
The Prudence Manual

Version 2.0-b eta11

Main text written by Tal Liron

July 26, 2015

Copyright 2009-2015 by Three Crickets LLC.

This work is licensed under a

Attribution-NonCommercial-ShareAlike 4.0 International License.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

I Basic Manual 6

Tutorial 6

Up and Running . 6

First Steps . 7

Let's Make a CMS . 9

A Persistent CMS . 10

A Scalable CMS . 12

A CMS API . 13

Finishing Touches . 15

Not Only JavaScript . 18

What's Next? . 19

The URI-space 20

routing.js . 20

app.routes . 21

Two Routing Paradigms . 25

Resource Mapping . 25

URI/Resource Separation . 28

app.errors . 30

app.hosts . 31

app.dispatchers . 32

app.preheat . 33

Understanding Routing . 34

Implementing Resources 35

Programmable Resources . 35

Manual Resources . 36

Template Resources . 39

Static Resources . 46

On-the-Fly Resources . 50

Java Resources . 51

Resource Typ e Comparison Table . 51

Web Data 51

URLs . 52

Request Payloads . 53

Co okies . 54

Custom Headers . 55

Redirection . 55

HTML Forms . 56

Resp onse Payloads . 57

External Requests . 60

Caching 61

The State of the Art . 61

Server-Side Caching . 62

Client-Side Caching . 65

Con�guring Applications 70

settings.js . 71

app.settings.description . 72

app.settings.errors . 72

app.settings.co de . 72

app.settings.templates . 73

2

app.settings.caching . 73

app.settings.compression . 73

app.settings.uploads . 73

app.settings.mediaTyp es . 74

app.settings.distributed . 74

app.settings.routing . 74

app.settings.logger . 75

app.globals . 75

Programming 77

APIs . 78

Entry Points . 81

State and Scop e . 82

Execution Environments . 86

Debugging 87

Live Execution . 87

Logging . 88

Debug Page . 92

Monitoring . 92

Describing APIs 94

Generating Description Data . 94

Swagger . 94

FAQ 98

Technology . 98

Performance and Scalability . 100

Errors . 101

Licensing . 101

I I Advanced Manual 102

Background Tasks 102

Implementing Tasks . 103

APIs for Spawning and Scheduling . 103

Application crontab . 106

System crontab . 108

crontab APIs . 108

/startup/ . 108

Tweaking . 108

Filters 108

Tutorial . 108

Examples . 109

Built-in Filters . 111

String Interp olation 113

Request URIs . 113

Request Attributes . 114

Client Attributes . 114

Payload Attributes . 114

Negotiated Attributes . 115

Implementation Attributes . 115

Resp onse Attributes . 115

conversation.lo cals . 115

3

The Internal URI-space 115

Internal Requests . 116

Private URI-space . 116

Avoiding Serialization for Internal Requests . 116

Con�guration 117

/con�guration/logging/ . 117

/con�guration/sincerity/ . 117

/con�guration/hazelcast/ . 117

/comp onent/ . 118

/comp onent/hosts/ . 118

/comp onent/servers/ . 120

/comp onent/clients/ . 122

/comp onent/services/ . 123

/comp onent/templates/ . 125

Mo del-View-Controller (MVC) 125

Background . 125

Tutorial . 126

View Templates . 129

RESTful Mo dels . 136

Clusters 137

Shared State . 138

Cluster-Wide Synchronization . 138

Task Farms . 139

Shared Cache . 140

Centralized Logging . 140

Deployment 140

Deployment Strategies . 140

Load Balancing and Proxies . 142

Adaptable Con�gurations . 146

Op erating System Service (Daemon) . 148

Security . 148

Utilities for Restlet 150

Utility Restlets . 150

Client Data . 150

Redirection . 151

Fallback Routing . 151

Resolver Selection . 151

Web Filters . 151

Other Utilities . 151

Upgrading from Prudence 1.1 152

Upgrading Applications . 152

I I I Articles 152

The Case for REST 152

Resources . 153

Identi�ers . 153

Delete . 153

Read . 153

Up date . 153

Create . 154

4

Aggregate Resources . 154

Formats . 154

Shared State . 155

Summary of Features . 155

Transactions. . . Not! . 155

Let's Do It! . 155

The Punchline . 155

It's All Ab out Infrastructure . 156

Do es REST Scale? . 156

Prudence . 157

URI-space Architecture 157

Nouns vs. Verbs . 157

Do You Really Need REST? . 157

Hierarchical URIs . 158

Formats Are Not Asp ects . 158

Plural vs. Singular . 158

Scaling Tips 159

Performance Do es Not Equal Scalability . 159

Caching . 161

Dealing with Lengthy Requests . 164

Backend Partitioning . 166

Data Backends . 168

5

Part I

Basic Manual

Tutorial

The source co de for the examples in the tutorial is available for download.

Up and Running

All you need to run Prudence is a JVM. Version 7 or ab ove is recommended, though version 6 can also b e supp orted.

You do not need the �Enterprise Edition� nor even a �JDK�: Prudence needs only the basic JVM runtime.

There are two ways to get Prudence: the easiest way is to download the distribution, which includes most

everything and is ready to rumble. Let's do that now.

But Prudence is mo dular: later on, you may prefer to assemble your own distribution using the

Sincerity packaging and b o otstrapping to ol.

The Command Line

Actually, the distribution you downloaded comes bundled with Sincerity, which we will use to start Prudence.

Before we do that, let's quickly familiarize ourselves with Sincerity. Op en a command terminal and change to

the Prudence directory. We'll call it our �container.� If you're using a *nix op erating system, you can run the

command as �./sincerity�. In Windows it's �sincerity.bat�.

To see a list of all Sincerity commands:

s i n c e r i t y h e l p

For example, let's print out all installed mo dules:

s i n c e r i t y d e p e n d e n c i e s

If your op erating system supp orts GUIs, you can start Sincerity without any command to start its GUI (or use

the �gui� Sincerity command):

s i n c e r i t y

The GUI is useful for visualization, but generally the CLI is b etter for getting things done. We'll b e using the

CLI in this tutorial.

Ready. . . Set. . .

Go!

s i n c e r i t y s t a r t p r u d e n c e

The command will print out some version information, tell you which applications are installed, and then hold.

You should now b e able to p oint your browser to http://lo calhost:8080 in order to see the Prudence administration

application. Or, just go right to http://lo calhost:8080/stickstick/ and http://lo calhost:8080/prudence-example/ to

see the included examples. Stickstick is an example of an �AJAX� application, implementing sticky notes shared

on the web and saved to a relational (SQL) database. It comes with the H2 database, so it do es not require a

separate database server. The Prudence Example is more general, walking you through Prudence's basic features

in all supp orted programming languages.

While playing around with the examples, you may also want to lo ok at the logs: they are in the container's

�/logs/� directory. �web.log� is an NCSA-style log of all web requests. Logs pre�xed with �prudence-� are created

p er application, and �common.log� is used for everything else. The logs will automatically roll, so don't worry ab out

them over�owing your storage.

To quit Prudence, press CTRL+C.

6

http://threecrickets.com/prudence/download/distribution/2.0-beta11/manual-examples/
http://threecrickets.com/prudence/download/#jvm6
http://threecrickets.com/prudence/download/#distribution
http://threecrickets.com/sincerity/
http://localhost:8080
http://localhost:8080/stickstick/
http://localhost:8080/prudence-example/
http://www.h2database.com/
http://en.wikipedia.org/wiki/Common_Log_Format

Further Exploration

� Prudence is built on top of Sincerity's Restlet skeleton. The do cumentation there applies to Prudence, to o.

� Sincerity has its own tutorial.

� Of course, you should not run Prudence in a terminal for deployed systems. Instead, you can run Prudence

as a robustly monitored system service/daemon (page 148).

� The logging system (page 88) is esp ecially robust. You can use it to centralize logging for your cluster (page

137), and even log directly to a database, such as MongoDB.

First Steps

You've played with the example applications, and now it's time to create your own. Let's make a basic CMS

(Content Management System), a web site where users can change the content of pages and create new ones via

the web!

Create a new application using the �prudence� Sincerity command:

s i n c e r i t y p r u d e n c e c r e a t e c m s

Restart Prudence, and you should b e able to see your new application at http://lo calhost:8080/cms/. There's

not much to see at this p oint.

Our Application's Sub directory

Let's take a lo ok at our application. Its �les are all under �/comp onent/applications/cms/�.

At the ro ot are three JavaScript �les used to con�gure the application. Take a lo ok at �routing.js� and �setting.js�.

The former de�nes your application's URI-space, while the latter controls its general b ehavior. Note that Prudence's

(and Sincerity's) con�guration philosophy is to use JavaScript wherever p ossible, which allows for dynamic, �exible

con�gurations that adapt to the environment in which they are run.

Resources

The �/resources/� sub directory is mapp ed directly to your URI-space, just like most standard web servers. For

example, a �le named �/mydir/my�le.html� will b e mapp ed to http://lo calhost:8080/cms/mydir/my�le.html. Also

like standard web servers, �index.html� will b e mapp ed to the directory itself.

Actually, you'll notice that our ro ot index is named �index.t.html�. We call that �t� a pre-extension: here, the

�t� stands for �template,� and tells Prudence that this is a text �le that may include one or more sections of co de

called �scriptlets,� which are delimited by �<%� and �%>�. This, again, may b e familiar to you: it's similar to how

PHP, JSP and ASP work.

Under �/resources/style/� you'll see �site.less�. LESS is a p owerful extended CSS language: Prudence will

automatically recognize the �.less� extension and create the CSS for us.

Libraries

Our reusable co de is all under the �/libraries/� sub directory. Sp eci�cally, �/libraries/includes/� contains fragments

that can b e included into our template pages. You'll see that our �index.t.html� uses them. For example:

<%& ' / h e a d e r / ' %>

. . . includes the �le �/libraries/includes/header.html�. Note that included �les may have scriptlets in them (and

can b e cached indep endently).

All the ab ove might seem quite familiar to you, and this is by intention. But the �les under �/libraries/dis-

patched/� may seem strange: they are �low-level� direct implementations of encapsulated RESTful resources. Take

a lo ok at �example.js�.

Moreover, these kinds of RESTful resources are not directly mapp ed to URIs like those in the �/resources/�

sub directory. Instead, they are �dispatched� using unique IDs. In Prudence, this paradigm is called �URI/resource

separation,� and it allows you full �exibility in structuring your co de vs. structuring your URI-space.

We'll get into all that as we go along this tutorial.

7

http://threecrickets.com/sincerity/ecosystem/skeletons/#restlet-skeleton
http://threecrickets.com/sincerity/manual/tutorial/
http://localhost:8080/cms/
http://localhost:8080/cms/mydir/myfile.html
http://lesscss.org/

Scriptlets

Let's lo ok more closely at our �index.t.html� page. The scriptlets are executed, while what's outside the scriptlets

is simply output to the HTTP resp onse. You can freely mix regular output and scriptlets:

<% f o r (v a r x = 0 ; x < 1 0 ; x++) { %>

<p>T h e s e a r e 1 0 p a r a g r a p h s . < / p>

<% } %>

There are also a few shortcut scriptlets. For example, to output an expression:

<%= x � 2 %>

The ab ove is equivalent to:

<% p r i n t (x � 2) %>

Also useful is the inclusion scriptlet, which we've already discussed:

<%& ' / h e a d e r / ' %>

The ab ove is equivalent to:

<% d o c u m e n t . i n c l u d e (' / h e a d e r / ') ; %>

Behind the scenes, Prudence parses �index.t.html� and turns it into JavaScript source co de. If you'd like to see

the generated co de, lo ok at the Scripturian cache, sp eci�cally under the container's �/cache/scripturian/container/-

comp onent/applications/cms/resources/� directory. These generated �les are not actually used by Prudence, and

only available for debugging purp oses. Disable their creation by con�guring �debug� mo de to false (page 73).

