-

loaded dependenies, and �/ahe/javasript/� is where Sripturian (page 50) will store its ompiled JavaSript

ode.

You likely do not want to ommit this diretory to a VCS (page 15).

/logs/ Files put here should be onsidered deletable without any negative e�ets. This is used by the logging

plugin (page 32).

You likely do not want to ommit this diretory to a VCS (page 15).

/on�guration/ Container-wide on�guration �les for various libraries are found here. Note that generally

Sinerity prefers �on�guration by sript,� so that most of these �les will be in JavaSript ode. However, some

libraries may require XML, property sheets, or other unfortunately idiosynrati formats.

Various libraries will use their subdiretories here: for example, �/on�guration/logging/� for the logging plugin

(page 32).

/on�guration/sinerity/ Here you an on�gure your ontainer: repositories, dependenies, installed artifats,

and shortuts. Note that you usually will not have to edit these �les diretory: many Sinerity ore ommands will

manipulate these �les for you.

For the format of �repositories.onf�, see the Ivy doumentation for resolvers. For the format of �dependen-

ies.onf�, see the Ivy doumentation for dependenies.

/libraries/ Sinerity will install dependenies here, but you an also add your own �les manually.

Note that the Sinerity installation also has a �/libraries/� subdiretory, whih is onsidered in addition to the

one found in your ontainer.

/libraries/jars/ Sinerity will reursively add all Java arhives (.jar �les) here to the lasspath. Those dependen-

ies installed by Sinerity will follow the �/organization/name/version/name.jar� diretory struture, for example:

�org.slf4j/slf4j-api/1.6.6/slf4j-api.jar�. It is not required that you follow the same struture for jars you install

manually: all jars found under this diretory will be added.

/libraries/lasses/ Sinerity adds this path to the lasspath, expeting to �nd JVM lass �les (�.lass�).

The diretory struture must be �/pakage/sub-pakage/.../lassname.lass�. For example, the JVM lass

�org.myorg.Frame� would be in �/org/myorg/Frame.lass�.

/libraries/javasript/, /libraries/python/, et. These subdiretories are for libraries for spei� program-

ming languages to use diretly. Note that these are slightly di�erent from the �/libraries/sripturian/� subdiretory,

whih also ontains programming language libraries, but is intended to use only from within Sripturian (page 50).

/libraries/sripturian/ Sinerity, as well as other produts that use Sripturian (page 50), will look for ex-

eutable douments here (and possibly in other plaes). Most libraries and frameworks will reate their own

subdiretory underneath. For example, Prudene (page 46) libraries are under �/libraries/sripturian/prudene-

sriptlet-resoures/�.

/libraries/sripturian/plugins/ This subdiretory is reserved for Sinerity plugins. Eah doument here rep-

resents a single plugin, and eah plugin may implement any number of ommands.

/libraries/sripturian/installers/ This subdiretory is reserved for Sinerity installers. Installers are run by

the �artifats:install� ommand (page 23), and are inluded in some dependenies as a way to exeute arbitrary

installation tasks. A ommon use ase is for the install hook to manipulate the unpaked �les in order to tailor

them for the spei� environment in whih the ontainer is running.

13

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html
http://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependencies.html


/libraries/web/ Files here are intended to be served over the web as stati �les, for example: images, HTML

�les, CSS, et. Various web servers will look for �les here (and possibly in other plaes). Various lient-side web

frameworks (suh as jQuery, Ext JS) will thus install here, and be made available for various web servers you may

have installed.

/programs/ The �delegate:start� (page 25) ommand will look for Sripturian (page 50) douments to run from

here.

/exeutables/ The �delegate:exeute� (page 25) ommand will look for exeutables to run from here.

/referene/ Referene material, for use by humans or by software, will be available here.

/referene/doumentation/ Here you'll �nd referene manuals and API doumentation for installed dependen-

ies. Files installed by Sinerity will be plaed in �/organization/name/version/� diretory struture, for example:

�org.slf4j/slf4j-api/1.6.6/�.

/referene/lienses/ Here you'll �nd lienses for installed dependenies. Files installed by Sinerity will be

plaed in �/organization/name/version/� diretory struture, for example: �org.slf4j/slf4j-api/1.6.6/�.

See also the �dependenies:lienses� ommand (page 21).

/referene/soures/ Here you'll �nd soure ode for installed dependenies. Files installed by Sinerity will be

plaed in �/organization/name/version/� diretory struture, for example: �org.slf4j/slf4j-api/1.6.6/�.

Dependeny

A ontained, versioned, installable set of �les (alled �artifats�), whih an in turn have its own list of dependen-

ies. Dependenies are deployable software bundles, representing things like libraries, frameworks, platforms and

skeletons, inluding omplete appliations and servies.

All dependenies in Sinerity are identi�ed by a two-part name, omposed of a �group� pre�x plus a unique

�name� within the group, plus a version spei�er. Di�erent dependenies might have their own versioning shemes,

but Sinerity is good at guessing these for the purposes of omparing versions.

Note that a dependeny an also have none of its own �les, and only a list of its own dependenies, allowing for a

onvenient shortut for installing several dependenies together. These are sometimes alled �meta-dependenies.�

You an list all installed dependenies using the �dependenies:dependenies� ommand (page 21). However,

note that dependenies are strutured as a nested tree that may be better visualized using the GUI (page 12).

Artifat

There are �les within a dependeny. Sinerity supports a spei� set of artifat types: JVM libraries (jars),

language-spei� libraries (Python eggs, Ruby gems, PHP pakages, et.), doumentation bundles, soure ode

bundles, software lienses, installers, dependeny desriptors and more generi �pakages� (see below).

You an list all installed artifats using the �artifats:artifats� ommand (page 23).

Pakage

This is a speial kind of Sinerity-spei� jar artifat that an ontain other �les, and an additionally have speial

install/uninstall hooks.

Sinerity ontains tools to help you easily reate your own pakages, as well as doumentation about the pakage

spei�ation, so that you an manually reate your own.

Pakages are automatially unpaked using the �artifats:install� ommand (page 23), but you an also expliitly

unpak them using �pakages:unpak� (page 24).

14



Repository

A store for dependenies and their artifats. Repositories usually ontain indexes of available dependenies and

versions. Some repositories also have friendly human-faing web frontends whih you an use to searh for depen-

denies. Sinerity supports several repository tehnologies, and an also help you deploy your own dependenies to

them.

You an list all repositories attahed to your ontainer using the �repositories:repositories� ommand (page 20).

Working with a VCS

Beause Sinerity ontainers are all in a single diretory tree, it's very easy to use them with Version Control

Systems (VCSes), suh as git, Merurial and Subversion.

One quik issue to note is that your �/.sinerity/� diretory will often be empty, and many VCSes, suh as Git,

tend to ignore empty diretories. To fore Git to ommit it, simply add a �.gitignore� �le in that diretory:

touh . s i n  e r i t y / . g i t i g n o r e

Otherwise, there are two reommended strategies for working with a VCS:

Strategy #1: Commit (Almost) Everything

This strategy is safest in terms of testing and debugging, beause it guarantees that all developers and deployments

are sharing the exat same �les.

You might just want to make sure that you don't ommit the deployment-spei� diretories. Here's an example

of a �.gitignore�:

/ ahe

/ l o g s

The problem with this strategy�and it an be serious�is that distributed VCSes often require you to lone the

repository with its entire history. Every time you hange a large binary, it will inrease the size of the repository.

If this happens a lot, the repository an beome quite unwieldy.

Some VCS have workarounds for this problem, though they would only work in environments where developers

have aess to these �les via a shared diretory. Consider, for example, git-annex for Git.

Strategy #2: Commit Only Your Work

This strategy makes good use of Sinerity and allows for ompat repositories. The idea is that users of the

repository will just have to run �sinerity install� to �ll in all the missing �les.

In order for this to work well, you will need some disipline. You will need to have your VCS expliitly ignore all

�les that are managed by Sinerity. A good way to do this a blanket ignore on all standard ontainer and skeleton

diretories, and then add exeptions for �les you add or hange. Care must be taken during the ommit phase to

make sure that your hanges have indeed been ommitted, and that you have not forgotten to add an exeption. If

you forget, your hanges will not be ommitted and an be lost.

One small but important issue is that you want to make sure that �/on�guration/sinerity/artifats.onf� �le

is ignored. This �le is managed by Sinerity spei�ally in order to keep trak of �les hanged during �sinerity

install� (and �sinerity unpak�).

Here's an example .gitignore for a ontainer based around a Prudene skeleton (page 46):

# Ignore everyth ing by de fau l t , a l l ow ing S i n  e r i t y to manage i t

/ ahe

/omponent

/ on f i gu r a t i on

/ exeutab l e s

/ l i b r a r i e s

/ l o g s

/programs

/ r e f e r e n  e

# Our app l i  a t i o n s

15

http://git-scm.com/
http://mercurial.selenic.com/
http://subversion.apache.org/
http://git-scm.com/
http://git-annex.branchable.com/


! / omponent/ app l i  a t i o n s/myapp1

! / omponent/ app l i  a t i o n s/myapp2

# Mod i f i a t i ons to i n s t a l l e d a pp l i  a t i o n s

! / omponent/ app l i  a t i o n s/prudene−admin/ rout ing . j s

# Our shared l i b r a r i e s

! / l i b r a r i e s / s  r i p t u r i a n /minjson . py

# Component mod i f i  a t i on s and add i t i on s

! / omponent/ s e r v e r s

! / omponent/ s e r v i  e s /database

# Logging on f i gu r a t i on

! /  on f i gu r a t i on / logg ing /appenders /ommon− f i l e . j s

# S i n  e r i t y  on f i gu r a t i on

! /  on f i gu r a t i on / s i n  e r i t y / r e p o s i t o r i e s . on f

! /  on f i gu r a t i on / s i n  e r i t y / dependen ies . onf

! /  on f i gu r a t i on / s i n  e r i t y / sho r t u t s . onf

Note how we added exeptions for both new diretories added to the ontainer as well as hanges to spei� �les.

Also note that the �/on�guration/sinerity/artifats.onf� �le is ignored, as required, due to the blanket ignore on

�/on�guration�.

There are two possible disadvantages for this strategy:

First, unless you speify dependeny versions preisely for all dependenies, every time a user runs �sinerity

install� they may get di�erent versions, and thus have a di�erent ontainer. For some testing strategies, this is a

disadvantage. However, for more �agile� ontinuous build strategies, this an atually be seen as an advantage, as

it makes sure that you are always at the utting edge. As long as your tests are run before deployment, then this

should not be a problem. However, it ould still be a problem for oordinating debugging if multiple developers are

working on the same VCS repository but are using di�erent versions of dependenies. To work around this potential

problem, you an of ourse maintain your own repository and oordinate its use with the development team, with

the same are used for oordinating VCS repository use. Alternatively, for the partiular problem of debugging,

you an make sure to opy over �les from the deployment in whih the bug has been disovered, or possibly inlude

a full �sinerity dependenies� dump with the bug report, allowing developers to preisely repliate its environment.

The seond problem is that beause you need to run �sinerity install�, you would potentially be dependent on

third-party repositories (Three Crikets, Maven Central, PyPI) to turn your VCS repository into a runnable system.

A good solution is to use a repository proxy, suh as Nexus (page 38), that would guarantee that you ontrol aess

to all binaries within your organization, even if the third party repositories fail.

Working with Doker

Mahine virtualization brought about a revolution in deployment strategies. And then ame LXC, providing a more

limited set of features via built-in isolation features in Linux: think hroot, but with �lesystem and networking

ontainment. LXC allows for muh lighter ontainers as ompared to virtualization.

So lightweight, in fat, that it makes sense to pakage and distribute appliations via LXC. That's exatly

what Doker does, by providing an easy-to-use set of tools, standardized pakaging, repository management, and a

urated atalog of ready-to-run base images. Many workload distribution systems, suh as Mesos, support Doker

pakages, allowing you to deploy appliations with exeptional �exibility, robustness, and eonomial utilization of

resoures.

(It's also interesting to see LXC enroahing into the data enter market, whih until now was dominated

virtualization: LXD will allow you to manage a loud of �mahines� that are atually LXC ontainers, o�ering

muh greater density on existing hardware. It will even integrate with OpenStak, allowing data enters a smooth

transition to this exiting tehnology.)

16

https://linuxcontainers.org/
https://www.docker.com/
http://mesos.apache.org/
https://linuxcontainers.org/lxd/introduction/
https://www.openstack.org/


Running in Doker

Beause Sinerity puts your entire ontainer in one root diretory, it's trivial to run your Sinerity ontainer in a

Doker image. In this example, we'll reate a ontainer with the Prudene example appliation, and then run it

inside the ready-made �java� Doker image:

s i n  e r i t y  r e a t e /path/ to /myontainer : add prudene . example : i n s t a l l

sudo doker run −−rm − i t \

−v /path/ to/myontainer / : / opt /myontainer / \

−p 8080:8080 \

java : 8 u45−j r e \

/opt /myontainer / s i n  e r i t y use /opt /myontainer / : s t a r t prudene

If you haven't used the �java:8u45-jre� Doker image yet, it will have to download it.

In this example, we've mapped our Sinerity ontainer to �/opt/sinerity/� in the Doker image, and Prudene's

default HTTP port to a port in the host, so that we ould aess the site at http://loalhost:8080/. We've also

enabled an interative pseudo-TTY (�-it�) so that we an press CTRL+C to quit.

The result seems idential to running �normally�: and that's the beauty of Doker.

What good is this? Well, for one, it allows you to easily test your Sinerity ontainer in various versions of the

JVM without having to install them on your main operating system. But also, Doker an o�er tighter seurity

more easily than just, for example, running your Sinerity ontainer under a ustom user.

Pakaging in Doker

One you've tested your Sinerity ontainer in Doker, it's time to pakage it for deployment.

First, reate a �Doker�le� in your ontainer's diretory. For our example:

FROM java : 8 u45−j r e

MAINTAINER Three Cr i ke t s

ADD . /opt /myontainer /

CMD /opt/myontainer / s i n  e r i t y use /opt /myontainer / : s t a r t prudene

EXPOSE 8080

You'll also want to reate a �.dokerignore� �le (whih uses the same syntax as �.gitignore�). For our example:

/ ahe

/ l o g s

Now we an build it:

sudo doker bu i ld −t t h r e e  r i  k e t s : myontainer .

That's it! It was very fast, beause Doker uses a transation system: our new pakage is only a small di� over

the original image. Running it is very similar to before:

sudo doker run − i t −p 8080:8080 t h r e e  r i  k e t s : myontainer

You an also run it in �detahed� mode (like a daemon) using �doker run -d�. Use �doker ps� to list existing

running images, and �doker stop� to stop any.

To save the image into a self-ontained, redistributable �le:

sudo doker save t h r e e  r i  k e t s : myontainer | bzip2 > myontainer . t a r . bz2

To load it:

at myontainer . t a r . bz2 | bunzip2 | sudo doker load

Note that beause the image is self-ontained, the environment loading it does not need aess to the repository

where �java:8u45-jre� ame from (it essentially inludes the JVM). However, beause all transations have GUIDs,

it would be idential to having retrieved �java:8u45-jre�. So, if that environment were to be running 100 images

based on �java:8u45-jre�, it would only keep the atual installation one. (You an also ��atten� your image, as if it

were a single ommit, using �doker export�.)

Also note that �save� does not keep the tags, though you an re-tag the image via its ID like so:

17

http://localhost:8080/


sudo doker images

. . .

sudo doker tag . . . t h r e e  r i  k e t s : myontainer

See the Doker doumentation for more information about how to work with repositories.

FAQ

Please also refer to the FAQ for Sripturian.

The wrong version of a dependeny is being installed. Why, and how do I �x it?

First, diagnose what is going on by viewing the dependeny tree, via either the �dependenies:dependenies�

ommand (page 21) or the GUI.