APIs

That �do cument� namespace mentioned ab ove is part of the rich, well-do cumented API provided by Prudence. Other

useful namespaces are �conversation,� for accessing the request/resp onse, and �application� for shared application-

wide services. The complete API reference is available online, though it can b e daunting to start there. Instead,

continue reading through this tutorial, where we'll explain APIs as we go along, and eventually hit the manual:

esp ecially imp ortant is the web data chapter (page 51), which go es over much of the interaction with clients.

And rememb er that you're running on the JVM: the entire JVM standard library is available for you, as well

as any other JVM library you install in your container (using Sincerity or manually).

Hello, World

Let's create a new page for our CMS, under our application's �/resources/� sub directory. We'll call it �page.t.html�.

We'll start simple:

<h t m l >

<b o d y>

<p> H e l l o , w o r l d . T h i s p a g e w i l l b e c o m e e d i t a b l e v e r y s o o n ! < / p>

</ b o d y>

</ h t m l >

Browse to http://lo calhost:8080/wiki/page/ to see it. Note that you do not need to restart Prudence if you're

only adding or changing pages: Prudence will pick up these changes on-demand, on-the-�y, and make sure to

compile and recompile as necessary.

You'll notice that even though the �le has a �.t.html� extension, Prudence do es not use the extension for the

URL. This is b ecause that extension is entirely an implementation concern on your end: there's no reason for the

user to have to see it, nor to have it clutter the URL.

Also notice the trailing slash: it's �page/�, not �page�. Prudence enforces trailing slashes. This allows your

relative URLs to b e clear and unambiguous. For example, to insert an image in our page, we could do this:

<i m g s r c = " . . / i m a g e s / l o g o . p n g " />

Without a trailing slash, you would not need the �../�, but with the trailing slash, it's necessary . If you don't

pick one of the two options, handling relative URLs quickly b ecomes messy. So why have we decided to standardize

on trailing slashes? Because it gives you more �exibility: for example, instead of saving our page �page.t.html�,

8

http://threecrickets.com/api/javascript/
http://localhost:8080/wiki/page/

we could have saved it as �page/index.t.html�, and the URL would be identical . As you will see, the trailing slash

principle is used throughout Prudence to allow many such conveniences, for b oth external URLs and for internal

library URIs. You'll see us constantly ending our URIs in slashes.

Further Exploration

� Learn how to create your own application templates (page 125) for the �prudence create� command.

� Learn how to con�gure your application (page 70) via its settings.js �le.

� Learn ab out the di�erence b etween the �resource mapping� and �URI/resource separation� paradigms (page

25).

Let's Make a CMS

It's time to �esh out out �page.t.html�:

<h t m l >

<b o d y>

<%

d o c u m e n t . r e q u i r e (' / p r u d e n c e / r e s o u r c e s / ')

i f (c o n v e r s a t i o n . r e q u e s t . m e t h o d . n a m e == ' POST ') {

v a r f o r m = P r u d e n c e . R e s o u r c e s . g e t F o r m (c o n v e r s a t i o n , { c o n t e n t : ' s t r i n g ' })

v a r c o n t e n t = f o r m . c o n t e n t

a p p l i c a t i o n . g l o b a l s . p u t (' p a g e ' , c o n t e n t)

}

e l s e {

v a r c o n t e n t = a p p l i c a t i o n . g l o b a l s . g e t (' p a g e ') | | ' T h i s p a g e i s e m p t y . '

}

%>

< d i v s t y l e =" b o r d e r : 1 p x s o l i d b l a c k ; p a d d i n g : 5 p x 5 p x 5 p x 5 p x ">

<%= c o n t e n t %>

</ d i v >

< f o r m m e t h o d =" p o s t ">

<p> E d i t t h i s p a g e : < / p>

<p>< t e x t a r e a n a m e=" c o n t e n t " c o l s = " 8 0 " r o w s="20"><%= c o n t e n t %></ t e x t a r e a ></p>

<p><b u t t o n t y p e =" s u b m i t "> S u b m i t </ b u t t o n ></p>

</ f o r m >

</ b o d y>

</ h t m l >

Not the most exciting CMS, but it works for editing a single page. Let's break it down:

� do cument.require is how we imp ort libraries. (At least for JavaScript: other languages have other imp ort

facilities, which you can use instead.) The API will attempt to imp ort libraries from your own application's

�/libraries/� sub directory �rst, and if not found there, will use the container's �/libraries/scripturian/� di-

rectory next. You'll notice that we use a trailing slash in the library URI. The library URIs also match the

JavaScript namespaces: �/prudence/resources/� matches Prudence.Resources. This particular namespace is

very useful for working with web data. In this case we're using Prudence.Resources.getForm.

� We're using the conversation.request API to �nd out if we're in an HTTP �POST�. If so, we will extract the

�content� form �eld (as simple text). We will then save it as an �application.global� (page 82). These globals

b elong to the entire running application, and can b e accessed from any page, for any request.

� We then go on to display the content as well as the HTML form for editing the content.

9

http://threecrickets.com/api/javascript/?namespace=document&item=document.require
http://threecrickets.com/api/javascript/?namespace=Prudence.Resources&item=Prudence.Resources.getForm
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.request

In�nite Editable Pages

The ab ove is just a single page: let's multiply it by in�nity .

To do this, we'll con�gure our URI-space by editing the application's routing.js �le. To the �app.routes� dict,

let's add the following:

a p p . r o u t e s = {

. . .

' / p a g e / � ' : ' / p a g e / '

}

What this do es is �capture� all incoming URLs that begin with �/page/� to exactly our �/page/�. The � *� at

the end of a URI template signi�es a wildcard: anything may follow (except nothing). Restart Prudence for our

routing.js changes to take e�ect.

You'll see that now, indeed, any URL b eginning with �/page/� will take us to our single, lonely CMS page. For

example, this: http://lo calhost:8080/cms/page/test/. If you edit one page, the content of all pages would change.

Let's edit our template in �page.t.html� to make it di�er p er incoming URL:

<%

d o c u m e n t . r e q u i r e (' / p r u d e n c e / r e s o u r c e s / ')

v a r i d = ' p a g e . ' + c o n v e r s a t i o n . w i l d c a r d

i f (c o n v e r s a t i o n . r e q u e s t . m e t h o d . n a m e == ' POST ') {

v a r f o r m = P r u d e n c e . R e s o u r c e s . g e t F o r m (c o n v e r s a t i o n , { c o n t e n t : ' s t r i n g ' })

v a r c o n t e n t = f o r m . c o n t e n t

a p p l i c a t i o n . g l o b a l s . p u t (i d , c o n t e n t)

}

e l s e {

v a r c o n t e n t = a p p l i c a t i o n . g l o b a l s . g e t (i d) | | ' T h i s p a g e i s e m p t y . '

}

%>

And. . . that's it. Now any URL b eginning with �/page/� b ecomes an editable CMS page. If that page do es not

exist it, it will b e created. Note that we're using �page.� as a pre�x for our application globals in order to make

sure they don't overlap with globals used for other purp oses.

The only real �trick� here is the conversation.wildcard API , which gives us the captured wildcard (page 52) we

con�gured in routing.js.

Further Exploration

� Read more ab out HTML forms (page 56).

� We've barely scratched the surface of what's p ossible with routing.js. See the URI-space chapter (page 20)

for full details.

� There's also, of course, a lot more you can do with templates (page 39), such as reusing fragments and template

inheritance.

� Are you a fan of MVC (Mo del-View-Controller)? It's p ossible to treat template pages as �views,� and moreover

you can integrate other templating technologies, such as Jinja2. There's a whole, very detailed chapter ab out

it (page 125).

A Persistent CMS

So far in this tutorial, we've b een storing the CMS data in RAM. To store the data on disk, we have a vast array

of options: you can use any JVM database driver directly from Prudence.

For this tutorial, we'll b e using MongoDB: a do cument-oriented database with many useful features, such as

atomic op erations, aggregation and map/reduce, and supp ort for �exible horizontal scalability con�gurations. It

uses JavaScript internally, and thus is a natural �t for web programming in Prudence: you can use JavaScript on

10

http://localhost:8080/cms/page/test/
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.wildcard
http://jinja.pocoo.org/docs/
http://www.mongodb.org/

the server, JavaScript on the client, and JavaScript in the database. This comb o is so p opular that we've gone so

far as to add esp ecially nice integration with Sincerity/Prudence.

You'll need to install a MongoDB server yourself for this section of the tutorial. If you can't do that right now,

don't worry: the rest of the tutorial will work just �ne using the in-memory storage we've b een using so far, and

you can just read through this part.

Let's install the MongoDB driver into our container using a Sincerity command:

s i n c e r i t y a d d m o n g o d b . j a v a s c r i p t : i n s t a l l

We can con�gure the driver by editing our application's settings.js, and adding a section similar to this:

a p p . g l o b a l s = {

mongoDb : {

d e f a u l t U r i s : ' l o c a l h o s t : 2 7 0 1 7 ' ,

d e f a u l t D b : ' c m s '

}

}

You can provide full MongoDB connection string URIs, either a single one or an array if you are connecting to

a replicaset. The driver will automatically create a thread-safe connection p o ol up on �rst use using these settings.

Our new MongoDB-enabled scriptlet:

<%

d o c u m e n t . r e q u i r e (

' / p r u d e n c e / r e s o u r c e s / ' ,

' / m o n g o � d b / ')

v a r i d = ' p a g e . ' + c o n v e r s a t i o n . w i l d c a r d

v a r c o l l e c t i o n = n e w MongoDB . C o l l e c t i o n (' p a g e s ')

i f (c o n v e r s a t i o n . r e q u e s t . m e t h o d . n a m e == ' POST ') {

v a r f o r m = P r u d e n c e . R e s o u r c e s . g e t F o r m (c o n v e r s a t i o n , { c o n t e n t : ' s t r i n g ' })

v a r c o n t e n t = f o r m . c o n t e n t

c o l l e c t i o n . u p s e r t ({ _ i d : i d } , { $ s e t : { c o n t e n t : c o n t e n t } })

}

e l s e {

v a r d o c = c o l l e c t i o n . f i n d O n e ({ _ i d : i d })

v a r c o n t e n t = d o c ? d o c . c o n t e n t : ' T h i s p a g e i s e m p t y . '

}

%>

Restart Prudence, and check out your new p ersistent CMS.

Our usage of the MongoDB API is quite trivial here, but in case you're new to it, read up ab out the

$set op eration: it guarantees an atomic up date of particular �elds in our do cument.

For the rest of this tutorial, we'll continue to use in-memory storage in our examples, but feel free to adapt them

to use MongoDB if you already have it set up!

Further Exploration

� Relational (SQL) databases are quite easy to access using JDBC drivers. For a complete Prudence example,

see Stickstick. And there are countless frameworks that build abstractions on top of JDBC.

� You can easily administer MongoDB by installing MongoVision into your Prudence container.

� If MongoDB is your cup of tea, check out Diligence, a comprehensive web framework based on Prudence and

MongoDB. Esp ecially useful for CMS, Diligence features a do cuments service, which features versioning and

site-wide snapshots.

11

https://github.com/tliron/mongodb-jvm
http://docs.mongodb.org/manual/reference/connection-string/
http://docs.mongodb.org/manual/reference/operator/update/set/
http://www.oracle.com/technetwork/java/javase/jdbc/
http://threecrickets.com/prudence/download/#stickstick
https://github.com/tliron/mongovision
http://threecrickets.com/diligence/
http://threecrickets.com/diligence/manual/service/documents/

A Scalable CMS

Caching

As long as we're storing our CMS content in MongoDB or in memory, page rendering will b e very fast and light.

However, if we were to do more heavy lifting p er page�for example, multiple database lo okups�then p erformance

would drop accordingly. By smartly caching our pages we can ensure that pages would b e rendered only when

necessary, allowing for the b est p ossible p erformance.

Actually, talking ab out p erformance is a shorthand for the real issue: even pulling data from a database is

usually very fast. The real issue is scalability : increased load on the database p er user request can limit your ability

to supp ort many users. Obviously, it's most e�cient to do work only when you need it: and that simple principle

is the most imp ortant to ol you have for increasing scalability.

Prudence do es caching very wel l . So, though it might b e considered an �advanced� topic, it's a crucial one, and

worth going over in this tutorial. It's also easy:

<%

d o c u m e n t . r e q u i r e (' / p r u d e n c e / r e s o u r c e s / ')

v a r i d = ' p a g e . ' + c o n v e r s a t i o n . w i l d c a r d

c a c h i n g . d u r a t i o n = 6 0 0 0 0

c a c h i n g . t a g s . a d d (i d)

c a c h i n g . o n l y G e t = t r u e

i f (c o n v e r s a t i o n . r e q u e s t . m e t h o d . n a m e == ' POST ') {

v a r f o r m = P r u d e n c e . R e s o u r c e s . g e t F o r m (c o n v e r s a t i o n , { c o n t e n t : ' s t r i n g ' })

v a r c o n t e n t = f o r m . c o n t e n t

a p p l i c a t i o n . g l o b a l s . p u t (i d , c o n t e n t)

d o c u m e n t . c a c h e . i n v a l i d a t e (i d)

}

e l s e {

v a r c o n t e n t = a p p l i c a t i o n . g l o b a l s . g e t (i d) | | ' T h i s p a g e i s e m p t y . '

}

%>

What we've done:

� caching.duration is 0 milliseconds by default. We set it to 60 seconds.

� caching.tags allows us to �tag� the cache entry. These tags can then b e used to invalidate whole swaths of the

cache at once. In this case, we only have one cache entry (the current page) that uses each particular tag.

� caching.onlyGet is set to �true� b ecause we don't want our �POST� requests to use the cache (otherwise they

would only b e pro cessed for cache misses).

� do cument.cache.invalidate is used to invalidate a cache tag. In this case, it's our own.

It's easy to see the caching in action via your browser's develop er to ols. In Firefox, turn on the network monitor

by pressing CTRL+SHIFT+Q. In Chromium/Chrome, use CTRL+SHIFT+I and select the �network� tab.

Refresh the page and you will see the �GET� request you just sent. Click on it to see its details, and you will

see the resp onse headers returned from the server. The �X-Cache� family of headers will tell you the status of the

server-side cache, such as whether it's a �hit� or �miss.� You can disable these debug headers by con�guring �debug�

mo de to false (page 73).

However, Prudence also utilizes the client -side cache: if you continue refreshing the page from the same browser

within the 60-second cache window, the web browser's conditional HTTP requests will return a 304 �not mo di�ed�

status, which tells the browser that there's no new information on the server, and thus it will e�ciently avoid

downloading the complete resp onse, using its lo cally cached value instead.

You've just vastly improved the scalability of your CMS, allowed for a faster user exp erience, all without ever

compromising on the freshness of user data. Prudence caching is pure win.

Note that editing your �page.t.html� �le will automatically invalidate the cache, allowing you to instantly see

your changes. Actually, this feature extends to the use of includes: if you edit any �le, it will also invalidate al l

�les that include it.

12

http://threecrickets.com/api/javascript/?namespace=caching&item=caching.duration
http://threecrickets.com/api/javascript/?namespace=caching&item=caching.tags
http://threecrickets.com/api/javascript/?namespace=caching&item=caching.onlyGet
http://threecrickets.com/api/javascript/?namespace=document&item=document.cache
https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor
https://developers.google.com/chrome-developer-tools/

Compression

Prudence will automatically compress resp onses (using gzip or DEFLATE) if their size in bytes exceeds a certain

threshold. Our CMS pages were likely to o small, which is why you likely haven't seen compression. You'll usually

want that threshold: there are little or no bandwidth savings to b e gained by compressing tiny resp onses, so the

extra CPU load required for compression will b e wasted. For now, let's lower the threshold, just for demonstration

purp oses.

Op en the application's setting.js and edit the app.settings.compression setting (page 73):

a p p . s e t t i n g s = {

. . .

c o m p r e s s i o n : {

s i z e T h r e s h o l d : 0 ,

e x c l u d e : []

}

}

Restart Prudence for the setting to take e�ect. With a threshold of zero bytes, al l resp onses should now b e

compressed�assuming the client accepts compression, as indeed web browsers do.

Actually, Prudence integrates compression with caching: b oth compressed and uncompressed versions of the

resp onse are cached, so that compression will not have to b e redone. This can result in signi�cant savings for CPU

usage in high loads. (And if a client needs a di�erent kind of compression than the one that was stored in the

cache�say, gzip was stored, but the client needs DEFLATE�then Prudence will use the uncompressed cache entry,

compress it, and then cache. Smart!)

Let's see it in action. Using the web browser's network monitor, you'll notice that the resp onse headers now

include �Content-Enco ding�, which means that our resp onses are compressed. gzip or DEFLATE will b e chosen

according to the web browser's preferences. Other than that (and the di�erent resp onse byte size) it should lo ok

identical.

To test using cURL, we'll have to do two things: explicitly tell the server that we supp ort compression by

sending the �Accept-Enco ding� header, and also b e ready to uncompress the result in order to display it, using

cURL's �compressed� �ag:

c u r l �� v e r b o s e �� h e a d e r ' A c c e p t � E n c o d i n g : g z i p ' �� c o m p r e s s e d h t t p : / / l o c a l h o s t : 8 0 8 0 / c m s / a p i / t e s t /

Further Exploration

� Caching is a big deal . Read all ab out it (page 61).

� And caching is just the tip of the scalability iceb erg. We treat the topic in depth here (page 159).

A CMS API

Our CMS is currently limited to web pages , but we can make it much b etter by op ening it up as a RESTful web

API . This would allow all kinds of clients to access our CMS, such as dedicated mobile apps, desktop applications,

and �rich� web applications (using �AJAX�). It would also allow 3rd-party web sites and services to use our CMS

as a service, rather than as an application (in business buzzword land this is called �SaaS�).

Hello, API World

As we've seen, templates are Prudence's way of making scalable web pages. The other side of Prudence is manual

resources.

We'll want our API in the �/api/� URL, so let's create a �api.m.js� �le:

f u n c t i o n h a n d l e I n i t (c o n v e r s a t i o n) {

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' a p p l i c a t i o n / j s o n ')

}

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

r e t u r n ' { " m e s s a g e " : " H e l l o , API w o r l d . " } '

}

13

http://en.wikipedia.org/wiki/Software_as_a_service

Rememb er those pre-extensions? �m� stands for �manual.� The �.js� extension means that our resource is

implemented in JavaScript, though we can end it in �.py�, �.rb�, etc., if we want to use other supp orted programming

languages.

You could test the resource in a web browser by browsing to http://lo calhost:8080/wiki/api/, however that's

not the b est way. Also, the web browser only knows how to do �GET� by default. So instead, we recommend testing

APIs using cURL.

Let's test our API using this cURL command line:

c u r l h t t p : / / l o c a l h o s t : 8 0 8 0 / c m s / a p i /

Hi!

Fleshed Out

We can now fully �esh out our API. It will lo ok quite similar to the template we wrote ab ove:

d o c u m e n t . r e q u i r e (

' / p r u d e n c e / r e s o u r c e s / ' ,

' / s i n c e r i t y / j s o n / ')

f u n c t i o n h a n d l e I n i t (c o n v e r s a t i o n) {

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' a p p l i c a t i o n / j s o n ')

}

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

v a r i d = ' p a g e . ' + c o n v e r s a t i o n . w i l d c a r d

v a r c o n t e n t = a p p l i c a t i o n . g l o b a l s . g e t (i d) | | ' T h i s p a g e i s e m p t y . '

r e t u r n S i n c e r i t y . JSON . t o ({ c o n t e n t : c o n t e n t })

}

f u n c t i o n h a n d l e P u t (c o n v e r s a t i o n) {

v a r i d = ' p a g e . ' + c o n v e r s a t i o n . w i l d c a r d

v a r p a y l o a d = P r u d e n c e . R e s o u r c e s . g e t E n t i t y (c o n v e r s a t i o n , ' j s o n ')

a p p l i c a t i o n . g l o b a l s . p u t (i d , p a y l o a d . c o n t e n t)

d o c u m e n t . c a c h e . i n v a l i d a t e (i d)

r e t u r n S i n c e r i t y . JSON . t o ({ c o n t e n t : p a y l o a d . c o n t e n t })

}

f u n c t i o n h a n d l e D e l e t e (c o n v e r s a t i o n) {

v a r i d = ' p a g e . ' + c o n v e r s a t i o n . w i l d c a r d

a p p l i c a t i o n . g l o b a l s . r e m o v e (i d)

d o c u m e n t . c a c h e . i n v a l i d a t e (i d)

r e t u r n n u l l

}

What we did:

� The �handle-� functions are �entry p oints� into our program, with one p er HTTP verb. From Prudence's

p ersp ective they are all encapsulated as a single resource class, with each resource instance having its own

�conversation� instance.

� handleInit is a bit di�erent in that it dynamically sets up our resource. The MIME typ e we've added will b e

used for content negotiation with the client: if several are available, Prudence will automatically select the

b est typ e according to the client's preferences. Note that order matters here: the �rst MIME typ es you add

are preferred over the later ones. For our tutorial, we'll only supp ort JSON resp onses, though it's p ossible to

supp ort XML and others.

� We've used the Prudence.Resources.getEntity API to get the request payload (page 53). We're exp ecting the

client to send us JSON, but again it's p ossible to supp ort other formats (page 53).

14

http://localhost:8080/wiki/api/
http://curl.haxx.se/
http://threecrickets.com/api/javascript/?namespace=Prudence.Resources&item=Prudence.Resources.getEntity

� Note that we're making sure to invalidate the cache when we change the data: this is to make sure that the

CMS pages will b e up dated accordingly.

We'll also need to change our routing.js to capture the wildcard, again similar to what we did with the template

page:

a p p . r o u t e s = {

. . .

' / p a g e / � ' : ' / p a g e / ' ,

' / a p i / � ' : ' / a p i / '

}

Restart Prudence for the routing.js change to take e�ect, and then test it again:

c u r l h t t p : / / l o c a l h o s t : 8 0 8 0 / c m s / a p i / t e s t /

Now, let's test an HTTP �PUT� with new page content:

c u r l �� r e q u e s t PUT �� d a t a ' { " c o n t e n t " : " New p a g e c o n t e n t ! " } ' h t t p : / / l o c a l h o s t : 8 0 8 0 / c m s / a p i / t e s t /

And we can also �DELETE�:

c u r l �� r e q u e s t DELETE h t t p : / / l o c a l h o s t : 8 0 8 0 / c m s / a p i / t e s t /

c u r l h t t p : / / l o c a l h o s t : 8 0 8 0 / c m s / a p i / t e s t /

While testing with cURL, you can simultaneously test the CMS pages using the browser, as we did earlier. Both

the API and the pages see the exact same data, as it's stored in the application.globals.

Cached

Let's add supp ort for caching our API results. Again, it's very similar to what we did with our template, except

that caching should b e set up in handleInit:

f u n c t i o n h a n d l e I n i t (c o n v e r s a t i o n) {

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' a p p l i c a t i o n / j s o n ')

v a r i d = ' p a g e . ' + c o n v e r s a t i o n . w i l d c a r d

c a c h i n g . d u r a t i o n = 6 0 0 0 0

c a c h i n g . t a g s . a d d (i d)

}

Note that the cache tag is exactly the same as we're using for template pages: this guarantees that the template

pages will b e up dated even though the CMS is changed from here, and vice versa, even though what is b eing cached

is quite di�erent. Because the cache key dep ends on the URI, and the URIs for the pages and APIs are di�erent,

there will b e no con�ict.

To see the caching headers when using cURL, add the �verb ose� �ag:

c u r l �� v e r b o s e h t t p : / / l o c a l h o s t : 8 0 8 0 / c m s / a p i / t e s t /

c u r l �� v e r b o s e �� r e q u e s t PUT �� d a t a ' { " c o n t e n t " : " New p a g e c o n t e n t ! " } ' h t t p : / / l o c a l h o s t : 8 0 8 0 / c m s / a p i / t e s t /

Further Exploration

� Read all ab out manual resources (page 36).

Finishing Touches

Here, we'll b eef up our CMS a bit, and along the way intro duce you to a few more Prudence features.