If the problem is with an expliit dependeny that you added, it ould be that it is also being inluded as an

impliit dependeny with di�erent version restritions, and Ivy has done its best to resolve the on�it within the

restritions. You an overome Ivy's ompromise by using the ��fore� when adding the expliit dependeny. For

example:

s i n  e r i t y add om . tanuk i so f tware wrapper−l i nux 3 . 5 . 2 0 −−f o r  e

If the problem is with an impliit dependeny, you an override the version by using the �dependenies:override�

ommand (page 22). For example:

s i n  e r i t y ov e r r i d e om . tanuk i so f tware wrapper−l i nux 3 . 5 . 2 0

Another option is to use the ��only� swith when adding the expliit dependeny that pulls in the wrong impliit

dependeny, and then expliitly adding the sub-dependenies in the versions you want. You an, in fat, only use

��only� for all your adds, making 100% sure that only expliit dependenies are used.

I'm getting �java.lang.OutOfMemoryError: PermGen spae� exeptions!

This is likely beause you are haining several of Sinerity ommands together while also using the �heavier� language

engines (Jython, JRuby). The easy solution in most ases is simply separating your ommands. For example, instead

of this:

s i n  e r i t y add r a i l s : i n s t a l l : add django : i n s t a l l : s t a r t django

Run this:

s i n  e r i t y add r a i l s : i n s t a l l

s i n  e r i t y add django : i n s t a l l

s i n  e r i t y s t a r t django

If you're using the Orale JVM, you an also inrease the PermGen spae by setting the JVM_SWITCHES

environment variable (page 12) before running Sinerity:

JVM_SWITCHES=−XX:MaxPermSize=128m s i n  e r i t y . . .

This problem should ompletely disappear in JVM 8, whih removes the PermGen feature entirely.

How do I fore the use of Rhino with JVM 8?

There is an environment variable (page 12) for it:

SINCERITY_JAVASCRIPT=Rhino s i n  e r i t y i n s t a l l

By default, Sinerity will prefer Nashorn, even if Rhino is also on the lasspath.

18

http://threecrickets.com/scripturian/manual/faq/
http://openjdk.java.net/jeps/122


Part II

Eosystem

Core Plugins

These are the plugins that ome with the Sinerity installation and implement its most essential ommands.

Sine these ommands are used so often, it's a good idea to avoid implementing these ommand names in your

own ustom plugins, so that there would never be ambiguity for the essentials. In other words, treat �add�, �install�,

et. as reserved ommand names.

We've organized them here in the order by whih you'd likely use them.

Optional arguments are marked by square brakets.

Container

Manages Sinerity ontainers.

ontainer:reate

Creates a new ontainer using a ontainer template and points Sinerity to it, making it the new urrent ontainer.

Arguments

1. Container root diretory: If the diretory does not exist, this ommand will reate a new ontainer there.

If the diretory already exists and is a ontainer, points Sinerity at it.

2. [Template name℄: This is the name of a subdiretory under your Sinerity installation's �/templates/�

subdiretory. Will default to �default�. Sinerity will reursively opy the �les from the template into your

new ontainer. Use the �templates:templates� ommand (page 26) to see available templates.

Swithes

• �fore: With this swith, even if the diretory already exists, the ommand would still opy the template

into it. Note that this might overwrite existing �les.

ontainer:use

Changes the urrent ontainer to whih Sinerity is pointing.

Arguments

1. Container root diretory: The path must point to a valid ontainer root, meaning that it must have a

�/.sinerity/� subdiretory.

ontainer:lone

Creates a lone of the urrent ontainer.

Arguments

1. Target ontainer root diretory: If the diretory does not exist, this ommand will reate a new ontainer

there, reursively opying all �les from the urrent ontainer to it. Note that Sinerity will not swith to the

new ontainer: use the �ontainer:use� ommand if you need to do that.

Swithes

• �fore: With this swith, even if the target diretory already exists, the ommand would still opy the �les

into it. Note that this might overwrite existing �les.

19



ontainer:lean

This ommand is the same as �artifats:uninstall� (page 24) but also deletes the �/ahe/� subdiretory.

Repositories

Manages repositories within the urrent ontainer. Adds a �Repositories� tab to the Sinerity GUI.

The �artifats:install� (page 23) ommand searhes for dependenies in all attahed repositories, in order.

Instead of using these ommands, you an also edit the ontainer's �/on�guration/sinerity/repositories.onf�

�le diretly. See the Ivy doumentation for resolvers.

repositories:repositories

List all repositories attahed to the urrent ontainer in order by setion.

repositories:attah

Attahes (adds) a repository to the urrent ontainer. This ommand modi�es the �/on�guration/sinerity/repos-

itories.onf� �le.

Arguments

1. Setion: Repositories are searhed in the order they are added, but are �rst ordered by setion. By default

Sinerity ontainers have two setions: �private� and then �publi�, in that order. Thus, any repositories you

attah to the �private� setion will be searhed before any repositories attahed in the �publi� setion.

2. Name: The repository name must be unique per its setion.

3. Type: Sinerity urrently supports two types of repositories: �maven� (you an also use the �ibiblio� alias)

and �pypi� (you an also use the �python� alias).

Arguments after the �rst three depend on the type of repository attahed. However, both urrently supported types

require one additional argument: the repository base URL.

Note that this ommand supports impliit shortuts that begin with the �attah#� pre�x. For example:

s i n  e r i t y attah maven− en t r a l

Will expand to:

s i n  e r i t y attah pub l i  maven− en t r a l maven http :// repo1 .maven . org/maven2/

If the following entry is in �shortuts.onf�:

a t tah#maven− en t r a l = attah pub l i  maven− en t r a l maven http :// repo1 .maven . org/maven2/

To see all available �attah#� shortuts in your ontainer use the �shortuts:shortuts� ommand.

repositories:detah

Detahes (removes) a repository from the urrent ontainer. This ommand modi�es the �/on�guration/sineri-

ty/repositories.onf� �le.

Arguments

1. Setion: See the �repositories:attah� ommand.

2. Name: See the �repositories:attah� ommand.

Dependenies

Manages dependenies for the urrent ontainer. Adds �Dependenies� and �Lienses� tabs to the Sinerity GUI.

Instead of using these ommands, you an also edit the ontainer's �/on�guration/sinerity/dependenies.onf�

�le diretly. See the Ivy doumentation for dependenies.

20

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html
http://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependencies.html


dependenies:dependenies

Lists all dependenies in the urrent ontainer as a tree struture. Dependenies that are not installed will be listed

in parentheses.

For a large dependeny tree, it may be easier to use the Sinerity GUI instead of this ommand.

dependenies:lienses

Lists all lienses per all dependenies in the urrent ontainer. Note that dependenies may be available via more

than one liense.

Please be aware that you should not treat the output of this ommand as legal advie. Pakage maintain-

ers do their best to provide you with orret and useful information, but you should yourself investigate

the liensing available per eah library you use to avoid breaking the law.

Swithes

• �verbose: By default only the name of the liense will be printed. With this swith, the URL will be printed,

too, if available.

dependenies:add

Adds a dependeny to the urrent ontainer. Note that this does not download artifats : all it does is modify the

�/on�guration/sinerity/dependenies.onf� �le.

The reason this ommand doesn't install �les is that installation requires a resolution phase that goes over

all dependenies and their sub-dependenies and seleted the highest possible versions of dependenies. Use

�artifats:install� (page 23) to download and install artifats. It will also delete artifats no longer used in the

revised dependeny tree.

Arguments

1. Group: The dependeny group name. This is sometimes also alled an �organization,� though it may be a

bit misleading, beause a group an refer to a set of produts within an organization. Group names tend to

follow the Java pakage naming format. For example, Prudene's group name is �om.threerikets.prudene�.

Unfortunately, group names are not standardized and many projets follow their own onventions.

2. Name: This is the name of the dependeny within the group. It is usually a simple string, possibly with

dashes, the projet. For example, the name for the �Prudene Example� appliation within the Prudene

group is �prudene-example�.

3. [Version℄: If you do not speify a spei� version (or use the speial �latest� string), Sinerity will resolve

for the highest available version. Sinerity supports range spei�ations for versions. For example. �[1.0,2.0[�

will math versions that are greater than or equal to 1.0 but lesser than 2.0.

Swithes

• �only: Ignores all impliit dependenies of this dependeny

• �fore: Fores the spei�ed version, even if a di�erent version is preferred by a di�erent dependeny

Important: Sinerity uses Ivy's dynami revision format for versions, whih look similar to Maven's

but is in fat interpreted quite di�erently. This is a ause for many mistakes in using version onstraints

in Sinerity!

Note that this ommand supports impliit shortuts that begin with the �add#� pre�x. For example:

s i n  e r i t y add v e l o  i t y 1 .7

Will expand to:

s i n  e r i t y attah three− r i  k e t s : add org . apahe . v e l o  i t y v e l o  i t y 1 .7

If the following entry is in �shortuts.onf�:

add#ve l o  i t y = attah three− r i  k e t s : add om . org . apahe . v e l o  i t y v e l o  i t y

To see all available �add#� shortuts in your ontainer use the �shortuts:shortuts� ommand.

21

http://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependency.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-dependencies.html#pom-relationships-sect-version-ranges


dependenies:revise

Allows you to hange the version of a previously added dependeny. The format is idential to �dependenies:add�

(page 21): the di�erene is that a new dependeny annot be added with this ommand, only revised. For example:

s i n  e r i t y add org . apahe . v e l o  i t y v e l o  i t y 1 .7

s i n  e r i t y r e v i s e org . apahe . v e l o  i t y v e l o  i t y l a t e s t

dependenies:remove

Removes a dependeny from the urrent ontainer. Note that this does not delete installed artifats : all it does is

modify the �/on�guration/sinerity/dependenies.onf� �le.

Use �artifats:install� (page 23) or �artifats:prune� (page 24) to delete artifats no longer used in the revised

dependeny tree, or �artifats:uninstall� (page 24) to delete all artifats.

Arguments

1. Group: The dependeny group name. This is sometimes also alled an �organization,� though it may be a

bit misleading, beause a group an refer to a set of produts within an organization. Group names tend to

follow the Java pakage naming format. For example, Prudene's group name is �om.threerikets.prudene�.

Unfortunately, group names are not standardized and many projets follow their own onventions.

2. Name: This is the name of the dependeny within the group. It is usually a simple string, possibly with

dashes, the projet. For example, the name for the �Prudene Example� appliation within the Prudene

group is �prudene-example�.

For example:

s i n  e r i t y add org . apahe . v e l o  i t y v e l o  i t y 1 .7

s i n  e r i t y remove org . apahe . v e l o  i t y v e l o  i t y

dependenies:exlude

Foribly exludes an impliit dependeny from being downloaded. The format is idential to �dependenies:remove�

(page 22). For example:

s i n  e r i t y ex lude org . apahe . v e l o  i t y v e l o  i t y

dependenies:override

Overrides the version of an impliit dependeny. Note that this does not atually add the dependeny. If the

dependeny is not in the tree, then the override has no e�et. The format is idential to �dependenies:add� (page

21):

s i n  e r i t y ov e r r i d e org . apahe . v e l o  i t y v e l o  i t y 1 .6

dependenies:freeze

Overrides the versions of all expliit and impliit dependenies to be their urrently installed versions. This ensure

that future runs of �artifats:install� (page 23) will result in exatly the same version installations.

dependenies:reset

Removes all dependenies from the urrent ontainer. Note that this does not delete installed artifats : all it does

is empty the �/on�guration/sinerity/dependenies.onf� �le. Use �artifats:uninstall� (page 24) to delete installed

�les.

Artifats

Manages artifats in the urrent ontainer. Adds an �Artifats� tab to the Sinerity GUI.

22



artifats:artifats

Lists artifats available for eah dependeny of the urrent ontainer. If the dependeny is not installed, it will be

listed in parentheses.

Swithes

• �pakages: Shows artifats within pakages (by default these are not shown).

• �verbose: In non-verbose mode (the default) only the type of artifat is shown. In verbose mode you'll see

the omplete relative path to the artifat as well as its size in bytes.

artifats:install

This powerful ommand downloads and installs artifats belonging to the urrent ontainer's dependenies and

their sub-dependenies from the online repositories to whih the ontainer is attahed. It should thus be used

after �dependenies:add� (page 21) and �repositories:attah� (page 20) have been used. This ommand also handles

upgrades and resolves dependeny version on�its.

Installation happens in seven phases:

1. Cheking: First, it searhes for your dependenies in all attahed repositories in order. It uses the �/on�gu-

ration/sinerity/dependenies.onf� and �/on�guration/sinerity/repositories.onf� �les as a starting point.

Though you an edit these diretly (or opy them from elsewhere), you may prefer to use the �dependen-

ies:add� and �repositories:attah� ommands to manipulate them instead.

2. Meta-data: When found, the meta-data (in Maven this is a .pom �le) for the pakage is downloaded and

stored in a loal ahe (under �/ahe/sinerity/pakages/�).

3. Reursion: If your dependeny has sub-dependenies, they are added. Phases 1 to 3 are repeated for eah.

4. Resolution: Now that we have a omplete dependeny tree, it will be �resolved.� This means that dupliate

dependenies will be skipped and highest possible versions for dependenies will be seleted. Note that

upgrades are handled by this phase: if a newer version of a ertain dependeny is found, it will be seleted

instead of the previously installed one. Rarely, this phase may fail with an error due to version on�its that

annot be resolved.

5. Download/Delete: The dependenies seleted for installation in the resolution phase will be downloaded,

and those that were previously installed and are no longer needed (for an upgrade) will be deleted. You an

use the �dependenies:dependenies� ommand to see the whole dependeny tree, inluding dependenies that

were seleted to not be installed by the resolution phase. A more detailed report will be made available in

�/ahe/sinerity/resolution/threerikets-sinerity-ontainer-default.xml�. Note that this XML report uses

XSL and CSS to make it niely readable in a web browser.

6. Unpak: Installed pakages will be unpaked. This is idential to the �pakages:unpak� ommand, and may

ause new artifats to appear in your ontainer, as well as arbitrary ode to be exeuted via installer hooks

in a pakage. It will not by default overwrite existing �les.

7. Prune: Unused artifats will be deleted, unless you have hanged them. This is idential to the �arti-

fats:prune� ommand.

Under the hood, Sinerity relies on Ivy to handle phases 1 to 5, and it may be useful to refer to its doumentation

if you require speialized on�guration and handling.

Note that remote repositories introdue onsider delay for phases 1, 2 and 5. Furthermore, the more repositories

you attah, the longer phase 1 will take, as eah repository is heked in sequene. For these reasons, as well as

saving you from network/server failure by 3rd party providers, it is strongly reommend that you run a loal proxy

for the repositories you use. You an install one easily with Sinerity using the Nexus skeleton.

Swithes

• �overwrite: This a�ets phase 6. See �pakages:unpak� (page 24) for more information.

• �verify: This a�ets phase 6. See �pakages:unpak� (page 24) for more information.

23

http://ant.apache.org/ivy/


artifats:uninstall

This ommand deletes all artifats installed by �artifats:install� (page 23), unless these artifats have been hanged

sine they've been installed. This behavior ensures that you do not lose your ustom work. If a pakage has an

uninstaller hook, it will be exeuted after its artifats are deleted.

This ommand is useful for leaving your ontainer lean of any dependenies. Though the artifats are deleted,

they are still added to your ontainer. Thus, this ommand is entirely reversible by issuing a �artifats:install�

ommand.

Also see the �ontainer:lean� ommand (page 20).

artifats:prune

Deletes artifats that were previously installed by �artifats:install� (page 23) but for whih their dependenies no

longer exist. Artifats that were hanged sine installation will not be deleted. This behavior ensures that you do

not lose your ustom work.

You usually would not have to run this ommand by itself, beause it is part of �artifats:install�. However, it

may be useful in ase you are manipulating the ontents of �/libraries/jars/� manually.

Pakages

Manages pakages in the urrent ontainer.

pakages:unpak

Unpaks all Sinerity pakages in �/libraries/jars/�. If a pakage has an installer hook, it will be exeuted after its

artifats are unpaked.

You usually would not have to run this ommand by itself, beause it is part of �artifats:install� (page 23).

However, it may be useful in ase you are manipulating the ontents of �/libraries/jars/� manually.

It is also useful in ase you've made various hanges to unpaked artifats and want to restore them to their

initial unpaked state. A good way to do this is to delete all the �les that you want to restore and then run �sinerity

unpak�.

Arguments

1. [Filter℄: Currently unused.

Swithes

• �overwrite: By default the ommand will not overwrite existing �les, unless these �les were previously

installed by Sinerity and have not been modi�ed sine. This behavior ensures that you do not lose your

ustom work. However, you an override this behavior using this swith. Be areful: this will overwrite �les

unpaked by all pakages. If you only want to overwrite a selet few �les, it is best to delete them and then

run �unpak� without this swith.

• �verify: Veri�es that artifats have been unpaked orretly. Slower but safer.

Delegate

Manages entry points into the urrent ontainer, and is the primary means to run appliations in it. Adds a

�Programs� tab to the Sinerity GUI.

delegate:main

Calls the main() method within a JVM lass. The lass may exist anywhere within the urrent ontainer, within

the Sinerity installation, or elsewhere in the JVM lasspath.

24



Arguments

1. Classname: This is the fully quali�ed JVM lass name. For example, �org.myappliation.Servie�. Note that

the lass has to have a method named �main� with the orret signature (publi, returns void, with an array

of strings as its only argument).

Additional ommand arguments after the �rst will be sent as arguments to the main() method.

delegate:start

Exeutes a Sripturian (page 50) doument.

Though Sinerity omes with support for JavaSript, douments an be written in any installed programming

language that support Sripturian. The doument extension will tell Sripturian whih language engine to use: �.js�

for JavaSript, �.py� for Python, �.rb� for Ruby, et. Use the �delegate:languages� ommand (page 26) to list all

supported languages.

Your ode will have full aess to Sinerity's exeution environment and API. See the hapter on Programming

for more information.

Sripturian will store ompiled ode in the �/ahe/� subdiretory, speeding up subsequent runs. For example,

JavaSript lasses will be stored under �/ahe/javasript/�. You an safely delete this �les.

Arguments

1. Doument name: The argument is a doument name, either beginning with a �/� and relative to the

urrent ontainer root, or a simple string speifying a �lename in the �/programs/� subdiretory. Use the

�delegate:programs� ommand to list all �les under �/programs/�. As usual with Sripturian, �lename exten-

sions should not be used. If the name points to a diretory, then a �le named �default� (with the appropriate

programming language extension) in that diretory will be exeuted. For example, �sinerity start /om-

ponent/� would exeute �/omponent/default.js� from within the urrent ontainer, while �sinerity start

omponent� would exeute �/programs/omponent.js�.

Additional ommand arguments after the �rst will be ignored by Sinerity, but will be forwarded to the program

and an be aessed from within its ode using the appliation.arguments API.

delegate:exeute

This ommand starts a new proess, whih would be a hild proess of Sinerity. Standard output and input from

the hild proess are piped to the urrent standard output and input.

This ommand is useful not only for integrating non-JVM ode into Sinerity, but also for hashtag support,

allowing you to inorporate dynami language sripts, for Python, Ruby, et. Sine Sinerity ontrols the environ-

ment of the hild proess, it an guarantee that environment variables and other properties are set aording to the

urrent ontainer.

Arguments

1. Exeutable name: The argument is a �lename relative to the urrent ontainer's �/exeutables/� subdi-

retory. The �le must be exeutable by the underlying operating system. On *nix this inludes support for

hashtag sript �les.

Swithes

• �bakground: By default this ommand will blok until the hild proess exits. However, using this swith

Sinerity will not blok and ontinue proessing its ommand hain. Note that this would not stop the hild

proess from ending when the Sinerity parent proess ends.

delegate:programs

Lists all available programs in the urrent ontainer (douments in the �/programs/� subdiretory). Use the

�delegate:start� ommand (page 25) to start them.

25

http://threecrickets.com/api/javascript/?namespace=application


delegate:languages

Lists all languages installed in the urrent ontainer that support Sripturian (page 50).

Templates

Manages templates in the Sinerity installation. Adds a �Templates� tab to the Sinerity GUI.

Templates are used by the �ontainer:reate� ommand (page 19) to initialize new ontainers.

templates:templates

Lists all templates available in the Sinerity installation.

templates:templatize

Turns the urrent ontainer into a Sinerity template. This works by simply reursively opying the urrent ontainer

into your Sinerity installation's �/templates/� subdiretory. Note that you must have write permissions there in

order for this to work.

Note that you an manipulate the �/templates/� subdiretory diretly. This ommand is merely for onveniene.

Arguments

1. Template name: A new subdiretory to be reated under your Sinerity installation's �/templates/� subdi-

retory. Note that this ommand will not opy over an existing template! If the diretory already exists, you

will get an error. You must manually delete the diretory if you want to hange an existing template using

this ommand.

Shortuts

Manages shortuts for the urrent ontainer. Adds a �Shortuts� tab to the Sinerity GUI.

Your shortuts are de�ned in your ontainer's �/on�guration/sinerity/shortuts.onf� �le.

shortuts:shortuts

Lists all available shortuts in the urrent ontainer.

Help

Provides general information about your Sinerity installation. Adds a �Commands� tab to the Sinerity GUI.

help:version

Lists Sinerity version information. This inludes the numerial version and the build timestamp. An example of

output:

b u i l t=Jun 18 2013 , 1 5 : 2 8 : 4 6 , TZ+0800

ve r s i on =1.0−dev5

help:help

Lists all available Sinerity ommands (in full form) from all available Sinerity plugins. This inludes both plugins

installed in the urrent ontainer and those available in the Sinerity installation.

26



help:verbosity

If no argument is provided, prints out the urrent Sinerity output verbosity. If an argument is provided (integer

>=0) then hanges the urrent verbosity. Note that the default verbosity is 1, and you an hange the verbosity

several times within a hained Sinerity ommand.

Verbosity is interpreted individually by individual ommands, though 0 usually means �silent,� 1 means �only

important messages� and 2 means �quite hatty.� Higher values usually inlude more minute debugging information.

Note that verbosity is only used to ontrol messages to standard output and standard error. Con�guring logging

should be done separately, via the logging plugin (page 32).

Shell

User interfaes to Sinerity.

shell:onsole

A straightforward onsole in whih you an run Sinerity ommands. The onsole supports basi ommand om-

pletion using the TAB key and persistent ommand history using the UP and DOWN keys.

Use �exit� (or CTRL+C) to exit the onsole. Use �reset� to reset the ommand history. The history is available

in the �/ahe/shell/onsole.history� �le.

See �jsshell:jsonsole� (page 27) for a riher onsole, in whih you an use full JavaSript ode.

Swithes

• �sript=: If present, the onsole will load this sript �le, run it one line at a time, and then exit. Empty

lines and lines beginning with a �#� (omments) will be ignored. In the sript, you may separate ommands

via �:� or a newline, with the same �nal e�et.

shell:gui

Starts the Sinerity Sinerity GUI (page 12). The GUI will go through all available plugins and try to all the

optional gui() entry point if they have them, allowing plugins to enhane the GUI as is appropriate.

Note that this ommand bloks until the GUI is shut down.

Swithes

• �ui=: Let's you hange the Swing look-and-feel. Look-and-feels supported on most JVMs are: �metal� and

�nimbus�. Note that if no look-and-feel is spei�ed, or the spei�ed look-and-feel is not found, then Sinerity

will attempt to default to the native look-and-feel, unless the native platform is GTK. We found the GTK

look-and-feel to be so riddled with bugs that we deided to spare you from it.

JavaSript Shell

User interfaes to Sinerity using JavaSript.

jsshell:jsonsole

A JavaSript onsole in whih you an run JavaSript ode, with full aess to all JavaSript and JVM libraries

in the ontainer. The onsole supports basi ommand ompletion using the TAB key and persistent ommand

history using the UP and DOWN keys.

As a shortut, any line beginning with a �:� will exeute a Sinerity ommand, similar to using the basi

�shell:onsole� (page 27).

Use �exit� (or CTRL+C) to exit the onsole. Use �reset� to reset the ommand history. The history is available

in the �/ahe/jsshell/jsonsole.history� �le.

Swithes

• �sript=: If present, the onsole will load this sript �le, run it all at one, and then exit. Note that you

annot use the �:� shortut to run Sinerity ommands here, beause this �le is pure JavaSript. However,

you an run Sinerity ommands using sinerity.run(...) alls.

27



Java

Support for the Java programming language.

java:ompile

Compiles Java soure �les (�.java�) into JVM lass �les (�.lass�) using the urrent ontainer's lasspath.

Note that you must have a full JDK to use this ommand: a JRE usually does not ome with a Java ompiler.

Arguments

1. [Soure diretory℄: Reursively ompiles all �.java� �les in this diretory (relative to the ontainer root).

Defaults to �/libraries/java/�.

2. [Classes diretory℄: Output �.lass� �les here. Defaults to �/libraries/lasses/�. Note that Sinerity will

always inlude this diretory in its lasspath, so it may be a good idea to keep this default.

Language Plugins

These plugins add a language engine to your ontainer. In some ases, this also means support for standard tools

that ome with the language distribution, suh as a CLI, a REPL, and tools for ompilation and pakaging.

Most of these language engines support the Sripturian (page 50) standard, meaning that with a language plugin

installed you an:

• Write Sripturian programs and Sinerity programs in this language. For example, with Python installed, you

an write a �/programs/�sh.py� program and start it via �sinerity start �sh�. Note that the servie plugin

(page 34) an also be used to run programs as daemons or servies.

• Write Sinerity plugins in this language. For example, with Ruby installed, you an write a �/libraries/srip-

turian/plugins/�sh.rb� plugin.

The �delegate:languages� ommand (page 26) will list all Sripturian-supported languages in the ontainer.

JavaSript Plugin

Though JavaSript was originally designed to be run in web browsers, it is a powerful general-purpose C-syntax

language with Sheme-like losures that supports many programming paradigms, and has proved useful and popular

outside the browser. Sinerity runs JavaSript ode via either Nashorn (available from JVM 8) or Rhino.

Note: You do not need this plugin to install JavaSript support in a Sinerity ontainer. All it does is

provide you with a new ommand to get easy aess to a JavaSript shell.

To install:

s i n  e r i t y add j a v a s  r i p t : i n s t a l l

To start a shell:

s i n  e r i t y j a v a s  r i p t

Fleshing Out

The shell an run sript �les and also evaluate inline sripts as arguments. Use �sinerity javasript -h� to see the

ommand's possible arguments. An example of an inline sript:

s i n  e r i t y  r e a t e myontainer : add j a v a s  r i p t : i n s t a l l : j a v a s  r i p t −e " pr in t ( ' Hel lo , world ' ) "

Note that this �javasript� does not use Sripturian (page 50), nor does it have aess to any Sinerity APIs. To

run JavaSript �les in Sinerity's Sripturian environment use the �delegate:start� ommand (page 25).

28

http://openjdk.java.net/projects/nashorn/
https://developer.mozilla.org/en/docs/Rhino


Python Plugin

Python is a general-purpose multi-paradigm dynami language with an exeptionally lean syntax and a rih

eosystem. Sinerity implements Python via Jython, and also has limited support for Jepp.

To install:

s i n  e r i t y add python : i n s t a l l

To start a shell:

s i n  e r i t y python

Ruby note: Due to on�its in their implementations, you annot urrently use the Python and Ruby

plugins in the same ontainer.

Fleshing Out

The shell an run sript �les and also evaluate inline sripts as arguments. Use �sinerity python -h� to see the

ommand's possible arguments. An example of an inline sript:

s i n  e r i t y  r e a t e myontainer : add python : i n s t a l l : python − " pr in t ' Hel lo , world ' "

Note that this �python� ommand does not use Sripturian (page 50), nor does it have aess to any Sinerity

APIs. To run Python �les in Sinerity's Sripturian environment use the �delegate:start� ommand.

Python has a very extensive eosystem hosted on PyPI (a.k.a. �The Cheese Fatory�) in �egg� format. You an

install libraries, frameworks and appliations into your Sinerity ontainer using a speial version of �easy_install�

inluded in this plugin as a Sinerity ommand. For example, let's install Beej's Flikr API:

s i n  e r i t y e a sy_ in s t a l l f l i  k r a p i

Eggs will be installed into your ontainer under the �/libraries/python/Lib/site-pakages/� subdiretory.

Note that not all software written for CPython runs well on the Jython engine. See the software's doumentation

for more details.

The Sinerity Python plugin also inlude a �python� ommand (under �/exeutables/python�) to allow for proper

integration with Python software that starts Python subproesses. You an run this ommand diretly, and even

use it with a shebang for exeutable �les. For example, this �le is exeutable:

#!/path/ to /myontainer / exeutab l e s /python

pr in t ' h e l l o world '

You an also plae suh �les in your �/exeutables/� subdiretory and run them using Sinerity's

�delegate:exeute� ommand (page 25).

Ruby Plugin

Ruby is a general-purpose multi-paradigm dynami language with a exeptionally full set of features and a rih

eosystem.

Sinerity implements Ruby via JRuby, an exeptionally robust implementation.

To install:

s i n  e r i t y add ruby : i n s t a l l

To start a shell:

s i n  e r i t y ruby

Python note: Due to on�its in their implementations, you annot urrently use the Python and Ruby

plugins in the same ontainer.

29

http://www.jython.org/
http://jepp.sourceforge.net/
https://pypi.python.org/pypi
http://stuvel.eu/flickrapi
http://jruby.org/


Fleshing Out

The shell an run sript �les and also evaluate inline sripts as arguments. Use �sinerity ruby -h� to see the

ommand's possible arguments. An example of an inline sript:

s i n  e r i t y  r e a t e myontainer : add ruby : i n s t a l l : ruby −e "puts ' Hel lo , world ' "

Note that this �ruby� ommand does not use Sripturian (page 50), nor does it have aess to any Sinerity

APIs. To run Ruby �les in Sinerity's Sripturian environment use the �delegate:start� ommand (page 25).

Ruby has a very extensive eosystem hosted on RubyGems in �gem� format. You an install libraries, frameworks

and appliations into your Sinerity ontainer using a version of �gem� inluded in this plugin as a Sinerity

ommand. For example, let's install Flikraw, an API for aessing Flikr:

s i n  e r i t y gem i n s t a l l f l i  k r aw

Gems will be installed into your ontainer under the �/libraries/ruby/lib/ruby/gems/shared/� subdiretory.

Note that not all software written for Ruby runs well on the JRuby engine (though in some ases it may atually

run better in JRuby). See the software's doumentation for more details.

Other standard Ruby ommands supported by the plugin are: �ast�, �irb�, �rake�, �rdo�, �ri� and �testrb�.

The Sinerity Ruby plugin makes sure that the exeution environment will work with the JRuby eosystem.

Spei�ally, JRuby exeutable �les start with the �env� shebang, for example:

#!/ usr / bin/env jruby

puts ' Hel lo , world '

You an plae suh �les in your �/exeutables/� subdiretory and run them using Sinerity's �delegate:exeute�

ommand (page 25).

PHP Plugin

Though PHP was designed for generating web pages, it is also useful as a general-purpose templating language.

Sinerity implements PHP via Querus. Note that the free version of Querus is inluded, but you may easily swap

it for a purhased professional release if you have it.

To install:

s i n  e r i t y add php : i n s t a l l

To start a shell:

s i n  e r i t y php

Fleshing Out

The shell an run sript �les provided as arguments. Use �sinerity php -h� for more information. For example,

let's reate a �le named �test.php�:

<?php

pr in t "Hel lo , World ! \ n " ;

?>

And then run it like so:

s i n  e r i t y  r e a t e myontainer : add php : i n s t a l l : php t e s t . php

Note that this �php� ommand does not use Sripturian (page 50), nor does it have aess to any Sinerity APIs.