CSS with LESS

Prudence comes with LESS built in: it's an extended CSS language. LESS greatly increases the p ower of CSS by

allowing for co de re-usability, variables and expressions, as well as nesting CSS.

Let's �less up� our CMS pages! First, let's include the CSS in our �page.t.html� by adding an HTML �head� tag:

15

http://lesscss.org/

<h t m l >

<h e a d >

< l i n k r e l =" s t y l e s h e e t " t y p e =" t e x t / c s s " h r e f ="<%.%>/ s t y l e / s i t e . c s s " />

</ h e a d >

You'll notice our use of �<%.%>�: this is a shortcut to printing out the conversation.base API , which returns a

relative URI path from our currently requested URI to the base URI of the application. For example, if our URI is

�http://lo calhost:8080/cms/page/one/two/three/� then conversation.base would b e �../../../..�. This frees us from

having to hardco de complete URI paths, and guarantees p ortability even if we move the application to a di�erent

URI, attach it to multiple virtual hosts, or run it b ehind a reverse-proxy (page 142).

Now, let's edit the �/resources/style/site.less� �le, which was created for us from the application template. Note

that there's also a �.css� �le in that directory: Prudence will up date it for us when we edit the �.less� �le. How

ab out this:

@ s a n s � s e r i f : L u c i d a S a n s U n i c o d e , L u c i d a G r a n d e , V e r d a n a , A r i a l , s a n s � s e r i f ;

@ c o l o r 1 : #EEEEEE ;

@ c o l o r 2 : # 0 0 3 3 0 0 ;

b o d y {

f o n t � f a m i l y : @ s a n s � s e r i f ;

f o n t � s i z e : 1 2 p x ;

b a c k g r o u n d � c o l o r : @ c o l o r 1 ;

c o l o r : @ c o l o r 2 ;

t e x t a r e a {

b a c k g r o u n d � c o l o r : @ c o l o r 2 ;

c o l o r : @ c o l o r 1 ;

}

}

As a �nal treat, Prudence can also minify the CSS �le for us, in order to save some bandwidth or obfuscate it

(Prudence will also compress it for us using gzip or DEFLATE, as was mentioned ab ove). To turn on mini�cation,

simply change the resource URI to include �.min�:

<h e a d >

< l i n k r e l =" s t y l e s h e e t " t y p e =" t e x t / c s s " h r e f ="<%.%>/ s t y l e / s i t e . m i n . c s s " />

</ h e a d >

Markdown

Another stylistic �ourish would b e to use an HTML markup language instead of raw HTML. It's useful for this

tutorial, b ecause it will show us how easy it is to use JVM libraries from within Prudence.

First let's install our library using Sincerity. We'll use Pegdown, a JVM implementation of Markdown:

s i n c e r i t y a d d o r g . p e g d o w n p e g d o w n : i n s t a l l

Now let's edit our �page.t.html� to render using the Pegdown API:

< d i v s t y l e =" b o r d e r : 1 p x s o l i d b l a c k ; p a d d i n g : 5 p x 5 p x 5 p x 5 p x ">

<%= n e w o r g . p e g d o w n . P e g D o w n P r o c e s s o r () . m a r k d o w n T o H t m l (c o n t e n t) %>

</ d i v >

After restarting Prudence we would b e able to use Markdown in our CMS. Try to edit a CMS page using this

content:

T h i s i s a t i t l e

===============

And a s u b t i t l e

��������������

� And t h e s e

16

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.base
https://github.com/sirthias/pegdown
http://daringfireball.net/projects/markdown/syntax

� A r e b u l l e t p o i n t s

� I n a l i s t

Internal API

You may have noticed that there's some duplication in our co de: b oth the CMS pages and the CMS API use

application.globals to store the content. In this case it's trivial co de, but if we moved to database storage, for

example, the co de would surely grow and b e worth encapsulating as an API. One way we could do this is create

a reusable library, for example �/libraries/data.js�, which we could use b oth in the CMS pages and the CMS API

using �do cument.require�.

But an interesting shortcut is suggested in the fact that we already have an encapsulated API: our CMS web

API. We could simply use that directly. The apparent disadvantage is that it is a web API, and we would have to

go through HTTP to call it. However, in Prudence you can call any resource internally, bypassing HTTP entirely,

making such requests as fast as any function call.

Let's mo dify our �page.t.html� for this:

<%

d o c u m e n t . r e q u i r e (' / p r u d e n c e / r e s o u r c e s / ')

v a r i d = ' p a g e . ' + c o n v e r s a t i o n . w i l d c a r d

c a c h i n g . d u r a t i o n = 6 0 0 0 0

c a c h i n g . t a g s . a d d (i d)

c a c h i n g . o n l y G e t = t r u e

i f (c o n v e r s a t i o n . r e q u e s t . m e t h o d . n a m e == ' POST ') {

v a r f o r m = P r u d e n c e . R e s o u r c e s . g e t F o r m (c o n v e r s a t i o n , { c o n t e n t : ' s t r i n g ' })

v a r c o n t e n t = f o r m . c o n t e n t

P r u d e n c e . R e s o u r c e s . r e q u e s t ({

u r i : ' / a p i / ' + c o n v e r s a t i o n . w i l d c a r d ,

m e t h o d : ' p u t ' ,

p a y l o a d : { t y p e : ' j s o n ' , v a l u e : { c o n t e n t : c o n t e n t } }

})

}

e l s e {

v a r d a t a = P r u d e n c e . R e s o u r c e s . r e q u e s t ({

u r i : ' / a p i / ' + c o n v e r s a t i o n . w i l d c a r d ,

m e d i a T y p e : ' a p p l i c a t i o n / j s o n '

})

v a r c o n t e n t = d a t a ? d a t a . c o n t e n t : ' T h i s p a g e i s e m p t y . '

}

%>

We've used the Prudence.Resources.request API to make the request: it will automatically make an internal

request if the URI b egins with �/� (rather than a proto col, such as �http:�).

There's actually yet another optimization we can make: we are currently bypassing HTTP, but it's also p ossible

to bypass JSON serialization. That optimization is more advanced, and is fully explained elsewhere (page 116).

Further Exploration

� You don't have to use LESS: Prudence can also unify and minify regular CSS, as well as client-side JavaScript

(page 48). Also, you may want to read the FAQ (page 100) as to why Prudence supp orts LESS but not SASS.

� You can use markup languages in scriptlets (page 43).

� Check out the Sincerity markup plugin. It do esn't use Prudence, but you can install it into your container as

a utility to allow easy use of markup languages.

� The Prudence.Resources.request API is very p owerful, allowing you to easily consume RESTful web APIs.

17

http://threecrickets.com/api/javascript/?namespace=Prudence.Resources&item=Prudence.Resources.request
http://threecrickets.com/sincerity/ecosystem/feature-plugins/#markup-plugin
http://threecrickets.com/api/javascript/?namespace=Prudence.Resources&item=Prudence.Resources.request

Not Only JavaScript

The application skeleton uses JavaScript (server -side JavaScript; it has nothing to do with the co de running inside

web browsers), but Prudence also supp orts Python, Ruby, PHP, Lua, Gro ovy and Clo jure.

PyCMS

For this tutorial, we'll show you how to implement our entire CMS in Python.

First, let's install Python using Sincerity:

s i n c e r i t y a d d p y t h o n : i n s t a l l

We'll also need a Python JSON library, b ecause our Python engine, Jython, do esn't come with one. simplejson

works well with Jython, so let's install it:

s i n c e r i t y e a s y _ i n s t a l l s i m p l e j s o n

Now let's rewrite our �page.t.html� using Python instead of JavaScript for our scriptlets:

<%p y

f r o m o r g . p e g d o w n i m p o r t P e g D o w n P r o c e s s o r

i d = ' p a g e . ' + c o n v e r s a t i o n . w i l d c a r d

c a c h i n g . d u r a t i o n = 6 0 0 0 0

c a c h i n g . t a g s . a d d (i d)

c a c h i n g . o n l y G e t = T r u e

i f c o n v e r s a t i o n . r e q u e s t . m e t h o d . n a m e == ' POST ' :

c o n t e n t = c o n v e r s a t i o n . f o r m [' c o n t e n t ']

a p p l i c a t i o n . g l o b a l s [i d] = c o n t e n t

d o c u m e n t . c a c h e . i n v a l i d a t e (i d)

e l s e :

c o n t e n t = a p p l i c a t i o n . g l o b a l s [i d] o r ' T h i s p a g e i s e m p t y . '

%>

< d i v s t y l e =" b o r d e r : 1 p x s o l i d b l a c k ; p a d d i n g : 5 p x 5 p x 5 p x 5 p x ">

<%= P e g D o w n P r o c e s s o r () . m a r k d o w n T o H t m l (c o n t e n t) %>

</ d i v >

Note the �<%py� delimiter, telling us that from now on scriptlets will b e in Python. We can switch back

to JavaScript using �<%js�, or indeed to any other supp orted language. You can also change the default from

JavaScript to Python if you prefer (page 72).

For our �api.m.js� �le, we will have to rename it to �api.m.py�. Here's the co de in Python:

i m p o r t s i m p l e j s o n

d e f h a n d l e _ i n i t (c o n v e r s a t i o n) :

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' a p p l i c a t i o n / j s o n ')

i d = ' p a g e . ' + c o n v e r s a t i o n . w i l d c a r d

c a c h i n g . d u r a t i o n = 6 0 0 0 0

c a c h i n g . t a g s . a d d (i d)

d e f h a n d l e _ g e t (c o n v e r s a t i o n) :

i d = ' p a g e . ' + c o n v e r s a t i o n . w i l d c a r d

c o n t e n t = a p p l i c a t i o n . g l o b a l s [i d] o r ' T h i s p a g e i s e m p t y . '

r e t u r n s i m p l e j s o n . d u m p s ({ ' c o n t e n t ' : c o n t e n t })

d e f h a n d l e _ p u t (c o n v e r s a t i o n) :

i d = ' p a g e . ' + c o n v e r s a t i o n . w i l d c a r d

p a y l o a d = s i m p l e j s o n . l o a d s (c o n v e r s a t i o n . e n t i t y . t e x t)

a p p l i c a t i o n . g l o b a l s [i d] = p a y l o a d [' c o n t e n t ']

d o c u m e n t . c a c h e . i n v a l i d a t e (i d)

18

http://threecrickets.com/sincerity/ecosystem/language-plugins/
http://simplejson.readthedocs.org/

r e t u r n s i m p l e j s o n . d u m p s ({ ' c o n t e n t ' : p a y l o a d [' c o n t e n t '] })

d e f h a n d l e _ d e l e t e (c o n v e r s a t i o n) :

i d = ' p a g e . ' + c o n v e r s a t i o n . w i l d c a r d

d e l a p p l i c a t i o n . g l o b a l s [i d]

d o c u m e n t . c a c h e . i n v a l i d a t e (i d)

r e t u r n N o n e

Some things to note:

� Prudence will attempt to use the programming language's naming conventions. For example, JavaScript

generally prefers camel-case, while Python uses lowercase-with-underscores: �handleInit� vs. �handle_init�.

Clo jure, for another example, uses lowercase-with-hyphens: �handle-init�. However, when you call from the

language into the JVM, the convention dep ends on the language engine. For our example, Jython requires

camel-case. See entry p oints (page 81).

� When we were using JavaScript we had access to sp ecialized APIs, such as Prudence.Resources.getForm.

These APIs are, unfortunately, only for JavaScript: when using other programming languages, you will have

to use the �low-level� APIs, such as the conversation.form we've used here. On the other hand, JavaScript

su�ers from almost no standard library of its own: in Python, for example, you have access to a rich standard

library, as well as its wider ecosystem, to make your programming easier.

� We could easily have use both Python and JavaScript. Why would you want to do that? For example, you

might prefer to use JavaScript in scriptlets, b ecause it's more familiar to HTML co ders, while having the web

API written in Python by a di�erent team. All supp orted programming languages can live together in a single

container.

CljCMS?

Well, to keep this tutorial short, we won't go on rewriting our CMS in every supp orted programming language. . .

but here's some pro of that they do work.