To run PHP �les in Sinerity's Sripturian environment use the �delegate:start� ommand (page 25).

PHP has a very extensive eosystem hosted on PEAR, often in PHP arhive (.phar) format. Though Sinerity

does not yet support PEAR diretly, you an install PEAR libraries using standard PHP and then opy them over

to your Sinerity ontainer.

30

http://rubygems.org/
http://hanklords.github.io/flickraw/
http://quercus.caucho.com/
http://pear.php.net/


Lua Plugin

Lua is an espeially lightweight multi-paradigm dynami language, whih shares many features with JavaSript, but

is nevertheless simpler to implement due to its minimalist design. The simple implementation allows for a register-

rather than stak-based virtual mahine and famously fast performane. Sinerity implements Lua via Luaj, whih

outperforms even the standard Lua in many situations and allows integration with JVM libraries.

To install:

s i n  e r i t y add lua : i n s t a l l

To start a shell:

s i n  e r i t y lua

Fleshing Out

The shell an exeute Lua �les provides as arguments, and also evaluate inline sripts as arguments. Use �sinerity

lua -h� to see the ommand's possible arguments. An example of an inline sript:

s i n  e r i t y  r e a t e myontainer : add lua : i n s t a l l : lua −e " pr in t ' Hel lo , world ' "

Note that this �lua� ommand does not use Sripturian (page 50), nor does it have aess to any Sinerity APIs.

To run Lua �les in Sinerity's Sripturian environment use the �delegate:start� ommand (page 25).

Additionally, the plugin supports a �lua� ommand to ompile Lua soure �les into portable Lua byteode, and

a �luaj� ommand to ompile into JVM lasses.

Groovy Plugin

Groovy is a dynami language with a syntax familiar to Java programmers, but with features inspired by Python,

Ruby and Smalltalk. It provides exeptionally good integration with libraries written in Java, suh that any JVM

library is immediately also a Groovy library.

To install:

s i n  e r i t y add groovy : i n s t a l l

To start shell:

s i n  e r i t y groovy

Note that the Groovy plugin requires at least JVM 7 by default, beause it depends on the invokedynami

version of Groovy. If you need to run on JVM 6, you an swith to the non-invokedynami version with the

following ommand:

s i n  e r i t y ex lude org . odehaus . groovy groovy−indy : add org . odehaus . groovy groovy : i n s t a l l

Fleshing Out

The shell an run sript �les and also evaluate inline sripts as arguments. Use �sinerity groovy� to see the

ommand's possible arguments. An example of an inline sript:

s i n  e r i t y  r e a t e myontainer : add groovy : i n s t a l l : groovy −e " p r i n t l n ' Hel lo , world ' "

Note that this �groovy� ommand does not use Sripturian (page 50), nor does it have aess to any Sinerity

APIs. To run Groovy �les in Sinerity's Sripturian environment use the �delegate:start� ommand (page 25).

Clojure Plugin

Clojure is a modern Lisp designed for onurreny and performane. It is a superbly expressive language that

supports robust funtional programming as well as other paradigms.

To install:

s i n  e r i t y add  l o j u r e : i n s t a l l

To start a REPL:

s i n  e r i t y  l o j u r e

31

http://luaj.org/luaj/README.html
http://groovy.codehaus.org/
http://clojure.org/


Fleshing Out

The REPL an run sript �les and also evaluate inline sripts as arguments. Use �sinerity lojure -h� to see the

ommand's possible arguments. An example of an inline sript:

s i n  e r i t y  r e a t e myontainer : add  l o j u r e : i n s t a l l :  l o j u r e −e ' ( p r i n t l n "Hel lo , World " ) '

Note that the REPL does not use Sripturian (page 50), nor does it have aess to any Sinerity APIs. To run

Clojure �les in Sinerity's Sripturian environment use the �delegate:start� ommand (page 25).

Clojure has a very extensive eosystem hosted on Clojars. It is a standard Maven-type repository that is

naturally supported by Sinerity, and attahed by default if you use the �add lojure� shortut. For example, let's

install the �ikr-lj, an API to aess Flikr:

s i n  e r i t y add  l o j u r e : add org .  l o j a r s . s t an i s t an f l i  k r − l j : i n s t a l l

A shortut is also available for attahing Clojars expliitly:

s i n  e r i t y attah  l o j a r s : at tah maven− en t r a l

Note that many Clojars libraries also rely on Maven Central, so it's a good idea to attah it as well. Both are

attahed when you use the �add lojure� shortut.

Feature Plugins

Sinerity Standalone Plugin

See also the redistribution plugin for a di�erent approah to distribution.

Logging Plugin

This plugin makes it exeptionally easy to unify and on�gure your logging aross a diverse set of tehnologies and

dependenies. In most ases, simply installing this plugin into your ontainer should handle all logging with sensible

defaults. Should you need to ustomize and on�gure logging, you'll �nd Sinerity's sheme espeially �exible and

powerful.

Though the JVM inludes a standard logging API, in the �java.util.logging Interfae� (�JULI�) pakage, the

greater JVM eology has adopted a few inompatible standards. In partiular, Apahe Log4j, whih was the

inspiration for JULI, enjoys broad support and a more robust implementation. Espeially sine Log4j 2.0, it

provides state-of-the-art salability for high loads using innovative asynhronous handling. We've thus preferred to

use Log4j for our atual implementation, and rely on the exellent SLF4J library for bridging JULI to it. SLF4J has

beome popular enough that several libraries support it diretly, so that we an avoid even the minimal overhead

introdued by bridging.

To install:

s i n  e r i t y add logg ing : i n s t a l l

To initialize logging, you an exeute the �logging� ommand from within your programs. An example in

JavaSript:

// Wil l do nothing i f the l ogg ing p lug in i s not i n s t a l l e d :

t ry { s i n  e r i t y . run ( ' l ogg ing : logg ing ' ) } ath (x ) {}

You an also test logging simply using the �log� ommand, whih sends an �info� level message to the �sinerity�

logger:

s i n  e r i t y add logg ing : i n s t a l l : l og "This i s a t e s t ! "

Logs will appear under the �/logs/� diretory. By default, all loggers are appended to �/logs/ommon.log�, whih

is a rolling log �le with a size of 5MB per �le, and a maximum of 10 �les.

Note for Restlet users: If you're using the Restlet skeleton, it's reommended to install the Restlet

skeleton logging add-on (page 45), whih adds a Restlet extension library that provides diret hute to

SLF4J.

High CPU usage? On some rare ombinations of operating systems and JVMs, Log4j 2.0 (well,

atually the LMAX Disruptor library it uses) may use too muh CPU time, even when idle. You an

32

https://clojars.org/
https://github.com/stanistan/flickr-clj
http://logging.apache.org/log4j/
http://www.slf4j.org/
http://lmax-exchange.github.io/disruptor/


redue CPU usage in these ases, at the expense of a�eting the high-salability pro�le, by using the

following JVM swith:

−DAsynLoggerConfig . WaitStrategy=Blok

Fleshing Out

�O�ially,� Log4j on�guration is based either on JVM properties �les or XML. Both are hardoded, in�exible and

di�ult to sale. Sinerity's logging plugin instead uses a powerful JavaSript-based sheme, whih allows you to

dynamially on�gure your loggers aording to your operating environment.

Con�gure your loggers under �/on�guration/logging/loggers/� and your appenders under �/on�guration/log-

ging/appenders/�. Any JavaSript �le you add to these diretories will be exeuted upon logging initialization.

Take a look at the defaults to get a sense of how this works: the /sinerity/log4j/ library makes it espeially easy

to use.

For example, here's a de�nition of a rolling �le appender:

var l o gF i l e = s i n  e r i t y . onta ine r . g e tLogsF i l e ( ' main . log ' )

l o gF i l e . pa r en tF i l e . mkdirs ( )

 on f i gu r a t i on . ro l l i ngF i l eAppender ({

name : 'main ' ,

layout : {

pattern : '%d : %−5p [% ℄ %m%n '

} ,

f i leName : S t r ing ( l o gF i l e ) ,

f i l e P a t t e r n : S t r ing ( l o gF i l e ) + '.% i ' ,

p o l i  y : {

s i z e : '5MB'

} ,

s t r a t e gy : {

min : ' 1 ' ,

max : '9 '

}

})

Note that you an also use �o�ial� Log4j on�guration if you are more omfortable with it. If the �le �/on�g-

uration/logging.onf� is present, it will be used. This �le an either be a properties �le, a JSON �le, or an XML �le

(in whih ase it must begin with the �<?xml� header). The plugin omes with an example �logging.onf� named

�logging.alt.onf�, whih you an rename to �logging.onf� if you wish to use it.

The logging plugin also omes with a simple �log� ommand to test your logging on�guration. Example usage:

s i n  e r i t y l og "Hel lo , l og ! "

Extras

In distributed environments, suh as grids and louds, you may prefer to entralize your logging. To aid this ommon

use ase, Sinerity omes with two logging server solutions.

Log4j Server You an reate a simple Log4j TCP-based soket server, whih omes with the logging plugin:

s i n  e r i t y  r e a t e l o g s e r v e r : add logg ing : i n s t a l l : s t a r t l og4 j−s e r v e r

Note that we're reating the Log4j server in a separate ontainer, and starting it as a separate proess.

On this Log4j server, you want to on�gure your atual appenders. Then, on all your lient proesses, you want to

disable all the appenders exept the soket appender (�/on�guration/logging/appenders/soket.js�). Unomment

all the ode there to enable it and make it the default root appender.

The result is that all logging messages will be sent from the lients to the server, where they will be atually

logged.

It's reommend to run the Log4j server with Sinerity's servie plugin (page 34):

33

http://threecrickets.com/api/javascript/?namespace=Sincerity.Log4j.Configuration


s i n  e r i t y  r e a t e l o g s e r v e r : add logg ing : add s e r v i  e : i n s t a l l : s e r v i  e l og4 j−s e r v e r s t a r t

MongoDB Appender You an install a MongoDB-baked appender:

s i n  e r i t y add logg ing .mongodb : i n s t a l l

To on�gure the MongoDB onnetion, edit �/on�guration/logging/appenders/ommon-mongo-db.js�. By de-

fault, it onnets to loalhost at the default port (27017) without seurity, and logs to database �logs�, olletion

�ommon�.

It is strongly reommended that you use a apped olletion for your log. This guarantees both exellent write

performane as well as automati rolling. You an reate it from the �mongo� shell tool like so:

db .  r e a t eCo l l e  t i on ( ' ommon ' , {apped : true , s i z e : 100000})

Or, onvert an existing olletion to apped:

db . runCommand({ ' onvertToCapped ' : 'ommon ' , s i z e : 100000})

This plugin also provides you with a very useful tool to �tail� your entral log (works only with apped olletions):

s i n  e r i t y l o g t a i l

Press CTRL+C to quit. To test that this works, open another terminal and send a log message:

s i n  e r i t y l og "This i s a t e s t ! "

You an provide �logtail� with the MongoDB onnetion parameters:

s i n  e r i t y l o g t a i l −−u r i=l o  a l h o s t :27017 −−username=admin −−password=admin123 −−db=log s −− o l l e  t i o n=ommon

Servie Plugin

This plugin lets you easily start and ontrol any program as a daemon or servie running in the bakground.

This is ahieved using Tanuki Software's exellent Java Servie Wrapper (JSW). JSW deploys a native proess to

monitor your daemon's health, is able to detet failures and hangs, and restarts in suh ases. It supports many

on�guration options to ontrol the JVM proess, as well as JMX-based management for the wrapper. While you

an start any program using the �sinerity start� ommand, it is strongly reommended that you use this plugin

instead for prodution environments. It's so well-designed, we wish it were inluded in the JVM!

JSW runs on an impressive array of JVM-apable operating systems: Linux, Ma OS X, Windows, Solaris,

AIX, FreeBSD, HPUX, z/OS and z/Linux, supporting several 32-bit and 64-bit mahine arhitetures for eah. Of

ourse, you do not want to install support for all of these platforms in your ontainer, and so this plugin leverly

detets the underlying operating system and downloads the neessary native libraries on-demand the �rst time it

is run. An error message will be displayed on unsupported platforms.

To install:

s i n  e r i t y add s e r v i  e : i n s t a l l

To start a program as a daemon:

s i n  e r i t y s e r v i  e myprogram s t a r t

The above assumes that you have a �/programs/myprogram.js� �le. (Programs an be written in languages

other than JavaSript if they are installed in your ontainer.) See the servie wrapper's log at �/logs/servie-

myprogram.log�.

To stop the daemon:

s i n  e r i t y s e r v i  e myprogram stop

To restart it:

s i n  e r i t y s e r v i  e myprogram r e s t a r t

To hek its status:

s i n  e r i t y s e r v i  e myprogram s t a tu s

34

http://www.mongodb.org/
http://www.mongodb.org/display/DOCS/Capped+Collections
http://wrapper.tanukisoftware.com/


Additionally, you an run the wrapper in �onsole mode,� whih outputs the wrapper's log to the onsole, and

lets you easily stop it using CTRL+C. This is very useful for testing and debugging:

s i n  e r i t y s e r v i  e myprogram onso l e

Note that Sinerity uses the Community Edition of JSW, whih is liensed under the GPL (v2). Make

sure that you understand the speial impliations of this liense if you intend to redistribute your produt.

Furthermore, some Windows platforms (64bit x86 and Itanium) supported by the Standard/Professional

Editions are not supported by the Community Edition. A ommerial liense is available for purhase

without these limitations. See the liense guide for more information.

Fleshing Out

This plugin generates some parts of the JSW on�guration on the �y, but it an furthermore merge your ustom

settings into this on�guration. To do so, edit �/on�guration/servie/servie.onf�. In partiular, you might want

to ontrol the memory pro�le of your JVM, or on�gure the wrapper's logging (whih works independently of JVM

logging). See the JSW doumentation for a omplete guide.

Additionally, this plugin provides a �exible way for you to send arguments to the wrapped JVM. Any �les under

�/on�guration/servie/jvm/� with a �.onf� extension will be merged and added. The plugin omes installed with

a few sensible defaults, and additionally other plugins may add their own �.onf� �les to support the servie plugin.

These �.onf� �les all support string interpolation using any JVM system property or environment variable. For

example, here's a way to add garbage olletion logging:

−Xlogg : { s i n  e r i t y . onta ine r . root }/ l o g s /g . l og

−XX:+PrintGCDetai ls

−XX:+Pr in tTenur ingDi s t r ibut i on

It may furthermore be useful to run your Sinerity servie as an operating system servie. On Unix-like systems,

you an use a �system init sript.� Below is a sript template you may use, meant for the Restlet skeleton (page

44). It adds a speial �###� omment blok used by Linux's Standard Base (LSB) spei�ation. Let's name it

�/et/init.d/restlet�:

#!/bin/sh

### BEGIN INIT INFO

# Provides : r e s t l e t

# Required−Star t : $ l o  a l_ f s $remote_fs $network $sys l og

# Required−Stop : $ l o  a l_ f s $remote_fs $network $sys l og

# Default−Star t : 2 3 4 5

# Default−Stop : 0 1 6

# Short−Des r ip t i on : s t a r t s the Re s t l e t omponent

# Des r ip t i on : s t a r t s the Re s t l e t omponent us ing s ta r t−stop−daemon

### END INIT INFO

SINCERITY=/path/ to/ s i n  e r i t y / s i n  e r i t y

CONTAINER=/path/ to/ onta ine r

SERVICE=r e s t l e t

OWNER=myuser

COMMAND=$1

sudo −u "$OWNER" "$SINCERITY" use "$CONTAINER" : s e r v i  e "$SERVICE" "$COMMAND"

ex i t 0

For onsisteny, make sure to hange the �Provides:� entry to math the name of the �le.

You an start/stop this servie by running the above sript diretly, for example: �sudo /et/init.d/restlet start�.