Let's install Clo jure:

s i n c e r i t y a d d c l o j u r e : i n s t a l l

Now let's create a Clo jure manual resource, at �/resources/hi.m.clj�:

(d e f n h a n d l e � i n i t [c o n v e r s a t i o n]

(. . c o n v e r s a t i o n (a d d M e d i a T y p e B y N a m e " t e x t / p l a i n ")))

(d e f n h a n d l e � g e t [c o n v e r s a t i o n]

" H e l l o f r o m L i s p ! ")

Browse to http://lo calhost:8080/wiki/hi/ to see it.

Further Exploration

� You can even mix scriptlets in several languages on the same template, like magic.

What's Next?

We purp osely didn't cover every single Prudence feature in this tutorial: just enough to get you started. Continue

reading through the Basic Manual as necessary, refer to the online API do cumentation, and take a p eek at the

Advanced Manual to see just how far you can go.

Here are some highlights of topics we haven't covered:

� Prudence has a sophisticated system for handling background tasks (page 102). You can spawn tasks on-

demand using APIs, or schedule recurring maintenance tasks using a crontab. In b oth cases, tasks use a

separate thread p o ol than the one used for handling user requests.

� Prudence supp orts Swagger (page 94), making it esp ecially easy for clients to consume your RESTful API.

19

http://threecrickets.com/api/javascript/?namespace=Prudence.Resources&item=Prudence.Resources.getForm
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.form
http://localhost:8080/wiki/hi/
http://threecrickets.com/scripturian/manual/faq/#in-flow
http://threecrickets.com/api/javascript/

� Runtime debugging of web applications is often di�cult. Prudence has a straightforward mechanism for live

execution (page 50), allowing you run arbitrary co de remotely.

� Clusters (page 137)! When you need to scale horizontally, Prudence provides you with a remarkably seamless

solution for sharing state. Even the background task APIs supp ort it: you can farm out your workload

anywhere within your Prudence cluster.

� We've already mentioned that Prudence has a very p owerful system for de�ning the URI-space (page 20) .

You can also con�gure virtual hosting (page 118) and secure �HTTPS� servers (page 120).

� There's generally a whole lot you can con�gure (page 117): logging, cache backends, etc.

� We cover deployment strategies in depth (page 140).

The URI-space

The �URI-space� represents the published set of all URIs supp orted by your server. �Supp orted� here means that

unsupp orted URIs should return a 404 (�not found�) HTTP status co de. In other words, they are not in the

URI-space.

Imp ortantly, the URI-space can b e p otentially in�nite , in that you may supp ort URI templates that match any

numb er of actual URIs (within the limitations of maximum URI length). For example, �/service/{id}/� could match

�/service/1/�, �/service/23664/�, etc., and �/�lm/*� can match �/�lm/do cumentary/mongolia/�, �/�lm/cinema/�,

etc. All URIs that match these templates b elong to your URI-space.

Note that this de�nition also encompasses the HTTP �PUT� verb, which can b e used to create resources (as

well as override them). If your server allows for �PUT� at a sp eci�c set of URIs, then they are likewise part of your

URI-space. In other words, you �supp ort� them.

The URI-space is mostly con�gured in the application's routing.js �le. However, your resource implementations

can add their own sp ecial limits. For example, for the �/service/{id}/� URI template we can make sure in co de

that � {id}� would always b e a decimal integer (returning 404 otherwise), thus e�ectively limiting the extent of the

URI-space. More generally, Prudence supp orts �wildcard� URI templates, allowing you to delegate the parsing of

the URI remainder entirely to your resource co de. This chapter will cover it all.

Make sure to also read the URI-space Architecture article (page 157), which discusses general architectural

issues.

routing.js

Routing is con�gured in your application's routing.js �le. The �le should con�gure at least app.routes (page 21)

and likely app.hosts (page 31). Add app.errors (page 30), app.dispatchers (page 32), and app.preheat (page 33) if

you are using those optional features.

Though routing.js may lo ok a bit like a JSON con�guration �le, it's imp ortant to rememb er that it's really full

JavaScript source! You can include any JavaScript co de to dynamically con�gure your application's routing during

the b o otstrap pro cess.

Repro duced b elow is the routing.js used in the �default� application template, demonstrating many of the main

route typ e con�gurations, including how to chain and nest typ es. These will b e explained in detail in the rest of

this chapter.

a p p . r o u t e s = {

' / � ' : [

' m a n u a l ' ,

' t e m p l a t e s ' ,

{

t y p e : ' c a c h e C o n t r o l ' ,

m e d i a T y p e s : {

' i m a g e / � ' : ' 1 m ' ,

' t e x t / c s s ' : ' 1 m' ,

' a p p l i c a t i o n / x � j a v a s c r i p t ' : ' 1 m'

} ,

n e x t : {

20

t y p e : ' l e s s ' ,

n e x t : ' s t a t i c '

}

}

] ,

' / e x a m p l e 1 / ' : ' @ e x a m p l e ' , / / (d i s p a t c h e d)

' / e x a m p l e 2 / ' : ' / e x a m p l e / ' / / (c a p t u r e d)

}

a p p . h o s t s = {

' d e f a u l t ' : ' / myapp / '

}

In these settings, note that time durations are in milliseconds and data sizes in bytes. These can b e sp eci�ed as

either numb ers or strings (page 71). Examples: �1.5m� is 90000 milliseconds and �1kb� is 1024 bytes.

app.routes

Routes are con�gured in your application's routing.js, in the app.routes dict.

URI Templates

The keys of this dict are URI templates (see IETF RFC 6570), which lo ok like URIs, but supp ort the following two

features:

� Variables are strings wrapp ed in curly brackets. For example, here is a URI template with two variables:

�/pro�le/{user}/{service}/�. The variables will match any text until the next �/�. You can access the string

values of these variables in your resource as conversation.lo cals (page 83).

� A wildcard can b e used as the last character in the URI template. For example, �/archive/*� will match any

URI that b egins with �/archive/�. You can access the captured wildcard via the conversation.wildcard API .

Note that Prudence will attempt to match non -wildcard URI templates �rst, so a wildcard URI template can

b e used as a general fallback for URIs.

Route Con�gurations

The values of the app.routes dict are route con�gurations . These are usually de�ned as JavaScript dicts, where

the �typ e� key is the name of the route typ e con�guration, and the rest of the keys con�gure the typ e. During the

application's b o otstrap pro cess, these dicts are turned in instances of classes in the Prudence.Setup API namespace

(the class names have the �rst character of the typ e capitalized). The values set in the route typ e con�guration

dict are sent to the class constructor.

All route typ es supp ort the sp ecial �hidden� key, which if true sp eci�es that the route is not part of the public

URI-space. Prudence will always return a 404 error (�not found�) for this match. Note that internal requests always

bypass this mechanism (page 115), and so this functionality is useful if you want some URIs available in the internal

URI-space but not the public one.

As a shortcut, you can just use a string value (the �typ e� name) instead of a full dict, however when used this

way you must accept the default con�guration. We will refer to this as the �short notation� of con�guration.

Another useful shortcut: if the typ e starts with a �!�, it is equivalent to setting the �hidden� key to true (this

works in b oth long and short notations). Note that this is di�erent from ending a capture target URI in �!�, which

would set the �hiddenTarget� key to true: see capture-and-hide (page 26).

There are also sp ecial alternate forms for some of the commonly used typ es, such as JavaScript arrays for the

�chain� typ e. They are detailed b elow.

We will summarize all the route typ es brie�y here, arranged according to usage categories, and will refer you to

the API do cumentation for a complete reference. Note that some route typ e con�gurations allow nesting of further

route typ e con�gurations.

Resource Route Typ es

These are routes to a single resource implementation.

21

http://tools.ietf.org/html/rfc6570
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.wildcard

�dispatch� or �@� Use the �dispatch� typ e with an �id� param, or any string starting with the �@� character,

to con�gure a dispatch mapping. For example, {typ e: 'dispatch', id: 'p erson'} is identical to '@p erson'. If you

use �@�, you can also optionally use a �:� to sp ecify the �dispatcher� param, for example: �@pro�le:p erson� is

identical to {typ e: 'dispatch', dispatcher: 'pro�le', id: 'p erson'}. If �dispatcher� is not sp eci�ed, it defaults to

�javascript�. The unique ID should match a manual resource handled by your dispatcher, otherwise a 404 error

(�not found�) will result. The �dispatcher� param's value can b e any key from the app.dispatchers dict. Handled by

the Prudence.Setup.Dispatch class. See the manual resource guide (page 36) for a complete discussion.

The �manual� route typ e (page 23) is internally used by Prudence to handle the �dispatch� route typ e,

via a server-side redirect. This intro duces two sp ecial limitations on its use. First, it means that you

must have a �manual� if you want to use �dispatch.� Second, you must make sure the �manual� always

app ears before any use of �dispatch� in app.routes. For example, if you attach the manual to �/*� in

a chain (as in the default application template), and you also want to add a �dispatch� to that chain,

you need to put the �manual� before the �dispatch� in the chain. Otherwise, you might cause an endless

server-side redirect, leading to a stack over�ow error. Example of correct use:

a p p . r o u t e s = {

' / � ' : [

' m a n u a l ' ,

' @ e x a m p l e ' , / / m u s t a p p e a r a f t e r t h e m a n u a l

. . .

] ,

. . .

}

�hidden� or �!� Use the �hidden� or �!� string values to hide a URI template. Prudence will always return a 404

error (�not found�) for this match. Note that internal requests always bypass this mechanism (page 115), and so

this functionality is useful if you want some URIs available in the internal URI-space but not the public one.

�resource� or � $. . . � Use the �resource� typ e with a �class� param, or any string starting with the � $� character,

to attach a Restlet ServerResource. For example, {typ e: 'resource', 'class': 'org.myorg.PersonResource'} is identical

to '$org.myorg.PersonResource'. This is an easy way to combine Java-written Restlet libraries into your Prudence

applications. Handled by the Prudence.Setup.Resource class.

�execute� Use the �execute� typ e to attach a co de execution resource. This p owerful (and dangerous) resource

executes all POST payloads as Scripturian templates. The standard output of the script will b e returned as a

resp onse. Because it always execution of arbitrary co de, you very likely do not want this resource publicly exp osed.

If you use it, make sure to protect its URL on publicly available machines! Handled by the Prudence.Setup.Execute

class. The �execute� resource is very useful for debugging (page 87).

�status� or �!. . . � Use the �status� typ e with a �co de� param, or any numb er starting with a �!� character, to

simply return an HTTP status co de, doing nothing else. Useful for quick-and-dirty URI bindings. For example,

�!401� would mark the URI as �not authorized� to all requests. Handled by the Prudence.Setup.Status class.

Mapping Route Typ es

You should use a wildcard URI template for all of these route typ es, b ecause they work by pro cessing the URI

remainder.

�static� Use the �static� typ e to create a static resource handler. By default uses the application's �/resources/�

sub directory chained to the container's �/libraries/web/� sub directory for its �ro ots�. Note that if you include it in

a �chain� with �manual� and/or �templates�, then �static� should b e the last entry in the chain. Handled by the

Prudence.Setup.Static class. See the static resources guide (page 46) for a complete discussion.

22

http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.Dispatch
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/api/index.html?org/restlet/resource/ServerResource.html
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.Resource
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.Execute
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.Status
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.Static

�manual� Use the �manual� typ e to create a manual resource handler. By default uses the application's �/re-

sources/� sub directory for its �ro ot�. Imp ortant limitation: Al l uses of this class in the same application share the

same con�guration. Only the �rst found con�guration will take hold and will b e shared by other instances. Handled

by the Prudence.Setup.Manual class. See the manual resources guide (page 36) for a complete discussion.

�templates� Use the �templates� typ e to create a template resource handler. By default uses the application's

�/resources/� sub directory for its �ro ot�. Imp ortant limitation: Al l uses of this class in the same application share the

same con�guration. Only the �rst found con�guration will take hold and will b e shared by other instances. Handled

by the Prudence.Setup.Templates class. See the template resources guide (page 39) for a complete discussion.