On some operating systems, you may also use your �servie� ommand, for example: �sudo servie restlet start�.

Make sure to edit the variables to point to the paths on your system. Note that the �OWNER� user will be used

to run your servie, and that for seurity reasons you are strongly advised not to use �root�: it is best to reate a

35

http://wrapper.tanukisoftware.com/doc/english/licenseOverview.html
http://wrapper.tanukisoftware.com/doc/english/properties.html
http://refspecs.linuxbase.org/LSB_3.1.1/LSB-Core-generic/LSB-Core-generic/initscrcomconv.html


speial user for your servie, and to set its permissions aording to only what it needs: read aess to Sinerity

and the ontainer, and write aess to the ontainer's �/ahe/�, �/logs/� and other relevant diretories.

To make your servie start automatially when the system starts depends on your operating system. The above

sript should work on most Linux-based operating systems due to the �###� omment blok. To proess this �le

and the blok, e�etively installing the servie into the operating system, run �sudo update-r.d restlet defaults�.

That ommand uses �insserv� internally, so run �man insserv� to get doumentation for the omment blok format.

Extras

JMX is a powerful tehnology for remote monitoring and management of your JVM and appliations. Loal JMX

(using pipes) is automatially supported, however you may also need remote JMX over the network. To add it:

s i n  e r i t y add s e r v i  e . remote−jmx : i n s t a l l

The default on�guration is adequate for aessing JMX via SSH tunneling, whih is very seure. To reate the

tunnel, use the �-L� swith of SSH when onneting to your remote server:

ssh −L 1650 : l o  a l h o s t :1650 −L 1651 : l o  a l h o s t :1651 mysite . org

Note that we atually reate two tunnels, one for JMX on port 1650 and one for the RMI registry on port 1651.

With the tunnel in plae, start VisualVM (it's inluded with the JDK), hoose �Add JMX Connetion,� and use

�loalhost:1650� for the onnetion string. Note that you do not want to use �Add Remote Host�: tunneling makes

the remote host appear loal. Of ourse, you will need to keep the tunnel open for as long as you're onneted with

VisualVM.

If this is your �rst time using VisualVM, it is reommended that you install its �VisualVM-MBean� plugin, whih

will, among other things, allows you to aess JSW's bean (�org.tanukisoftware.wrapper�) for remotely restarting

your servie.

You an on�gure remote JMX by editing �/on�guration/servie/jvm/remote-jmx.onf�. For example, you may

hange the port numbers, enable authentiation, and also SSL if you prefer it to SSH tunneling.

Important note if you are using a version of the JVM prior to 7u4: Unfortunately, old versions

of the JVM do not support the �om.sun.management.jmxremote.rmi.port� property, without whih the

RMI registry port is assigned randomly, thus making it di�ult to use SSH tunneling. To solve this

problem, this Sinerity add-on omes with a speial ��rewall-friendly-agent� library that allows for this

funtionality. You must spei�ally enable it in �/on�guration/servie/jvm/remote-jmx.onf�.

Redistribution Plugin

This plugin lets you pakage your Sinerity ontainer for onvenient redistribution. See the Sinerity standalone

plugin for a di�erent approah to distribution.

Currently, it supports reating a powerful ross-platform JVM-based graphial installer, using the exellent

IzPak library. In the future, we hope to support additional distribution media.

To install:

s i n  e r i t y add r e d i s t r i b u t i o n : i n s t a l l

To use:

s i n  e r i t y izpak [ app l i  a t i on name ℄ [ ve r s i on ( opt iona l , d e f a u l t s to " 1 . 0 " ) ℄

For example, in a single ommand let's reate an installable Nexus repository manager with a few plugins:

s i n  e r i t y  r e a t e nexus : add nexus : add logg ing : add s e r v i  e : add r e d i s t r i b u t i o n : i n s t a l l : i zpak "Nexus Repos i tory Manager"

The result will be an �installer.jar� �le in your ontainer's root diretory, whih you an distribute. To install

your appliation from this jar:

java −j a r i n s t a l l e r . j a r

(Note that on some desktop environments double-liking this �le would also run it.)

The installed diretory will ontain a onvenient �uninstaller.jar�.

36

http://docs.oracle.com/javase/tutorial/jmx/
http://visualvm.java.net/
http://izpack.org/


Fleshing Out

To hange the liense, edit �/on�guration/izpak/liense.txt�.

The �/on�guration/izpak/installer.xml� inluded with this plugin has sensible defaults that should work �ne

for many use ases, but you'll likely want to ustomize it. By default, it merges your Sinerity install in, and

exludes IzPak itself, as well as the �/ahe/� and �/logs/� diretory. This guarantees that it would �just work�

leanly on any JVM with no pre-requisites.

Please see the IzPak doumentation for full details. IzPak is very powerful, and an let you reate modular,

�exible distributions.

Markup Plugin

Need to quikly render markup text into HTML? Markdown, Con�uene, MediaWiki, Twiki, Tra, Textile and

Bugzilla Textile are all supported by this plugin. Markdown is supported by the Pegdown engine, and the rest by

Mylyn WikiText. (While useful in itself, this plugin is intended to serve as a ode example for using these libraries.)

The rendering engines themselves are not at �rst installed: the plugin will make sure that the engine you need

is available, and install it if it's not, on demand.

To install:

s i n  e r i t y add markup : i n s t a l l

To use:

s i n  e r i t y render [ language ℄ [ marked up soure path ℄ [ rendered output path ℄

For example:

s i n  e r i t y render markdown README.md readme . html

Batik SVG Plugin

Need to quikly render SVG into PDF, PNG or JPEG? This plugin uses Apahe Batik to do so. (While useful in

itself, this plugin is intended to serve as a ode example for using Batik.)

To install:

s i n  e r i t y add bat ik : i n s t a l l

To use:

s i n  e r i t y render [SVG soure path ℄ [ rendered output path ℄

The output path extension will determine the output type. For example:

s i n  e r i t y render t e s t . svg t e s t . pdf

JsDo Plugin

Uses JsDo Toolkit.

�jsdo.sinerity�

See JsDo template (page 50).

Skeletons

You've most likely ome to Sinerity for the skeletons: they provide the easiest way to get started with all kinds

of frameworks, servers and libraries, while Sinerity lets you easily add more features, more libraries and more

languages as your projet grows.

37

http://izpack.org/documentation/installation-files.html
https://github.com/sirthias/pegdown
http://wiki.eclipse.org/Mylyn/Incubator/WikiText
http://xmlgraphics.apache.org/batik/
http://code.google.com/p/jsdoc-toolkit/


Web Platforms

• Prudene (page 46)

• Restlet (page 44)

• Jetty: stati web (page 42)

• Jetty: servlet/JSP ontainer (page 43)

Web Frameworks

• Diligene (page 47)

• Rails (page 47)

• Django (page 48)

Databases

• OrientDB (page 40)

• H2 (page 41)

Middleware

• Hadoop (page 40)

• Solr (page 39)

• Felix (page 46)

• Nexus (page 38)

Nexus Skeleton

Sonatype's Nexus repository manager is a reommended ompanion for Sinerity. At its most basi, it provides

you with a proxy for aessing remote repositories, suh as the Three Crikets repository in whih many Sinerity

pakages are stored. Aessing repositories via a proxy provides you with muh better performane and reliability.

Nexus is a very powerful tool, and learning how to use it well will an go a long way towards improving your

Sinerity experiene.

With Sinerity, it's a piee of ake to install a working Nexus instane:

s i n  e r i t y add nexus : i n s t a l l

Give this a minute or two: Nexus has a lot of dependenies, though most are tiny.

To start the server:

s i n  e r i t y s t a r t j e t t y

The default port is 8080, so point your browser to http://loalhost:8080 to see your new Nexus repository

manager. The default user is �admin� with password �admin123�. You probably want to log in and hange that

password. Nexus provides a rih web-based interfae and inludes exellent doumentation.

Note that the Nexus skeleton relies on the standard Jetty servlet skeleton, to whih you an indeed install other

�ontexts� (web appliations).

Fleshing Out

You may want to hange the default port from 8080, whih you an do by editing �/server/onnetors/default.js�.

Otherwise, the default on�guration should be quite sensible. It inludes support for the standard repositories

used by Sinerity, in addition to the Nexus defaults. Logging has also been on�gured to adhere to Sinerity's

ontainer struture, so that logs will appear under �/logs/�. Note that Nexus itself will not use Sinerity's logging

plugin (page 32), but you an on�gure Nexus logging right in the user interfae.

38

http://www.sonatype.org/nexus/
http://localhost:8080


Extras

Two plugins are strongly reommended: logging (page 32) and servie (page 34). To install them:

s i n  e r i t y add logg ing : add s e r v i  e : i n s t a l l

Note that the Nexus appliation uses its own logging implementation, whih must be on�gured internally.

However, the logging plugin (page 32) will be put to good use by the ontaining Jetty server.

The following ommand will install a Nexus repository with the reommended plugins into a Sinerity ontainer

reated in the urrent diretory, and then start it a servie:

s i n  e r i t y  r e a t e myontainer : add nexus : add logg ing : add s e r v i  e : i n s t a l l : s e r v i  e j e t t y s t a r t

To stop it:

s i n  e r i t y use myontainer : s e r v i  e j e t t y stop

Solr Skeleton

Apahe Solr is a popular distributed textual searh platform. It runs on the JVM and relies on the exellent Luene

library for indexing and searhing, but is aessed via simple network APIs, making it perfet for distributed

deployments and heavy loads. Client libraries are available for many platforms, and are even integrated into the

bakends of many web development frameworks, suh as Django and Ruby on Rails.

With Sinerity, it's a piee of ake to install a working Solr instane:

s i n  e r i t y add s o l r : i n s t a l l

To start the server:

s i n  e r i t y s t a r t j e t t y

The default port is 8080, so point your browser to http://loalhost:8080/solr/admin/ to see the main Solr

administration page.

Fleshing Out

The skeleton omes with the example on�guration supplied with the o�ial Solr distribution, and should serve as

a good starting point for the majority of projet. The on�guration is available under �/on�guration/solr/onf/�,

and indexing and other data is stored in �/data/solr/�.

Solr is very on�gurable, both in terms of performane �ne-tuning and language analysis and indexing. It also

enjoys a range of useful plugins. See the o�ial site for more information on �eshing out your skeleton.

Extras

The logging plugin (page 32) is strongly reommended. To install it:

s i n  e r i t y add s e r v i  e : i n s t a l l

Note that the logging plugin (page 32) is already inluded in the skeleton, beause Solr relies on SLF4J.

The following ommand will install a Solr server with the reommended plugins into a Sinerity ontainer reated

in the urrent diretory, and then start it a servie:

s i n  e r i t y  r e a t e myontainer : add s o l r : add s e r v i  e : i n s t a l l : s e r v i  e j e t t y s t a r t

To stop it:

s i n  e r i t y use myontainer : s e r v i  e j e t t y stop

39

http://lucene.apache.org/solr/
http://lucene.apache.org/
http://localhost:8080/solr/admin/


Hadoop Skeleton

Apahe Hadoop is a powerful platform for distributed omputing, well known for its salable distributed �lesystem

and popular map-redue module. It provides the underlying infrastruture for several data storage and analysis

platforms, suh as Cassandra, HBase, Hive and Pig.

Hadoop runs best on Linux, where it relies on native libraries. This skeleton detets the underlying arhiteture

and downloads the neessary native libraries on-demand.

With Sinerity, it's a piee of ake to install a working Hadoop instane. Note that we need to format the node

�rst:

s i n  e r i t y add hadoop : i n s t a l l : hadoop namenode −format

(Note that the �namenode -format� ommand exits the JVM when done, so you annot hain more ommands

after it.)

Then, to start the node:

s i n  e r i t y hadoop s t a r t

If this is the only node in your Hadoop luster, you will need to wait about 30 seonds for the servies to fully

initialize. To test opying �les to and from the Hadoop �lesystem:

s i n  e r i t y hadoop f s −put myf i l e . txt t e s t . txt

s i n  e r i t y hadoop f s −get t e s t . txt t e s t . txt

To stop the node:

s i n  e r i t y hadoop stop

To see the status of the node servies:

s i n  e r i t y hadoop s t a tu s

Note that Hadoop uses the logging plugin (page 32) to manage the node servies.

Fleshing Out

The skeleton omes with a plugin that supports the full list of Hadoop ommands, and additionally supports �start�,

�stop� and �status� to manage the servies.

All logs are under �/logs/�, and the data is stored in �/data/�.

To on�gure your instane, see �/on�guration/hadoop/�. The default on�guration is based on that of the

o�ial Hadoop distribution on ports 8000 (name node) and 8001 (job traker). The logging on�guration is based

on the logging plugin (page 32), but its essential setup has likewise been opied over from the o�ial distribution.

OrientDB Skeleton

OrientDB is a powerful doument- and graph-oriented (�NoSQL�) database server designed for salability. As a

graph database, it supports the entire Tinkerpop stak, inluding the Gremlin graph traversal language, allowing

you to easily port your appliation between di�erent database implementations. For users needing features from

traditional RDBMS, OrientDB also supports SQL and allows enforing shemas on your olletions.

If you're interested in a more traditional RDBMS, hek out Sinerity's H2 skeleton.

The Sinerity OrientDB skeleton makes it easy to set up and run a single OrientDB instane, whih an run on

its own or as a node in a multi-master luster. To install an OrientDB instane:

s i n  e r i t y add or ientdb : i n s t a l l

To start the server:

s i n  e r i t y s t a r t or i entdb

The default web port is 2480, so point your browser to http://loalhost:2480/studio/ to see the OrientDB Studio

appliation.

To start the onsole:

s i n  e r i t y onso l e

In the onsole, to onnet to the demo �tinkerpop� database:

40

http://hadoop.apache.org/
http://hadoop.apache.org/hdfs/
http://hadoop.apache.org/mapreduce/
http://cassandra.apache.org/
http://hbase.apache.org/
http://hive.apache.org/
http://pig.apache.org/
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SingleCluster.html
http://www.orientdb.org/
http://tinkerpop.com/
https://github.com/tinkerpop/gremlin/wiki
http://localhost:2480/studio/


orientdb> onnet remote : l o  a l h o s t / t inkerpop admin admin

orientdb> greml in g .V[ 1 ℄

Fleshing Out

The OrientDB plugin also supports a �gremlin� ommand to get a pure Gremlin onsole, though note you an also

run Gremlin ode in the general OrientDB onsole by pre�xing it with the �gremlin� ommand.

To on�gure your instane, start with �/on�guration/orientdb/server.onf� (XML). The default �server.onf�

also referenes �database.onf� (JSON) and �hazelast.onf� (XML).

Additionally, �properties.onf� (properties sheet) an be used to set JVM system properties used by OrientDB.

Databases will be stored in the �/databases/� diretory in your Sinerity ontainer.

Extras

Two plugins are strongly reommended: logging (page 32) and servie (page 34). To install them:

s i n  e r i t y add logg ing : add s e r v i  e : i n s t a l l

The following ommand will install an OrientDB node with the reommended plugins into a Sinerity ontainer

reated in the urrent diretory, and then start it a servie:

s i n  e r i t y  r e a t e myontainer : add or ientdb : add logg ing : add s e r v i  e : i n s t a l l : s e r v i  e or i entdb s t a r t

To stop it:

s i n  e r i t y use myontainer : s e r v i  e or i entdb stop

H2 Skeleton

H2 is a lightweight-yet-powerful relational database management system (RDBMS). It an run both as a standalone

server (supporting a PostgreSQL ompatibility mode), or embedded in your JVM program.

If you're interested in non-relational (�NoSQL�) databases, hek out Sinerity's OrientDB skeleton.

The Sinerity H2 skeleton is spei�ally designed to make it easy to run H2 in standalone server mode. To

install an H2 instane:

s i n  e r i t y add h2 : i n s t a l l

To start the server:

s i n  e r i t y s t a r t h2

The default web port is 8082, so point your browser to http://loalhost:8082/ to see the H2 Console appliation.