Redirecting Route Typ es

�capture� or �/. . . � Use the �capture� typ e with a �uri� param, or any string starting with the �/� character,

to con�gure a capture. For example, {typ e: 'capture', uri: '/user/pro�le/'} is identical to '/user/pro�le/'. Note

that adding a �!� character at the end of the URI (not considered as part of the actual target URI) is a shortcut

for also hiding the target URI. Capturing-and-hiding (page 26) is indeed a common use case. Handled by the

Prudence.Setup.Capture class. See resource capturing (page 28) for a complete discussion.

�redirect� or �>. . . � Use the �redirect� typ e with a �uri� param, or any string starting with the �>�

character, to asks the client to redirect (rep eat its request) to a new URI. For example, {typ e: 'redi-

rect', uri: 'http://newsite.org/user/pro�le/'} is identical to '>http://newsite.org/user/pro�le/'. Handled by the

Prudence.Setup.Redirect class. See the web data guide (page 55) for a complete discussion, as well as other options

for redirection.

�addSlash� Use the �addSlash� typ e for a p ermanent client redirect from the URI template to the original URI

with a trailing slash added. It's provides an easy way to enforce trailing slashes in your application. Handled by

the Prudence.Setup.AddSlash class.

Combining Route Typ es

�chain� or � [. . .]� Use the �chain� typ e with a �restlets� param (a JavaScript array), or just a JavaScript array,

to create a fallback chain. The values of the array can b e any route typ e con�guration, allowing for nesting. They

will b e tested in order: the �rst value that doesn't return a 404 (�not found�) error will have its value returned.

This is very commonly used to combine mapping typ es, for example: ['manual', 'templates', 'static']. Handled by

the Prudence.Setup.Chain class.

�router� Use the �router� typ e with a �routes� param (a JavaScript dict) to create a router. The values of the

dict can b e any route typ e con�guration, allowing for nesting. This is in fact how Prudence creates the ro ot router

(app.routes). Handled by the Prudence.Setup.Router class.

Filtering Route Typ es

All these route typ es require a �next� param for nesting into another route typ e. See the �ltering guide (page 108)

for a complete discussion.

��lter� Use the ��lter� typ e with the �library� and �next� params to create a �lter. �library� is the do cument

name (from the application's �/libraries/� sub directory), while �next� is any route typ e con�guration, allowing for

nesting. Handled by the Prudence.Setup.Filter class.

�injector� Use the �injector� typ e with the �lo cals� and �next� params to create an injector. An injector is a simple

�lter that injects preset valued into conversation.lo cals (page 83), but otherwise has no e�ect on the conversation.

This is useful for inversion of control (IoC): you can use these conversation.lo cals to alter the b ehavior of nested

route typ es directly in your routing.js. Handled by the Prudence.Setup.Injector class.

23

http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.Manual
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.Templates
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.Capture
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.Redirect
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.AddSlash
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.Chain
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.Router
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.Filter
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.Injector

�basicHttpAuthenticator� Use the �basicHttpAuthenticator� with the �credentials�, �realm� and �next� params

to require HTTP authentication b efore allow the request to go through. This straightforward (but weak and in-

�exible) security mechanism is useful for ensuring that rob ots, such as search engine crawlers, as well as unau-

thorized users do not access a URI. Handled by the Prudence.Setup.BasicHttpAuthenticator class. See the HTTP

authentication guide (page 112) for a complete discussion.

�cacheControl� Use the �cacheControl� typ e with a �next� param to create a cache control �lter. �next� is any

route typ e con�guration, allowing for nesting. Handled by the Prudence.Setup.CacheControl class. See the static

resources guide (page 47) for a complete discussion.

�cors� Use the �cors� typ e with a �next� param to create a Cross-Origin Resource Sharing (CORS) �lter. �next�

is any route typ e con�guration, allowing for nesting. Handled by the Prudence.Setup.Cors class. See the CORS

guide (page 112) for a complete discussion.

�javaScriptUnifyMinify� Use the �javaScriptUnifyMinify� typ e with a �next� param to create a JavaScript uni-

fy/minify �lter. �ro ots� defaults to your application's �/resources/scripts/� and your container's �/libraries/we-

b/scripts/� sub directories. �next� is any route typ e con�guration, allowing for nesting. Handled by the

Prudence.Setup.JavaScriptUnifyMinify class. See the static resources guide (page 48) for a complete discussion.

�cssUnifyMinify� Use the �cssScriptUnifyMinify� typ e with a �next� param to create a CSS unify/minify �lter.

�ro ots� defaults to your application's �/resources/style/� and your container's �/libraries/web/style/� sub directories.

�next� is any route typ e con�guration, allowing for nesting. Handled by the Prudence.Setup.CssUnifyMinify class.

See the static resources guide (page 48) for a complete discussion.

�less� Use the �less� typ e with a �next� param to create a LESS compiling �lter. �ro ots� defaults to your ap-

plication's �/resources/style/� and your container's �/libraries/web/style/� sub directories. �next� is any route typ e

con�guration, allowing for nesting. Handled by the Prudence.Setup.Less class. See the static resources guide (page

49) for a complete discussion.

Custom Route Typ es

With some knowledge of the Restlet library, you can easily create your own custom route typ es for Prudence:

1. Create a JavaScript class that:

(a) Implements a create(app, uri) metho d. The �app� argument is the instance of

Prudence.Setup.Application, and the �uri� argument is the URI template to which the route typ e

instance should b e attached. The metho d must return an instance of a Restlet sub class.

(b) Accepts a single argument, a dict, to the constructor. The dict will b e p opulated by the route typ e

con�guration dict in app.routes.

2. Add the class to Prudence.Setup. Rememb er that the class name b egins with an upp ercase letter, but will

b egin with a lowercase letter when referenced in app.routes.

If you like, you can use Sincerity.Classes to create your class (you don't have to), and also inherit from

Prudence.Setup.Restlet .

Here's a complete example in which we implement a route typ e, named �see�, that redirects using HTTP status

co de 303 (�see other�). (Note this same e�ect can b e b etter achieved using the built-in �redirect� route typ e, and is

here intended merely as an example.)

d o c u m e n t . r e q u i r e (' / s i n c e r i t y / c l a s s e s / ')

P r u d e n c e . S e t u p . S e e = S i n c e r i t y . C l a s s e s . d e f i n e (f u n c t i o n () {

v a r P u b l i c = { }

P u b l i c . _ i n h e r i t = P r u d e n c e . S e t u p . R e s t l e t

P u b l i c . _ c o n f i g u r e = [' u r i ']

24

http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.BasicHttpAuthenticator
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.CacheControl
http://www.w3.org/TR/cors/
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.Cors
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.JavaScriptUnifyMinify
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.CssUnifyMinify
http://lesscss.org/
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.Less
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.Application
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/api/index.html?org/restlet/Restlet.html
http://threecrickets.com/api/javascript/?namespace=Sincerity.Classes
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup.Restlet

P u b l i c . c r e a t e = f u n c t i o n (a p p , u r i) {

i m p o r t C l a s s (o r g . r e s t l e t . r o u t i n g . R e d i r e c t o r)

v a r r e d i r e c t o r = n e w R e d i r e c t o r (a p p . c o n t e x t , t h i s . u r i , R e d i r e c t o r . MODE_CLIENT_SEE_OTHER)

r e t u r n r e d i r e c t o r

}

r e t u r n P u b l i c

} ())

a p p . r o u t e s = {

. . .

' / o r i g i n a l � u r i / ' : { t y p e : ' s e e ' , u r i : ' h t t p : / / n e w s i t e . o r g / n e w � u r i / ' }

}

Two Routing Paradigms

Prudence o�ers three built-in techniques for you to supp ort a URI or a URI template, re�ecting two di�erent routing

paradigms:

1. Resource mapping (page 25): The �lesystem hierarchy under an application's �/resources/� sub directory

is directly mapp ed to URIs (but not URI templates). Both directory- and �le-names are mapp ed in order of

depth. By default, Prudence hides �lename extensions from the published URIs, but uses these extensions

to extracts MIME-typ e information for the resources. Also, mapping adds trailing slashes by default, by

redirecting URIs without trailing slash to include them (on the client's side). Filesystem mapping provides

the most �transparent� management of your URI-space, b ecause you do not need to edit any con�guration

�le: to change URIs, you simply move or rename �les and directories.

2. URI/resource separation:

(a) Resource capturing (page 28): Capturing lets you map URI templates to �xed URIs, as well as p erform

other kinds of internal URI rewrites that are invisible to clients, allowing you to provide a published

URI-space, which is di�erent from your internal mapping structure. Note that another common use for

capturing is to add supp ort for URI templates in resource mapping, as is explained in resource mapping

(page 25). This use case do es not b elong to the URI/resource separation paradigm.

(b) Resource dispatching (page 28): In your application's routing.js you can map URIs or URI templates

to a custom ID, which is then dispatched to your resource handling co de. Dispatching provides the

cleanest and most �exible separation b etween URIs and their implementation.

When embarking on a new pro ject, you may want to give some thought as which paradigm to use. Generally,

URI/resource separation is preferred for larger applications b ecause it allows you more choices for your co de orga-

nization. However, it do es add an extra layer of con�guration, and the URI-space is not as transparent as it is for

resource mapping. It may make sense to use b oth paradigms in the same application where appropriate. Read on,

and make sure you understand how to use all three routing techniques.

Resource Mapping

Resource mapping is the most straightforward and most familiar technique and paradigm to create your URI-space.

It relies on a one-to-one mapping b etween the �lesystem (by default �les under your application's �/resources/�

sub directory) to the URI-space. This is how static web servers, as well as the PHP, JSP and ASP platforms usually

work.

Prudence di�ers from the familiar paradigm in three ways:

1. For manual and template resources, Prudence hides �lename extensions from the URIs by default. Thus,

�/resources/myresource.m.js� would b e mapp ed to �/resources/myresource/�. The reasons are two: 1) clients

should not have to know ab out your internal implementation of the resource, and 2) it allows for cleaner and

more coherent URIs. Note the �lename extensions are used internally by Prudence (di�erently for manual

and template resources). Note that this do es not apply to static resources: �/resources/images/logo.png� will

b e mapp ed to �/images/logo.png�.

25

2. For manual and template resources, Prudence by default requires trailing slashes for URIs. If clients do not

include the trailing slash, they will receive a 404 (�not found�) error. Again, the reasons are two: 1) it makes

relative URIs always unambiguous, which is esp ecially relevant in HTML and CSS, and 2) it clari�es the extent

of URI template variables. As a courtesy to sloppy clients, you can manually add a p ermanent redirection to

a trailing slash, using the �addSlash� route typ e (page 23). For example:

a p p . r o u t e s = {

. . .

' / m a i n ' , ' a d d S l a s h ' ,

' / p e r s o n / p r o f i l e / { i d } ' : ' a d d S l a s h '

}

3. This mapp ed URI-space can b e manipulated using URI hiding and capturing, allowing you to supp ort URI

templates and rewrite URIs.

Mapping URI Templates

The problem with resource mapping is that the URIs are �static�: they are only and exactly the the directory and

�le path. However, this limitation is easily overcome by Prudence's �capturing� mechanism, which works on URI

templates. For example, let's say you have a template resource �le at �/resources/user/pro�le.t.html�, but instead

of it b eing mapp ed to the URI �/user/pro�le/�, you want to access it via a URI template: �/user/pro�le/{userId}/�:

a p p . r o u t e s = {

. . .

' / u s e r / p r o f i l e / { u s e r I d } / ' : ' / u s e r / p r o f i l e / '

}

A URI such as �/user/pro�le/4431/� would then b e internally redirected to the �/user/pro�le/� URI. Within

your �pro�le.t.html� �le, you could then access the captured value as conversation.lo cals (page 83):

<h t m l >

<b o d y>

<p>

U s e r p r o f i l e f o r u s e r <%= c o n v e r s a t i o n . l o c a l s . g e t (' u s e r I d ') %>.