Note that the web onsole appliation is useful not just for H2: it be used to onnet to any JDBC URI, as long as

you have the JDBC driver installed in your Sinerity ontainer.

Fleshing Out

The H2 plugin supports all the tools that ome with H2. You an use �sinerity help� to get a list of them. For

example, to reate a luster:

s i n  e r i t y reate− l u s t e r \

−ur lSoure jdb : h2 : tp :// l o  a l h o s t :9101/ t e s t \

−ur lTarget jdb : h2 : tp :// l o  a l h o s t :9102/ t e s t \

−user sa \

−s e r v e rL i s t l o  a l h o s t : 9101 , l o  a l h o s t :9102

To on�gure your server, see �/on�guration/h2/server.onf�. Lines that are not empty and do not begin with

�#� will be added as ommand line arguments to the �server� tool. In fat, you an reate �.onf� �les for all the

H2 tools if you wish to set default ommand arguments for them. For example, �reate-luster.onf�.

By default, databases will be stored in the �/databases/� diretory in your Sinerity ontainer. However, note

that H2's JDBC URI allows you to aess database stored anywhere in the �lesystem. If this is a seurity onern,

you may want to onsider running the H2 server in a loked-down operating system user.

41

http://www.h2database.com/
http://localhost:8082/


Extras

Two plugins are strongly reommended: logging (page 32) and servie (page 34). To install them:

s i n  e r i t y add logg ing : add s e r v i  e : i n s t a l l

The following ommand will install an H2 database server with the reommended plugins into a Sinerity

ontainer reated in the urrent diretory, and then start it a servie:

s i n  e r i t y  r e a t e myontainer : add h2 : add logg ing : add s e r v i  e : i n s t a l l : s e r v i  e h2 s t a r t

To stop it:

s i n  e r i t y use myontainer : s e r v i  e h2 stop

Jetty Web Server Skeleton

Need a web server for stati �les? No problem:

s i n  e r i t y add j e t t y . web : i n s t a l l

Jetty is a very robust, modular web server with exellent asynhronous performane, and lots of features and

extensions. With this skeleton we've provided you with the lightweight, bare minimum dependenies to serve just

stati �les for a single web site.

To start you server:

s i n  e r i t y s t a r t j e t t y

The default port is 8080, so point your browser to http://loalhost:8080 to see the default weloming page.

Jetty allows for muh more sophistiation than just serving a single web site, and for that we've provided a sep-

arate skeleton: �jetty.servlet�. That skeleton supports multiple �ontexts� under the server, as well as on�guration

of onnetors, and of ourse servlets and web appliations pakaged as WAR �les.

Additionally, Jetty is a reommended onnetor for Restlet. It's available as a skeleton add-on, �restlet.jetty�.

The Jetty skeletons use Jetty 9.3, whih requires a JVM of at least version 8.

Fleshing Out

Just put your �les under the ontainer's �/web/� diretory, using the usual rules for web servers: URLs are mapped

to �le paths under �/web/�, and diretory URLs are mapped to �index.html� �les in that diretory. MIME types

are automatially guessed aording to the ommon �lename extensions.

You an on�gure the server by editing �/on�guration/jetty/default.js�. For example, you an hange the port,

enable SSL, and also HTTP/2. Note that support for SPDY must be added as an �extra� (see below).

For SSL, the example omes with a self-signed key stored in a Java KeyStore (JKS) at �/on�guration/jetty/-

jetty.jks�. You should use it only for testing! Otherwise, you will want to reate or import your own key using the

�keytool� utility that is bundled with most JDKs. Here's how to reate a new, unique key:

key too l −keys to r e j e t t y . j k s −a l i a s j e t t y −genkey −keya lg RSA

Suh self-reated keys are useful for ontrolled intranet environments, in whih you an provide lients with the

publi key, but for Internet appliations you will likely want a key reated by one of the �erti�ate authorities�

trusted by most web browsers. Some of these erti�ate authorities may onveniently let you download a key in

JKS format. Otherwise, if they support PKCS12 format, you an use keytool (only JVM version 6 and later) to

onvert PKCS12 to JKS. For example:

key too l −importkeystore −s r  s t o r e t yp e PKCS12 −s r  k ey s t o r e mysite . pks12 −

des tkeys to r e j e t t y . j k s

If your erti�ate authority won't even let you download PKCS12 �le, you an reate one from your �.key� and

�.rt� (or �.pem�) �les using OpenSSL:

opens s l pks12 −inkey /path/mykey . key −in /path/mykey .  r t −export −out mysite .

pks12

(Note that in this ase you must give your new PKCS12 a non-empty password, or else keytool will fail with an

unhelpful error message.)

42

http://www.eclipse.org/jetty/
http://localhost:8080
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://www.openssl.org/


Extras

Two plugins are strongly reommended: logging (page 32) and servie (page 34). To install them:

s i n  e r i t y add logg ing : add s e r v i  e : i n s t a l l

It is also possible to add HTTP/2 support: this protool, supported by many web browsers, an improve the

user experiene as well as redue server load when using �https�.

To install support for HTTP/2, as well as the required ALPN support:

s i n  e r i t y add j e t t y . http2 : i n s t a l l

To enable ALPN, you need to speify your �alpn-boot.jar� in the JVM_BOOT_LIBRARIES environment

variable (page 12), for example:

JVM_BOOT_LIBRARIES=/path/ to/myontainer / l i b r a r i e s / j a r s / org . mortbay . j e t t y . alpn /alpn−boot /8 . 1 . 3 / alpn boot . j a r \

s i n  e r i t y : s t a r t j e t t y

It's a bit awkward, but neessary due to the way ALPN is seurely implemented in the JVM.

The following ommand will install a web server with the reommended plugins into a Sinerity ontainer reated

in the urrent diretory, and then start it a servie:

s i n  e r i t y  r e a t e myontainer : add j e t t y . web : add logg ing : add s e r v i  e : i n s t a l l : s e r v i  e j e t t y s t a r t

To stop it:

s i n  e r i t y use myontainer : s e r v i  e j e t t y stop

Jetty Servlet/JSP Skeleton

Servlets let you generate dynami ontent for a web site, usually using the Java language. There is a very large

eosystem of free servlets out there, inluding omplete frameworks, that an help you develop dynami appliations.

To install a bare servlet skeleton, based on Jetty:

s i n  e r i t y add j e t t y . s e r v l e t : i n s t a l l

To start you server:

s i n  e r i t y s t a r t j e t t y

The default port is 8080, so point your browser to http://loalhost:8080. But, you won't see anything yet:

this is a bare skeleton waiting for you to add your appliation to it. You might want to start by installing

�jetty.servlet.example� �rst.

Note that if you only intend to install Jetty as a simple web server for stati �les, then you an use a simpler

skeleton: �jetty.web�.

As useful as servlets are, we reommend you take a look at the Restlet skeleton (page 44) if you want to build

a dynami web appliation in Java. And Restlet an use Jetty as its underlying onnetor.

And why stop there? Prudene (page 46) builds on Restlet, letting you do all of that and more with your hoie

of JavaSript, Python, Ruby, PHP, Lua, Groovy or Clojure. (Dislosure: Prudene has also been reated by Three

Crikets.)

The Jetty skeletons use Jetty 9.3, whih requires a JVM of at least version 8.

Fleshing Out

Jetty's o�ial distribution (whih doesn't rely on Sinerity. . . yet) is a perfet example of why Sinerity needs to

exist. �O�ial� Jetty on�guration is a morass of XML �les that e�etively dupliate what a lightweight sripting

language, like JavaSript does far more omprehensibly and with far greater power. If you're swithing from �o�ial�

Jetty, then you're in for a treat, as well as a sigh of relief.

Con�guration is handled similarly to the Jetty web server skeleton (page 42): in the same way, you an add SSL

and SPDY support.

Though Jetty an use the logging plugin (see below), it also supports its own internal logging mehanism for the

web (NCSA-style) log. To on�gure it, see �/server/servies/web-log.js�. By default, these logs will appear under

the �/logs/web/� diretory, and will be named aording to the date.

43

https://http2.github.io/
https://en.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation
http://www.eclipse.org/jetty/
http://localhost:8080
http://en.wikipedia.org/wiki/Common_Log_Format


Extras

Two add-ons are available: �jetty.servlet.jsp� adds support for JSP (JavaServer Pages), and �jetty.servlet.jmx� adds

JMX support to your Jetty server, allowing you to manage it via VisualVM or JConsole. To install both add-ons:

s i n  e r i t y add j e t t y . s e r v l e t . j sp : add j e t t y . s e r v l e t . jmx : i n s t a l l

(You an test JSP support in the example WAR below, at http://loalhost:8080/test/jsp/.)

It is also possible to add SPDY support: this protool, supported by many web browsers, an improve the user

experiene as well as redue server load when using �https�. For instrutions, see the Jetty web server skeleton (page

43).

A nie example of a Jetty server with multiple ontexts is also provided, whih inludes a stati web server, a

servlet ontainer, and a web appliation installed as a WAR �le:

s i n  e r i t y add j e t t y . s e r v l e t . example : i n s t a l l

(You an install this on its own, and it will pull in the basi skeleton as a dependeny.)

The example �/server/ontexts/servlet-example/� is the most elaborate: it shows you how you an drop in Java

soure ode for your servlets and have them ompiled as the server starts.

Additionally, two plugins are strongly reommended: logging (page 32) and servie (page 34). To install them:

s i n  e r i t y add logg ing : add s e r v i  e : i n s t a l l

The following ommand will install the servlet examples with the reommended plugins into a Sinerity ontainer

reated in the urrent diretory, and then start it a servie:

s i n  e r i t y  r e a t e myontainer : add j e t t y . s e r v l e t . example : add logg ing : add s e r v i  e : i n s t a l l : s e r v i  e j e t t y s t a r t

To stop it:

s i n  e r i t y use myontainer : s e r v i  e j e t t y stop

Restlet Skeleton

The Restlet library (�Restlet� is a registered trademark of Restlet S.A.S.) lets you dynamially generate web ontent,

but it goes beyond just responding to lient requests: it lets you map RESTful resoures to URIs, while handling all

the triky HTTP mehanis involved (ontent negotiation, onditional HTTP) and providing full, rih abstrations

for routing, �ltering and data presentation.

To install the minimal skeleton:

s i n  e r i t y add r e s t l e t : i n s t a l l

To start your Restlet omponent and its servers:

s i n  e r i t y s t a r t r e s t l e t

The default port is 8080, so point your browser to http://loalhost:8080.

Restlet, on its own, requires you to ode in Java, but Prudene (page 46) builds on Restlet, letting you do all of

the above with your hoie of JavaSript, Python, Ruby, PHP, Lua, Groovy or Clojure. (Dislosure: Prudene has

also been reated by Three Crikets.)

Fleshing Out

While Restlet requires you to write your resoures in Java, there is no reason for your bootstrapping ode�the

ode that assembles your omponent, servers, lients, hosts and routes�to be so rigid. The API for boostrapping

your omponent is simple and elegant enough, but without Sinerity you would have to likely have to write it in

Java, or implement your own bootstrapping mehanism or use a DSL.

JavaSript, Sinerity's natural language, provides a lightweight solution, and one that does not require you to

reompile anything when all you want to hange is your on�guration. Of ourse, one your omponent is up and

running, JavaSript plays no more role. We mention that in ase you're worried about performane, though you

shouldn't be: the language engine is likely not the soure of any bottleneks in your appliation's live performane.

The skeleton follows the network struture of Restlet, whih in turn losely adheres to Roy Fielding's original

terminology for Representational State Transfer (REST):

The �/omponent/� diretory is the basis for your REST omponent.

44

http://localhost:8080/test/jsp/
http://www.chromium.org/spdy/spdy-whitepaper
http://www.restlet.org/
http://www.restlet.com/
http://localhost:8080
http://code.google.com/p/groovy-restlet/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm


Under �/omponent/servers/� you an reate �les for HTTP servers bound to your omponent. See the

API doumentation. The default is a single HTTP server is reated on port 8080, but you an reate additional

servers. The tehnology used for the servers is alled a �onnetor,� and is pluggable in Restlet. Connetors annot

be seleted by API alls; rather, they are installed automatially if they are disovered in the lasspath. By default,

the Sinerity skeleton for Restlet relies on Restlet's internal onnetor, but it is not reommended for prodution

appliations. See �Extras� (page 45) on how to install other onnetors.

A quik and easy way to hange the port for the default server is to set the environment variable is �REST-

LET_PORT� (or the �restlet.port� JVM property):

RESTLET_PORT=80 s i n  e r i t y s t a r t r e s t l e t

Under �/omponent/hosts/� you an reate �les for virtual hosts. See the API doumentation. The default host

has no �lters, meaning that all requests from all servers will be routed to it. If you need several virtual hosts,

you will want to make the default host less inlusive, or do away with a default host entirely. (The default host is

merely a Restlet onveniene and is not required for a omponent.) Appliations an be attahed to one or more

hosts (see below).

Under �/omponent/lients/� you an reate �les for lients supported by your omponent. See the

API doumentation. As with servers, lient tehnologies are �onnetors� installed on the lasspath. Eah on-

netor handles a spei� URI protool, suh as �http:�, �https:� and ��le:�. The skeleton de�nes no lients by

default, but you an reate �les here for eah lient you need. Install the Restlet example (page 45) to see usage

of a ��le:� lient. (The ��le:� lient is required internally by the Restlet Diretory resoure.) Note that the Restlet

internal onnetor an handle �http:�, but not �https:�. To add support for �https:�, you an install the Apahe

HttpClient onnetor (page 45).

The �/omponent/servies/� is used to on�gure Restlet servies, suh as ConnegServie, TunnelServie, En-

oderServie, et., but an be used for any additional work to be done before appliations are on�gured. By default

only the LogServie is on�gured.

Finally, �/omponent/appliations/� is where you an reate your Restlet appliations. See the

API doumentation. Though you an attah appliations diretly to your omponent, it is reommended that

you attah them to virtual hosts, even if it's just the default host, as it allows you more routing �exibility. Also,

though there is no requirement to do so, most Restlet appliations will probably have a Router as their inbound

root. It is ruial that you understand how routing works in Restlet: from server, through host, through appliation,

through router, and �nally to your RESTful resoures. Please refer to the Restlet doumentation for full details.

Note that the skeleton does not inlude any appliation by default, but one is available for you to install (page 45).

It may be useful during development to start only a few selet appliations. This an be done by providing the

appliation diretory names you wish to start as arguments to the �start restlet� ommand:

s i n  e r i t y s t a r t r e s t l e t r e s t l e t−example myapp

Alternatively, you an set the �RESTLET_APPLICATIONS� environment variable (or the �restlet.appliations�

JVM property) to a omma-separated list of appliation diretory names:

RESTLET_APPLICATIONS=r e s t l e t−example ,myapp s i n  e r i t y s t a r t r e s t l e t

Extras

A simple example Restlet appliation, with a ustom resoure as well as stati ontent:

s i n  e r i t y add r e s t l e t . example : i n s t a l l

(You an install this on its own, and it will pull in the basi skeleton as a dependeny.)

The example at �/omponent/appliations/example/� shows you how you an drop in Java soure ode for your

resoures and have it ompiled automatially.

The skeleton does not install any onnetors by default, relying instead on the default Restlet onnetors. To

install the Jetty server onnetor, you have the hoie of either Jetty 9.3 (requires JVM 8) or Jetty 9.2 (requires

JVM 7). For 9.3:

s i n  e r i t y add r e s t l e t . j e t t y : i n s t a l l

For 9.2:

s i n  e r i t y add r e s t l e t . j e t t y . l egay : i n s t a l l

45

http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/Server.html
http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/routing/VirtualHost.html
http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/Client.html
http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/service/package-summary.html
http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/Application.html
http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/routing/Router.html
http://www.eclipse.org/jetty/


It is possible to add HTTP/2 support to Jetty 9.3: this protool, supported by many web browsers, an improve

the user experiene as well as redue server load when using �https�. For instrutions, see the Jetty web server

skeleton (page 43).

To install the Apahe HttpClient onnetor:

s i n  e r i t y add r e s t l e t . h t t p  l i e n t : i n s t a l l

Other shortuts inlude �restlet.simple� (the Simple Framework server onnetor).

Additionally, two plugins are strongly reommended: logging (page 32) and servie (page 34). To install them:

s i n  e r i t y add r e s t l e t . l ogg ing : add s e r v i  e : i n s t a l l

(Note that �restlet.logging� is used here in preferene over Sinerity's �logging� plugin. The former depends on

the latter, but adds a Restlet library that provides a diret hute to SLF4J, whih is more e�ient than bridging.)

The following ommand will install the Restlet example with the reommended plugins into a Sinerity ontainer

reated in the urrent diretory, and then start it a servie:

s i n  e r i t y  r e a t e myontainer : add r e s t l e t . example : add r e s t l e t . j e t t y : add r e s t l e t . l ogg ing : add s e r v i  e : i n s t a l l : s e r v i  e r e s t l e t s t a r t

To stop it:

s i n  e r i t y use myontainer : s e r v i  e r e s t l e t stop

Felix Skeleton

Apahe Felix is �exible, straightforward OSGi (R4) ontainer.

To install:

s i n  e r i t y add f e l i x : i n s t a l l

To start the Gogo onsole:

s i n  e r i t y f e l i x

(You an also use �sinerity gogo� instead.) As an example, let's install the web onsole via Gogo:

i n s t a l l http : // arh ive . apahe . org/ d i s t / f e l i x /org . apahe . f e l i x . http . j e t ty −2 .2 . 0 . j a r

s t a r t 5

i n s t a l l http : // arh ive . apahe . org/ d i s t / f e l i x /org . apahe . f e l i x . webonsole −3 .1 . 8 . j a r

s t a r t 6

In this example you may need to hange the IDs in the �start� ommand to math the bundle IDs that Gogo

reports. Then, point your browser to http://loalhost:8080/system/onsole/. The default user is �admin� with

password �admin�.

Prudene Skeleton

Prudene is a platform on whih you an build salable web frontends and network servies. It lets you write

your server-side ode in JavaSript, Python, Ruby, PHP, Lua, Groovy or Clojure. Though minimalisti, Prudene

addresses real-world, pratial web development needs, from virtual hosting and URI rewriting to state-of-the-art

server- and lient-side ahing. Your appliations an support rih lients (AJAX), thin lients (pure HTML), and

happy mixes between the two.

Prudene is distributed exlusively as a Sinerity skeleton with a large olletion of tightly integrated add-ons.

It is an extension of the Restlet skeleton (page 44), so the doumentation there applies here. It is, in turn, the

underlying platform for Diligene (page 47).

Sine version 2.0, Prudene is designed from the ground-up around Sinerity, and suh provides the primary

example for how Sinerity an reform produt distribution.

Historially, it was atually the other way around. Sinerity was designed by Three Crikets preisely in

order to make Prudene 2.0 sanely modular, building on many lessons learned while deploying Prudene

1.0 and 1.1. It was lear during development that there was nothing in the proposed solution that was

spei� to Prudene. And so Sinerity was born as a generi tool useful for many JVM projets.

Quik start to see the Prudene example:

s i n  e r i t y add prudene . example : i n s t a l l : s t a r t prudene

And then browse to http://loalhost:8080/.

46

http://hc.apache.org/httpcomponents-client-ga/
http://www.simpleframework.org/
http://felix.apache.org/
http://www.osgi.org/Specifications/HomePage
http://localhost:8080/system/console/
http://threecrickets.com/prudence/
http://threecrickets.com/prudence/download/#sincerity
http://localhost:8080/


Diligene Skeleton

Diligene lets you develop salable data-driven web appliations in server-side JavaSript, using MongoDB as its

data provider and Prudene (page 46) as its RESTful base. It features strong integration with lient-side �AJAX,�

notably Ext JS and Senha Touh, and lean-room integration with Faebook, Twitter, Google, et. Servies

inlude a salable email noti�ation system, robust sitemap generation (with speial support for very large sites),

authentiation and authorization, and support for several markup languages.

Diligene is distributed exlusively as a Sinerity skeleton. It is an extension of the Prudene skeleton (page 46)

and the Restlet skeleton (page 44), so the doumentation there applies here.

(Dislosure: Like Sinerity and Prudene, Diligene is developed by Three Crikets. The three produts together

form a powerful web appliation stak on top of the JVM.)

Quik start to see the Diligene example:

s i n  e r i t y add d i l i g e n  e . example : i n s t a l l : s t a r t prudene

And then browse to http://loalhost:8080/diligene-example/. Note that the example expets an unproteted

MongoDB instane running at loalhost.

Rails Skeleton

Ruby on Rails, or just �Rails,� is a popular web development framework for the Ruby programming language. It

ombines a traditional MVC approah with a RESTful orientation baked by relational database stores (MySQL,

Postgres). Rails enjoys the elegant, often-imitated, AtiveReord ORM, and a powerful �sa�olding� feature that

automatially generates models, views and ontrollers to whih you an add your ode.

Rails is known to work very well on the JVM, but it an sometimes be painful to install everything and get it

running. The Sinerity skeleton an do it all for you with one ommand:

s i n  e r i t y add r a i l s : i n s t a l l

This may take a few minutes: Rails is quite massive.

To start you server:

s i n  e r i t y s t a r t r a i l s

The default port is 3000, so point your browser to http://loalhost:3000.

If you're looking for a more stritly RESTful, minimalist alternative to Rails, while stiking to Ruby, take a

look at Prudene (page 46). (Dislosure: Prudene has also been reated by Three Crikets.)

Fleshing Out

The skeleton will reate an appliation for you under �/app/�, so you don't have to run �rails new� to reate one.

Indeed, the orret way to start a new Rails projet in Sinerity is simply to reate a new ontainer for it. That's

the whole point of Sinerity!

The skeleton omes with a plugin to handle the �rails� tool for you, similarly to how Sinerity's Ruby plugin adds

ommands for ommon Ruby tools, suh as �gem� and �rake�. The bene�t of this approah is that you do not have

to expliitly hange to the �/app/� diretory to run the tool, and indeed you an hain it as is usual with Sinerity

ommands. It should work identially to the usual �rails� ommand: simple pre�x �sinerity� to it. Examples:

s i n  e r i t y r a i l s generate  o n t r o l l e r home index

s i n  e r i t y r a i l s generate s  a f f o l d Post name : s t r i n g t i t l e : s t r i n g ontent : t ex t

s i n  e r i t y rake db : migrate

Or as one Sinerity ommand:

s i n  e r i t y use myontainer : r a i l s generate  o n t r o l l e r home index : r a i l s generate s  a f f o l d Post name : s t r i n g t i t l e : s t r i n g ontent : t ex t : rake db : migrate

A quik note: Ruby is a bit sluggish to start up on the JVM, whih you will notie when running �rails�.

However, don't let this worry you: one it's up and running, your Rails appliation will perform marvelously.

And that's it: from here on, it's all standard Rails goodness. You an go ahead with the tutorial, skipping step

3.2 (�Creating the Blog Appliation�).

MySQL, PostgreSQL and SQLite are all supported out of the box, identially to how Rails works on other

platforms.

If you need to aess the Rails soure ode, you'll �nd it under �/libraries/ruby/lib/ruby/gems/1.8/gems/�,

whih is where all Ruby gems will be installed in your ontainer.

47

http://threecrickets.com/diligence/
http://www.mongodb.org/
http://www.sencha.com/products/extjs
http://www.sencha.com/products/touch/
http://threecrickets.com/diligence/download/#sincerity
http://localhost:8080/diligence-example/
http://rubyonrails.org/
http://localhost:3000
http://guides.rubyonrails.org/getting_started.html


Extras

Though the �rails� tool does support a daemon mode, Sinerity's logging plugin (page 32) is far more powerful and

is strongly reommended. To install:

s i n  e r i t y add s e r v i  e : i n s t a l l

The following ommand will install the Rails skeleton with the reommended plugins into a Sinerity ontainer

reated in the urrent diretory, and then start it a servie:

s i n  e r i t y  r e a t e myontainer : add r a i l s : add s e r v i  e : i n s t a l l : s e r v i  e r a i l s s t a r t

To stop it:

s i n  e r i t y use myontainer : s e r v i  e r a i l s stop

Note that Sinerity's logging plugin (page 32) won't do you muh good out of the box, beause Rails uses

Ruby's logging system, not the JVM's. However, it should be easy implement your own Ruby logger that delegates

to standard JVM logging if that seems exiting to you.

Django Skeleton

Django is a popular web development framework for the Python programming language. It relies on a traditional

MVC approah baked by relational database stores (MySQL, Postgres). Django enjoys a large eosystem of drop-in

features and snippets, but already provides many features right out of the box. Muh the appeal of Django is the

Python programming language: elegant, lean and supported by what must be the friendliest and most weloming

ommunity of any programming language.

There are many advantages for running Django on the JVM instead of on the CPython referene platform:

great performane, muh improved salability (there is no GIL in Jython), as well as aess to any JVM library in

addition to Python libraries. Of ourse, Sinerity makes it extremely easy and transparent to add both kinds of

libraries as dependenies.

If you're looking for RESTful, minimalist alternative to Django, while stiking to Python, take a look at Prudene

(page 46). (Dislosure: Prudene has also been reated by Three Crikets.)

Django an be di�ult to install and get running on Jython, but of ourse it's trivial with Sinerity:

s i n  e r i t y add django : i n s t a l l

This may take a few minutes: Django is quite massive!

To start you server:

s i n  e r i t y s t a r t django

The default port is 8000, so point your browser to http://loalhost:8000.

Fleshing Out

The skeleton already has a minimal projet ready for you under �/projet/�, so you don't have to run �django-

admin.py startprojet� to reate one. Indeed, the orret way to start a new Django projet in Sinerity is simply

to reate a new ontainer for it. That's the whole point of Sinerity!

However, if you need to aess �django-admin.py�, it is loated under your �/exeutables/� diretory, so:

s i n  e r i t y exeute django−admin . py

Muh of the work with Django involves running �manage.py�, whih in this skeleton is loated under �/proje-

t/manage.py�. You an run it easily, from anywhere in the ontainer, with a handy plugin:

s i n  e r i t y manage

Note that Python is a bit sluggish to start up on the JVM, whih you will notie when running �manage�.

However, don't let this worry you: one it's up and running, your Django appliation will perform very well.

And that's it: from here on, it's all standard Django goodness. You an go ahead with the tutorial, skipping

the short �Creating a projet� step.

Well, just one quik note: the database bakend uses JDBC drivers (the JVM's relational database interfae)

instead of Python drivers, so the database engine names in your �settings.py� are a little bit di�erent than in

the o�ial tutorial. You'll see the supported options ommented in �settings.py�. JDBC drivers for MySQL and

48

https://www.djangoproject.com/
http://localhost:8000
https://docs.djangoproject.com/en/1.4/intro/tutorial01/


PostgreSQL are inluded in the skeleton, but you must install the Orale JDBC driver on your own. Also note that

SQLite is not supported at this time.

If you need to aess the Django soure ode, you'll �nd it under �/libraries/python/Lib/site-pakages/�, whih

is where all Python libraries will be installed in your ontainer.

Extras

Adding the servie plugin (page 34) is strongly reommended. To install:

s i n  e r i t y add s e r v i  e : i n s t a l l

The following ommand will install the Django skeleton with the reommended plugins into a Sinerity ontainer

reated in the urrent diretory, and then start it a servie:

s i n  e r i t y  r e a t e myontainer : add django : add s e r v i  e : i n s t a l l : s e r v i  e django s t a r t

To stop it:

s i n  e r i t y use myontainer : s e r v i  e django stop

Note that Sinerity's logging plugin (page 32) won't do you muh good out of the box, beause Django uses

Python's logging system, not the JVM's. However, it should be easy implement your own Python logger that

delegates to standard JVM logging if that seems exiting to you.

OutOfMemoryError? Installing and starting Django in the same Sinerity ommand may exhaust

your JVM's PermGen spae. Try installing and starting via separate ommands. For more tips, see the

FAQ (page 18).

LWJGL Skeleton

The JVM is growing in popularity as a platform for game designers, due to its ability to easily have the game run

on many operating systems, as well as in browsers. Muh of this growth is due to the exellent LWJGL library,

whih makes easy to use hardware-aelerated features, suh as 3D graphis and 3D sound, and to aept input

from gaming ontrollers. LWJGL relies on native extensions to the JVM, and supports Linux, Windows, Ma OS

X and Solaris. (This author's favorite game, Mineraft, is based on it!)

To install the barebones skeleton:

s i n  e r i t y add lw j g l : i n s t a l l

To start your game:

s i n  e r i t y s t a r t lw j g l

This �lwjgl� program will detet your operating system, install the relevant native binaries into the ontainer

(if they aren't already installed), and then start the �game� program. . . exept that with this barebones skeleton,

there is no game to start (page 50).

Fleshing Out

Create a �/programs/game.js� that starts up your game. If you want your game to be written only in Java, this

likely means delegating to your main lass, like this:

s i n  e r i t y . run ( ' de l ega t e : main ' , [ ' org . myoolgame .Main ' ℄ )

However, don't rule out writing your game in JavaSript, or the host of other languages easily installable in

Sinerity! You an even �drop down� to Java when you some low-level work, and keep the main game logi in a

higher-level language.

This is espeially useful if you want to provide a way for the ommunity to provide plugins for your game: it

would make it easier for novie programmers to ontribute, and also allow suh plugins to be distributed as simple

text �les. If you go this route, onsider using Sripturian (page 50) to allow high-performane, muli-threaded

integration of the language engines.

49

http://www.lwjgl.org/
http://www.minecraft.net/


Extras

For something to play with, see the �lwjgl.example� add-on. It inludes a simple Spae Invaders lone:

s i n  e r i t y add lw j g l . example : i n s t a l l : s t a r t lw j g l

Libraries

The Sinerity JsDo Template

TODO

s i n  e r i t y add j sdo . s i n  e r i t y : i n s t a l l

Note that you need to host the doumentation via HTTP. File does not work.

See JsDo plugin (page 37).

MongoDB JavaSript Driver

s i n  e r i t y add mongodb . j a v a s  r i p t : i n s t a l l

Part III

Advaned Manual

Programming

Sripturian

TODO

See link.

The Sinerity JavaSript Library

Sinerity relies on JavaSript for bootstrapping and plugins, and while JavaSript does not have a standard library,

you do have aess to the entire JVM standard library.

Still, this isn't quite good enough: using JVM libraries works, but they do involve using paradigms that have

not been optimized for JavaSript.

For Sinerity, we deided that we an do better, and so we present you with a olletion of useful ode alled

the Sinerity JavaSript Library. We should point out from the start that this is not a general-purpose JavaSript

library: it relies on the JVM libraries, and only works in the JVM. Inluded are also optimizations spei� to the

Nashorn and Rhino JVM JavaSript engines.

What follows is a general introdution to the library. See the API doumentation for full details. Also make

sure to hek out Sinerity's JsDo plugin whih makes it easy for you to generate similar doumentation for your

own JavaSript odebase.

Note that the Sinerity Foundation Library is used by at least two other JavaSript frameworks: the Prudene

JavaSript Library, and the Diligene Framework, whih builds on the Prudene JavaSript Library.

Objets Enhaned support for standard JavaSript types: strings, arrays, dits and dates. This library monkey-

pathes the standard types with many useful methods. See the Sinerity.Objets API doumentation.

Classes This straightforward-but-powerful library lets you use the objet-oriented programming (OOP) paradigm

in JavaSript. It lets you de�ne lasses with publi and private members, inherit lasses, and even provides a meha-

nism for generation of onstrutors. Generally, the Sinerity JavaSript Library does not use OOP indisriminately:

lasses are used only when they make sense and add elegane. See the Sinerity.Classes API doumentation.