</p>

</ b o d y>

</ h t m l >

We've used a template resource in this example, but capturing can b e used for b oth template and manual

resources. The same conversation.lo cals API (page 83) is used in b oth cases.

Capture-and-Hide You may also want to make sure that �/user/pro�le/� cannot b e accessed without the user

ID. To capture and hide together you can use the shortcut notation:

a p p . r o u t e s = {

. . .

' / u s e r / p r o f i l e / { u s e r I d } / ' : ' / u s e r / p r o f i l e / ! '

}

That �nal �!� is equivalent to setting �hiddenTarget: true� in the long notation. You may also con�gure capturing

and hiding separately, using the �hidden� route typ e (page 22). The following is equivalent to the ab ove:

a p p . r o u t e s = {

. . .

' / u s e r / p r o f i l e / { u s e r I d } / ' : ' / u s e r / p r o f i l e / ' ,

' / u s e r / p r o f i l e / ' : ' ! '

}

26

Dynamic Capturing

URI capturing can actually do more than just capture to a single URI: the target URI for a capture is, in fact,

also a URI template, and can include any of the conversation attributes discussed in the string interp olation guide

(page 113). For example:

a p p . r o u t e s = {

. . .

' / u s e r / { u s e r I d } / p r e f e r e n c e s / ' : ' / d a t a b a s e / p r e f e r e n c e s / {m} / ? i d ={ u s e r I d } '

}

The request metho d name would then b e interp olated into the � {m}�, for example it could b e �GET� or �POST�.

It would thus capture to di�erent target URIs dep ending on the request. So, you could have �/database/prefer-

ences/GET.html� and �/database/preferences/POST.html� �les in your �/resources/� sub directory to handle dif-

ferent request metho ds.

Note that it's also p ossible to dynamically capture and interp olate the wildcard (page 52), for example:

a p p . r o u t e s = {

. . .

' / u s e r / � ' : ' / d a t a b a s e / u s e r / ? i d ={r w } '

}

Dynamic Capture-and-Hide Note that if you use the �!� capture-and-hide trick with dynamic capturing,

Prudence will hide any URI that matches the template. For example:

a p p . r o u t e s = {

. . .

' / u s e r / { u s e r I d } / p r e f e r e n c e s / ' : ' / d a t a b a s e / p r e f e r e n c e s / {m } / ! '

}

Here, �/database/preferences/GET/� is hidden, but also �/database/preferences/anything/�, etc. If you do not

want this b ehavior, then you should explicitly hide sp eci�c URIs instead:

a p p . r o u t e s = {

. . .

' / u s e r / { u s e r I d } / p r e f e r e n c e s / ' : ' / d a t a b a s e / p r e f e r e n c e s / {m } / ' ,

' / d a t a b a s e / p r e f e r e n c e s /GET / ' : ' ! ' ,

' / d a t a b a s e / p r e f e r e n c e s /POST / ' : ' ! '

}

Limitations of Resource Mapping

While resource mapping is very straightforward�one �le p er resource (or p er typ e of resource if you capture URI

templates)�it may b e problematic in three ways:

1. In large URI-spaces you may su�er from having to o many �les. Though you can use �/libraries/� to share

co de b etween your resources, mapping still requires exactly one �le p er resource typ e.

2. Mapp ed manual resources must have all their entry p oints (handleInit, handleGet, etc.) de�ned as global

functions. This makes it awkward to use ob ject oriented programming or other kinds of co de reuse. If you

de�ne your resources as classes, you would have to ho ok your class instance via the global entry p oints.

3. The URI-space is your public-facing structure, but your internal implementation may b ene�t from an entirely

di�erent organization. For example, some resources my b e backed by a relational database, others by a memory

cache, and others by yet another subsystem. It may make sense for you to organize your co de according to

subsystems, rather than the public URI-space. For this reason, you would want the URI-space con�guration

to b e separate from your co de organization.

These problems might not b e relevant to your application. But if they are, you may prefer the URI/resource

separation paradigm, which can b e implemented via resource capturing or dispatching, do cumented b elow.

27

URI/Resource Separation

Resource Capturing

Resource capturing, for the purp ose of the URI/resource separation paradigm, only makes sense for template

resources. For manual resources, resource dispatching (page 28) provides a similar structural function.

Resource capturing lets you use any public URI for any library template resource. For example, let's assume

that you have the following �les in �/libraries/includes/�: �/database/pro�le.html�, �/database/preferences.html�

and �/cache/session.html�, which you organized in sub directories according to the technologies used. Your URI-

space can b e de�ned thus, using the �capture� route typ e (page 23):

a p p . r o u t e s = {

. . .

' / u s e r / { u s e r I d } / p r e f e r e n c e s / ' : ' / d a t a b a s e / p r e f e r e n c e s / ' ,

' / u s e r / { u s e r I d } / p r o f i l e / ' : ' / d a t a b a s e / p r o f i l e / ' ,

' / u s e r / { u s e r I d } / s e s s i o n / ' : ' / c a c h e / s e s s i o n / '

}

Note how the URI-space is organized completely di�erently from your �lesystem: we have full URI/resource

separation.

Under the ho o d : Prudence's capturing mechanism is implemented as server-side redirection (some-

times called �URI rewriting�), with the added ability to use hidden URIs as the destination. It's this

added ability that makes capturing useful for URI/resource separation: hidden URIs include b oth tem-

plate resource �les in your application's �/libraries/includes/� sub directory as well as URIs routed to

the �hidden� route typ e.

Resource Dispatching

Resource dispatching, for the purp ose of the URI/resource separation paradigm, only makes sense for manual

resources. For template resources, resource capturing (page 28) provides a similar structural function.

Con�guring a dispatch is straightforward. In routing.js, use the �dispatch� route typ e (page 22), or the �@�

shortcut:

a p p . r o u t e s = {

. . .

' / s e s s i o n / { s e s s i o n I d } / ' : ' @ s e s s i o n ' ,

' / u s e r / { u s e r I d } / p r e f e r e n c e s / ' : ' @ u s e r '

}

The long-form notation, with all the settings at their defaults, would lo ok like this:

a p p . r o u t e s = {

. . .

' / s e s s i o n / { s e s s i o n I d } / ' : {

t y p e : ' d i s p a t c h ' ,

i d : ' s e s s i o n ' ,

d i s p a t c h e r : n u l l ,

l o c a l s : []

}

}

Note that, similarly to capturing, you can interp olate conversation attributes (page 113) into the ID. For

example, here we will automatically use a di�erent dispatch ID according the proto col, either �session.HTTP� or

�session.HTTPS�:

a p p . r o u t e s = {

. . .

' / s e s s i o n / { s e s s i o n I d } / ' : ' @ s e s s i o n . { p } '

}

28

The Dispatch Map By default, to implement your dispatched resources, create a library named �/dispatched/�,

which is exp ected to change a global dict named �resources�. That dict maps IDs to implementations.

For our example, let's create a �/libraries/dispatched.js� �le:

v a r U s e r R e s o u r c e = f u n c t i o n () {

t h i s . h a n d l e I n i t = f u n c t i o n (c o n v e r s a t i o n) {

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' t e x t / p l a i n ')

}

t h i s . h a n d l e G e t = f u n c t i o n (c o n v e r s a t i o n) {

r e t u r n ' T h i s i s u s e r # ' + c o n v e r s a t i o n . l o c a l s . g e t (' u s e r I d ')

}

}

r e s o u r c e s = {

s e s s i o n : {

h a n d l e I n i t : f u n c t i o n (c o n v e r s a t i o n) {

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' t e x t / p l a i n ')

} ,

h a n d l e G e t : f u n c t i o n (c o n v e r s a t i o n) {

r e t u r n ' T h i s i s s e s s i o n # ' + c o n v e r s a t i o n . l o c a l s . g e t (' s e s s i o n I d ')

}

} ,

u s e r : n e w U s e r R e s o u r c e ()

}

We've mapp ed the �session� dispatch ID to a dict, and used simple JavaScript ob ject-oriented programming for

the �user� dispatch ID. (Note that the Sincerity.Classes facility o�ers a comprehensive ob ject-oriented system for

JavaScript, but we preferred more straightforward co de for this example.)

As you can see, the resources.js �le do es not refer to URIs, but instead to dispatch IDs, which you can dispatch

as you see �t. This is true URI/resource separation.

These defaults are all con�gurable: see app.dispatchers (page 32) for more information.

Other Programming Languages Resource dispatching is also supp orted for Python, Ruby, PHP, Lua, Gro ovy

and Clo jure, via alternate dispatchers. To use them, you must sp ecify the dispatcher, which is simply the name of

the language in lowercase, when you con�gure the dispatch. For example:

a p p . r o u t e s = {

. . .

' / s e s s i o n / { s e s s i o n I d } / ' : {

t y p e : ' d i s p a t c h ' ,

i d : ' s e s s i o n ' ,

d i s p a t c h e r : ' p y t h o n '

}

}

You can also use the �@� shortcut like so:

a p p . r o u t e s = {

. . .

' / s e s s i o n / { s e s s i o n I d } / ' : ' @ p y t h o n : s e s s i o n '

}

Inversion of Control (IoC)

Ob ject-oriented inheritance is one useful way to reuse co de while allowing for sp ecial implementations. Additionally,

Prudence allows for a straightforward inversion of control mechanism (page 111).

For b oth capturing and dispatching, you can inject set values to conversation.lo cals (page 83). You would need

to use the long-form notation to do this. Here are examples for b oth a capture and a dispatch:

29

a p p . r o u t e s = {

. . .

' / u s e r / { u s e r I d } / ' : { t y p e : ' c a p t u r e ' , u r i : ' / u s e r / ' , l o c a l s : { s t y l e : ' s i m p l e ' } } ,

' / u s e r / { u s e r I d } / f u l l / ' : { t y p e : ' c a p t u r e ' , u r i : ' / u s e r / ' , l o c a l s : { s t y l e : ' f u l l ' } } ,

' / u s e r / { u s e r I d } / p r e f e r e n c e s / ' : { t y p e : ' d i s p a t c h ' , i d : ' u s e r ' , l o c a l s : { s e c t i o n : ' p r e f e r e n c e s ' } } ,

' / u s e r / { u s e r I d } / p r o f i l e / : { t y p e : ' d i s p a t c h ' , i d : ' u s e r ' , l o c a l s : { s e c t i o n : ' p r o f i l e ' } }

}

Note that in each case two URI templates are captured/matched to the exact same resource, but the �lo cals�

dict used is di�erent for each. In your resource implementations, you can then allow for di�erent b ehavior according

to the value of the set conversation.lo cal (page 83). For example:

t h i s . h a n d l e G e t = f u n c t i o n (c o n v e r s a t i o n) {

v a r s e c t i o n = c o n v e r s a t i o n . l o c a l s . g e t (' s e c t i o n ')

i f (s e c t i o n == ' p r e f e r e n c e s ') {

. . .

}

e l s e i f (s e c t i o n == p r o f i l e ') {

. . .

}

}

This allows you to con�gure your resources in routing.js, rather than at their implementation co de. In other

words, �control� is �inverted,� via value injection.

Pure URI/Resource Separation

The default routing.js makes all the resource typ es public, and chained to the ro ot URI. At its simplest, it lo oks

like this:

a p p . r o u t e s = {

' / � ' : [

' m a n u a l ' ,

' t e m p l a t e s ' ,

' s t a t i c '

]

}

However, if you want complete control over URI/Resource separation, you can avoid having these public by

hiding them at sp eci�c URIs:

a p p . r o u t e s = {

' / _ t e m p l a t e s / � ' : ' ! t e m p l a t e s ' ,

' / _ m a n u a l / � ' : ' ! m a n u a l ' ,

' / _ s t a t i c / � ' : ' ! s t a t i c ' ,

' / s t y l e / � ' : ' / _ s t a t i c / s t y l e / { r w } ' ,

' / � ' : ' / _ t e m p l a t e s / p a g e / ? i d ={r w } '

}

With the ab ove routing.js, we can then sp ecify exactly which URIs go where, with nothing made public by

default. The � _� pre�xes are merely a convention in this case to sp ecify an internal-only URI.

app.errors

By default, Prudence will display ready-made error pages if the resp onse's HTTP status co de is an error (>=400),

but you can override these by settings your own custom pages:

a p p . e r r o r s = {

4 0 4 : ' / e r r o r s / n o t � f o u n d / ' ,

5 0 0 : ' / e r r o r s / f a i l / '

}

30

The keys of the dict are status co des, while the values work like captures (page 28). This means that you can

implement your error pages using any kind of resource: manual, template or static.