50

http://threecrickets.com/scripturian/
http://threecrickets.com/api/javascript/?namespace=Sincerity.Objects
http://threecrickets.com/api/javascript/?namespace=Sincerity.Classes


Iterators Iterators let you write oherent ode that an e�iently omprehend and operate on se-

quenes of any size. Its design borrows stylistially from funtional programming languages. See the

Sinerity.Iterators API doumentation.

Files Low-level aess to the �lesystem, inluding high-performane reading and writing of �les using memory-

mapped �les. See the Sinerity.Files API doumentation.

Templates Straightforward and �exible string interpolation. See the Sinerity.Templates API doumentation.

Example:

p r i n t l n ( ' Hel lo , { user } ' . a s t ({ user : ' S i n  e r i t y ' } )

JSON High-performane JSON parsing and rendering using the JSON JVM library, whih is written in Java.

See the Sinerity.JSON API doumentation.

XML High-performane XML parsing and rendering using the standard JVM libraries. See the

Sinerity.Objets API doumentationSinerity.XML API doumentation.

Calendar Enhanements to JavaSript's standard Date type. See the Sinerity.Calendar API doumentation.

Loalization Easy aess to the JVM's loalization libraries, inluding formatting for dates, times and urrenies.

See the Sinerity.Loalization API doumentation.

Cryptography Easy aess to the JVM's ryptography libraries, inluding shortuts for ommon hashing, en-

ryption and deryption tasks. Sinerity.Cryptography API doumentation

JVM Easy onversions between JVM and JavaSript types, and also aess to a few operating system servies.

Sinerity.Loalization API doumentationSinerity.JVM API doumentation

Validation A general-purpose user input validation library for ommonly used types, suh as numbers and email

addresses. Sinerity.Validation API doumentation

Mail Easy aess to JavaMail, inluding sending of mixed-media plain-text/HTML emails. Uses the templates

library to let you easily reate email templates. Sinerity.Mail API doumentation

Luene Easy aess to the Luene searh engine. Supports the iterators library, so you an easily index very large

olletions of douments. Sinerity.Luene API doumentation

Platform Aess to features of the Nashorn and Rhino JavaSript engines, suh as the all stak and exeption

details. Sinerity.Platform API doumentation

Extending Sinerity

Developing Plugins

TODO

Make sure you understand that dependenies may be installed in arbitrary order.

doument . r e qu i r e ( ' / s i n  e r i t y /jvm/ ' )

t ry {

doument . r e qu i r e ( ' /mongo−db / ' )

} ath (x ) { /∗ the dependeny may not have been i n s t a l l e d yet ! ∗/ }

51

http://threecrickets.com/api/javascript/?namespace=Sincerity.Iterators
http://threecrickets.com/api/javascript/?namespace=Sincerity.Files
http://threecrickets.com/api/javascript/?namespace=Sincerity.Templates
https://github.com/tliron/json-jvm
http://threecrickets.com/api/javascript/?namespace=Sincerity.JSON
http://threecrickets.com/api/javascript/?namespace=Sincerity.Objects
http://threecrickets.com/api/javascript/?namespace=Sincerity.XML
http://threecrickets.com/api/javascript/?namespace=Sincerity.Calendar
http://threecrickets.com/api/javascript/?namespace=Sincerity.Localization
http://threecrickets.com/api/javascript/?namespace=Sincerity.Cryptography
http://threecrickets.com/api/javascript/?namespace=Sincerity.Localization
http://threecrickets.com/api/javascript/?namespace=Sincerity.JVM
http://threecrickets.com/api/javascript/?namespace=Sincerity.Validation
http://threecrickets.com/api/javascript/?namespace=Sincerity.Mail
http://threecrickets.com/api/javascript/?namespace=Sincerity.Lucene
http://threecrickets.com/api/javascript/?namespace=Sincerity.Platform


Elipse Integration

TODO

Installing

http://repository.threerikets.om/elipse/

Preferenes

Using internal or external Sinerity installation.

Sinerity Projets

Converting to Sinerity

Adds the Sinerity nature.

Sinerity Classpath

Java projets only.

Sinerity Launh Con�gurations

Choose the program or URI.

Debugging

Breakpoints in Java Code

Breakpoints in non-Java Code

Pakaging

There are two main reasons you would want to reate Sinerity pakages:

1. You've reated a useful skeleton, skeleton add-on or plugin, whih you would like to share with others for use

in their Sinerity ontainers. A pakage, of ourse, is the most natural way to do so. You ould then host

your pakage on your own repository, or submit it for inlusion in other publi repositories.

2. Pakages are very useful for deploying your appliation internally, espeially in ephemeral �loud� environ-

ments. Programmers working on di�erent modules ould pakage their results, using a lear versioning system.

You would then host the pakages in your own private repository, using Nexus or even a plain diretory. De-

ployment, inluding upgrades, would thus involve nothing more than running �sinerity install� on the relevant

ontainers. It also allows easy downgrading of appliations, or setting modules to spei� versions for testing

and debugging.

Note that �pakaging� here refers spei�ally to reating Sinerity pakages, whih you an then install

into Sinerity ontainers as dependenies. If what you want is to distribute the entire ontainer, then

see the Distribution Plugin, and also the Sinerity Runtime Plugin.

The Sinerity Pakaging Plugin

. . . does not exist yet, as of Sinerity 1.0. This is something on our roadmap, and tehnially entirely viable. The

idea is to allow for a friendly GUI, as well as a strong CLI.

Until then, you an use Maven, as detailed below. It's slightly awkward, in that it requires editing omplex

XML �les, but for the purpose of reating simple pakages it should be very straightforward.

52



How to Create a Sinerity Pakage Using Maven

It's relatively easy to use Apahe Maven to reate a Sinerity pakage, with the help of the maven-assembly-plugin.

You an start with the following �pom.xml� �le as a skeleton:

<?xml ve r s i on ="1.0" enoding="UTF−8"?>

<pro j e  t

xmlns="http ://maven . apahe . org/POM/4 . 0 . 0 "

xmlns : x s i="http ://www.w3 . org /2001/XMLShema−i n s tane "

x s i : shemaLoation="http ://maven . apahe . org/POM/4 . 0 . 0 http ://maven . apahe . org/maven−v4_0_0 . xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>org . myorg .myapp</groupId>

<a r t i f a  t I d >myapp</a r t i f a  t I d >

<vers ion >1.0.0</vers ion>

<pakaging>pom</pakaging>

<name>My Cool Appl i at ion</name>

<de s  r i p t i on>This i s an app l i  a t i on pakaged f o r use with S i n  e r i t y .</ de s  r i p t i on>

<dependenies>

<dependeny>

<groupId>om . t h r e e  r i  k e t s . savory</groupId>

<a r t i f a  t I d >savory−framework</a r t i f a  t I d >

<vers ion >1.0−beta1</vers ion>

</dependeny>

</dependenies>

<bui ld>

<di r e  to ry>ahe</d i r e  to ry>

<plug ins>

<plugin>

<groupId>org . apahe .maven . p lug ins </groupId>

<a r t i f a  t I d >maven−assembly−plugin </a r t i f a  t I d >

<vers ion >2.2.1</vers ion>

<exeut ions>

<exeut ion>

<id>jar </id>

<phase>pakage</phase>

<goal s>

<goal>s i ng l e </goal>

</goa l s>

<on f i gura t i on >

<appendAssemblyId>f a l s e </appendAssemblyId>

<arh ive>

<man i f e s tEnt r i e s>

<Pakage−Folders>pakage</Pakage Folders>

</man i f e s tEnt r i e s>

</arh ive>

<de s  r i p t o r s>

<des r ip to r >pakage . xml</des r ip to r >

</de s  r i p t o r s>

</on f i gura t i on >

</exeut ion>

</exeut ions>

</plugin>

</plug ins>

</bui ld>

53

http://maven.apache.org/
http://maven.apache.org/plugins/maven-assembly-plugin/


</pro j e  t>

Some things you'll want to ustomize:

• You an add as many dependenies as you like. Note that they an plain JVM jars, Sinerity pakages,

Python pakages, Ruby gems, et.: anything supported by Sinerity. In this ase, we are inluding the Savory

Framework, whih is a Sinerity pakage (whih in turn has dependenies). You an also have no dependenies

at all.

• Under <manifestEntries> you an add anything that adheres to the pakaging spei�ation (page 55). For

example, you may want to all a pakage installation sript, like so:

<Pakage−I n s t a l l e r >om . t h r e e  r i  k e t s . s i n  e r i t y . S i n  e r i t y de l ega t e : s t a r t / l i b r a r i e s / s  r i p t u r i a n / i n s t a l l e r s /myapp/</Pakage I n s t a l l e r >

(If you do so, you'll need a �libraries/sripturian/installers/myapp.js� �le in your pakage, otherwise Sinerity

will report an error when trying to install it.)

• The <diretory> is a work diretory used by Maven for reating your �nal pakage. You may want to speify

it as �/tmp�. It is relative to the loation of the �pom.xml� �le.

• If you want to share your pakage in a publi repository, you'd likely want to add additional information

about your pakage. Consult the Maven pom.xml guide for more options.

You will also need to reate a �pakage.xml� �le in the same diretory:

<?xml ve r s i on ="1.0" enoding="UTF−8"?>

<assembly

xmlns="http ://maven . apahe . org/ p lug in s /maven−assembly−plug in /assembly /1 . 1 . 2 "

xmlns : x s i="http ://www.w3 . org /2001/XMLShema−i n s tane "

x s i : shemaLoation="http ://maven . apahe . org/ p lug in s /maven−assembly−plug in /assembly /1 . 1 . 2 http ://maven . apahe . org/xsd/assembly 1 .1 . 2 . xsd">

<id>jar </id>

<formats>

<format>jar </format>

</formats>

<baseDiretory>pakage</baseDiretory>

<f i l e S e t s >

<f i l e S e t >

<di r e  to ry>path−to−pakage</d i r e  to ry>

<outputDiretory >.</outputDiretory >

<in lude s>

<in lude ></in lude>

</in lude s>

</ f i l e S e t >

</ f i l e S e t s >

</assembly>

You'll want to hange �path-to-pakage� to point to the base of your distribution diretory. Note that it is

relative to the loation of �pakage.xml� �le, and must have the �nal diretory struture you want in the Sinerity

ontainer into whih your pakage will be installed.

Note that you an reate muh more omplex <�leSets> than this one. Consult the

assembly desriptor format doumentation for more information.

You an now build and deploy your pakage into a loal �le repository by running the following Maven ommand

from the diretory in whih you have your �pom.xml� �le:

mvn deploy −DaltDeploymentRepository=myrepo : : d e f au l t : : f i l e : / path−to−l o  a l−r epo s i t o r y /

Note that if this is the �rst time you've run Maven, it will take some time to download all the neessary plugins

it needs. Consequent runs will be muh faster.

Of ourse, you an also deploy to a repository server, suh as Nexus, whih you an easily install with Sinerity's

Nexus skeleton. You an also on�gure Maven to always use a default target repository for deployment.

Maven is a omplex tool that an do a whole lot more than this, but this should get you started.

[TODO: Add note about support for -SNAPSHOT℄

54

http://maven.apache.org/plugins/maven-assembly-plugin/assembly.html


Repositories

TODO

Sinerity an work with a any arbitrary repository for whih it has the supported tehnology. That said, here's

an overview of some repositories that you are most likely to work with:

The Three Crikets Repository

See link.

iBiblio/Maven Repositories

Python and PyPI (a.k.a. �The Cheese Fatory�)

Ruby and Gems

PHP and PEAR

Community Repositories

Spei�ations

Sinerity Pakages

Pakages are olletions of artifats. They are de�ned using speial tags in standard JVM resoure manifests.

Additionally, pakages support speial install/uninstall hooks for alling arbitrary entry points, allowing for ustom

behavior. Indeed, a pakage an inlude no artifats, and only implement these hooks.

Pakages allow you to work around various limitations in repositories suh as iBiblio/Maven, in whih the

smallest deployable unit is a Jar. The pakage spei�ation allows you to inlude as many �les as you need in a

single Jar, greatly simplifying your deployment sheme.

Note that two di�erent ways are supported for speifying artifats: they an spei�ed as �les, thus referring to

atual zipped entries with the Jar �le in whih the manifest resides, or that an be spei�ed as general resoures, in

whih ase they will be general resoure URLs to be loaded by the lassloader, and thus they an reside anywhere

in the lasspath.

Also note what �volatile� means in this ontext: a �volatile� artifat is one that should be installed one and only

one. This means that subsequent attempts to install the pakage, beyond the �rst, should ignore these artifats.

This is useful for marking on�guration �les, example �les, and other �les that the user should be allow to delete

without worrying that they would reappear on every hange to the dependeny struture.

The Manifest

Supported manifest tags:

• Pakage-Files: a omma separated list of �le paths within this Jar.

• Pakage-Folders: a omma separated list of folder paths within this Jar. Spei�es all artifats under these

folders, reursively.

• Pakage-Resoures: a omma separated list of resoure paths to be retrieved via the lassloader.

• Pakage-Volatile-Files: all these artifats will be marked as volatile.

• Pakage-Volatile-Folders: all artifats under these paths will be marked as volatile.

• Pakage-Installer: spei�es a lass name whih has a main() entry point. Simple string arguments an be

optionally appended, separated by spaes. The installer will be alled when the pakage is to be installed,

after all artifats have been unpaked. Any thrown exeption would ause installation to fail.

• Pakage-Uninstaller: spei�es a lass name whih has a main() entry point. Simple string arguments an be

optionally appended, separated by spaes. The uninstaller will be alled when the pakage is to be uninstalled.

For example, here is a �/META-INF/MANIFEST.MF� �le:

55

http://threecrickets.com/repository/


Manifest−Version : 1 . 0

Pakage−Folders : pakage

All pakaged �les would be expeted under the �/pakage/� diretory inside the Jar.

Note that manifests an often be automatially reated by pakaging tools. See the Maven example (page 53).

56


	I Basic Manual
	Introduction
	Principles
	Lather, Rinse, Repeat
	Why JavaScript?
	Comparisons with Other Solutions

	Tutorial
	Install Sincerity
	Working with the Command Line
	Working with the Graphical User Interface (GUI)
	Environment Variables
	Components
	Working with a VCS
	Working with Docker

	FAQ

	II Ecosystem
	Core Plugins
	Container
	Repositories
	Dependencies
	Artifacts
	Packages
	Delegate
	Templates
	Shortcuts
	Help
	Shell
	JavaScript Shell
	Java

	Language Plugins
	JavaScript Plugin
	Python Plugin
	Ruby Plugin
	PHP Plugin
	Lua Plugin
	Groovy Plugin
	Clojure Plugin

	Feature Plugins
	Sincerity Standalone Plugin
	Logging Plugin
	Service Plugin
	Redistribution Plugin
	Markup Plugin
	Batik SVG Plugin
	JsDoc Plugin

	Skeletons
	Nexus Skeleton
	Solr Skeleton
	Hadoop Skeleton
	OrientDB Skeleton
	H2 Skeleton
	Jetty Web Server Skeleton
	Jetty Servlet/JSP Skeleton
	Restlet Skeleton
	Felix Skeleton
	Prudence Skeleton
	Diligence Skeleton
	Rails Skeleton
	Django Skeleton
	LWJGL Skeleton

	Libraries
	The Sincerity JsDoc Template
	MongoDB JavaScript Driver


	III Advanced Manual
	Programming
	Scripturian
	The Sincerity JavaScript Library

	Extending Sincerity
	Developing Plugins

	Eclipse Integration
	Installing
	Preferences
	Sincerity Projects
	Sincerity Launch Configurations
	Debugging

	Packaging
	The Sincerity Packaging Plugin
	How to Create a Sincerity Package Using Maven

	Repositories
	Specifications
	Sincerity Packages