If your error resource is mapp ed under �/resources/�, and you don't want it exp osed, use the capture-and-hide

notation (page 26):

a p p . e r r o r s = {

4 0 4 : ' / e r r o r s / n o t � f o u n d / ! '

}

This is equivalent to explicitly hiding the URI in app.routes using the �hidden� route typ e (page 22):

a p p . r o u t e s = {

. . .

' / e r r o r s / n o t � f o u n d / ' : ' ! '

}

Note that 500 (�internal server error�) statuses caused by uncaught exceptions can b e handled sp ecially by

enabling debug mo de (page 72).

Warning: If you decide to implement your error pages using a non -static resource, you need to take

two things into account. For 404 errors, you must have the resource typ e handling the page b e the �rst

handler in a chain in app.routes. For example, if you are using a template resource, then you must

have �templates� �rst. The reason is that a chain works internally by detecting 404 errors and moving

on to the next one: if the �rst one returns a 404 again, this will result in a recursion and will throw

a 500 exception. Second, for any non-static error resource, you want to b e very sure that your co de

there do es not throw an exception. If that happ ens, it would cause a 500 status co de, but if the original

error was not 500, the result would confuse the user and complicate debugging. However, if the original

status co de was 500, then it could b e much worse: the error would trigger your error resource to b e

displayed again, which might throw the exception again. . . resulting in a stack over�ow error. Due to

these pitfalls, it's probably a go o d idea to implement your error pages as static resources.

It is also p ossible to set error captures for al l applications by con�guring them into the comp onent (page 123). In

such a case, if applications con�gure their own error captures, those would override the comp onent-wide con�gura-

tion.

app.hosts

Use app.hosts to assign the application to a base URI on one or more virtual hosts.

The default con�guration uses a single host, the �default� one, but you can add more, or even not have a single

�default� host. Still, note that only a single application instance is used, even if attached to multiple hosts: for

example, all application.globals (page 82) are shared no matter which host a request is routed from.

To con�gure your hosts, and for a more complete discussion, see the comp onent con�guration guide (page 118).

The Bare Minimum

You need to attach your application to at least one host to make it public.

a p p . h o s t s = {

' d e f a u l t ' : ' / myapp / '

}

(Note the required use of quotes around �default�, due to it b eing a reserved keyword in JavaScript.)

If you don't have an app.hosts de�nition, or if it is empty, then your application wil l not be publicly available

over HTTP . However, it will still run, and b e available as an internal API.

The Internal Host

�internal� is a reserved host name, used to represent the internal URI-space (page 115).

By default, applications are always attached to the �internal� host with the base URI b eing the application's

sub directory name. However, you can override this default should you require:

31

a p p . h o s t s = {

' d e f a u l t ' : ' / myapp / ' ,

i n t e r n a l : ' / s p e c i a l / '

}

Multiple Hosts

Here's an example of attaching the app to two di�erent virtual hosts, with di�erent base URIs under each:

a p p . h o s t s = {

' d e f a u l t ' : ' / myapp / ' ,

' p r i v a t e h o s t ' : ' / a d m i n / '

}

If you need your application to sometimes b ehave di�erently on each host, use the conversation.host API . Note

that it will b e null when routed from the internal host. Example:

v a r h o s t = c o n v e r s a t i o n . h o s t

i f (S i n c e r i t y . O b j e c t s . e x i s t s (h o s t) && (h o s t . n a m e == ' p r i v a t e h o s t ')) {

. . .

}

app.dispatchers

This section is optional, and is used to change the way your application's dispatching works.

Setting the Default Dispatcher

As seen ab ove in resource dispatching (page 28), if you you do not sp ecify the dispatcher when con�guring a

�dispatch� route typ e (page 22), it will default to the �javascript� dispatcher. You may change the default like so:

a p p . r o u t e s = {

' / s e s s i o n / { s e s s i o n I d } / ' : ' @ s e s s i o n '

}

a p p . d i s p a t c h e r s = {

' d e f a u l t ' : ' p y t h o n '

}

In the ab ove, our �@session� dispatch will b e using the �python� dispatcher.

Setting the Dispatch Map

We've also seen that by default the dispatcher will attempt to execute your �/dispatched/� library in order to

initialize the dispatch map. However, you may change this lo cation p er dispatcher like so:

a p p . d i s p a t c h e r s = {

j a v a s c r i p t : ' / m y l i b / m y d i s p a t c h m a p / '

}

This is esp ecially useful if you're using more than one dispatcher in your routing, b ecause each dispatcher would

need its own resource map. For example:

a p p . r o u t e s = {

. . .

' / u s e r / { u s e r I d } / ' : ' @ u s e r ' ,

' / s e s s i o n / { s e s s i o n I d } / ' : ' @ p y t h o n : s e s s i o n ' ,

' / p a g e / { p a g e I d } / ' : ' @ g r o o v y : p a g e '

}

a p p . d i s p a t c h e r s = {

32

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.host

j a v a s c r i p t : ' / m y l i b / j a v a s c r i p t � d i s p a t c h m a p / ' ,

p y t h o n : ' / m y l i b / p y t h o n � d i s p a t c h m a p / ' ,

g r o o v y : ' / m y l i b / g r o o v y � d i s p a t c h m a p / '

}

Custom Dispatchers

Custom dispatchers are very useful for integrating alternative templating engines (page 129) into Prudence.

Under the ho o d, resource dispatching is handled by the URI capturing mechanism: the URI is captured to a

sp ecial manual resource�the �dispatcher��with an injected value (page 111) sp ecifying the ID of resource to which

it should dispatch.

Prudence's default dispatchers can b e found in the �/libraries/scripturian/prudence/dispatchers/� directory

of your container. For example, the JavaScript dispatcher is �/libraries/scripturian/prudence/dispatchers/-

javascript.js�. You are encouraged to lo ok at the co de there in order to understand how dispatching works: it's

quite straightforward delegation of the entry p oints of a manual resource (page 36) .

However, you can also write your own dispatchers to handle di�erent dispatching paradigms. To con�gure

them, you will need to use a long-form for app.dispatchers. For example, here we override the default �javascript�

dispatcher:

a p p . d i s p a t c h e r s = {

. . .

s p e c i a l : {

d i s p a t c h e r : ' / d i s p a t c h e r s / s p e c i a l � d i s p a t c h e r / ' ,

c u s t o m V a l u e 1 : ' h e l l o ' ,

c u s t o m V a l u e 2 : ' w o r l d '

}

}

The dispatcher co de (a standard manual resource) would b e in a �/libraries/dispatchers/sp ecial-dispatcher.js�

�le under your application's sub directory. You would b e able to access the dispatch ID there as the injected �pru-

dence.dispatcher.id� conversation.lo cal (page 83). �customValue1� and �customValue2� would b e application.globals

(page 82): �prudence.dispatcher.sp ecial.customValue1� and �prudence.dispatcher.sp ecial.customValue2� resp ec-

tively.

You can also override the default dispatchers:

a p p . d i s p a t c h e r s = {

. . .

j a v a s c r i p t : {

d i s p a t c h e r : ' / d i s p a t c h e r s / my � j a v a s c r i p t � d i s p a t c h e r / ' ,

r e s o u r c e s : ' / r e s o u r c e s / '

}

}

See the section on integrating alternative templating engines (page 129) for a complete example.

app.preheat

When a resource gets hit by a request for the �rst time, there will likely b e an initial delay. Your co de may have to

b e compiled, or, if it has b een cached, would at least have to b e loaded and initialized. But all that should happ en

very fast: the more serious delay would b e caused by initializing subsystems and libraries, such as connecting to

databases, logging in to external services, etc.

Another source for delay is that, if you are caching pages (page 62), as you very well should, then the some

cached pages may not exist or b e old. The �rst hit would thus need to generate and cache the page, which is much

slower than using the cached version. For very large applications optimized for caching, a �cold� cache can cause

serious problems: see the discussion in Scaling Tips (page 162).

To avoid the delay, it's recommended that you ready your resources by hitting them as so on as Prudence starts

up. This happ ens in two phases:

33

� Defrosting : Prudence will by default parse and compile the co de for manual and template resources under

your application's �/resources/� sub directory. See con�guring applications (page 72) if you wish to turn this

feature o�.

� Preheating : This causes an internal (page 115) �GET� on URIs, which would involve not only compiling the

co de, but also running it. The resp onse payloads, as well as any errors, are ignored.

Your app.preheat is simply an array of relative URIs. As an example, let's preheat the homepage and a few sp eci�c

resources:

a p p . p r e h e a t = [

' / ' ,

' / u s e r / x / ' ,

' / a d m i n / '

]

Note that you can't use URI templates in app.preheat, only explicit URIs. Thus, if you have routed a

�/user/{name}/� URI template, you would have to ��ll in� the template with a value. In our example, we chose

�/user/x/�. Also note that b ecause preheats are internal requests you can use this mechanism to preheat hidden

URIs.

Smart use of app.preheat can very e�ective, and it's very easy to use. Note that you may also use the startup

task (page 108) for your own custom preheating.

Both defrosting and preheating are handled in a thread p o ol, so that they can �nish as quickly as p ossible.

Learn how to con�gure it here (page 124). The duration of the complete pro cess will b e announced when you start

Prudence. For example:

E x e c u t i n g 3 4 8 8 s t a r t u p t a s k s . . .

F i n i s h e d a l l s t a r t u p t a s k s i n 1 . 4 3 2 s e c o n d s .

Understanding Routing

In this �nal section, we'll describ e in detail how routing works in Prudence. It can b e considered optional, advanced

reading.

In Prudence, �routing� refers to the decision-making pro cess by which an incoming client request reaches its

server-side handler. Usually, information in the request itself is used to make the decision, such as the URI, co okies,

the client typ e, capabilities and geolo cation. But routing can also take server-side and other circumstances into

account. For example, a round-robin load-balancing router might send each incoming request to a di�erent handler

in sequence.

A request normally go es through many route typ es b efore reaching its handler. Filters along the way can change

information in the request, which could also a�ect routing, and indeed �lters can b e used as routing to ols.

This abstract, �exible routing mechanism is one of Prudence's most p owerful features, but it's imp ortant to

understand these basic principles. A common misconception is that routing is based on the hierarchical structure

of URIs, such that a child URI's routing is somehow a�ected by its parent URI. While it's p ossible to explicitly

design your routes hierarchically, routing is primarily to b e understo o d in terms of the order of routers and �lters

along the way. A parent and child URI could thus use entirely di�erent handlers.

To give you a b etter understanding of how Prudence routing works, let's follow the journey of a request, starting

with routing at the server level.

Step 1: Servers Requests come in from servers (page 120). Each server listens at a particular HTTP or HTTPS

p ort, and multiple servers may in turn b e restricted to particular network interfaces on your machine. By default,

Prudence has a single server that listens to HTTP requests on p ort 8080 coming in from all network interfaces.

Step 2: The Comp onent There is only one comp onent p er Prudence instance, and al l servers route to it. This

allows Prudence a uni�ed mechanism to deal with all incoming requests.

34

Step 3: Virtual Hosts The comp onent's router decides which virtual host (page 118) should receive the request.

The decision is often made according to the domain name in the URL, but can also take into account which server

it came from. Virtual hosting is a to ol to let you host multiple sites on the same Prudence instance, but it can b e

used for more subtle kinds of routing, to o.

At the minimum you must have one virtual host. By default, Prudence has one that accepts all incoming

requests from all servers. If you have multiple servers and want to treat them di�erently, you can create a virtual

host for each.

Step 4: Applications Using app.hosts (page 31), you can con�gure which virtual hosts your application will b e

attached to, as well as the base URI for the application on each virtual host. An application can b e con�gured to

accept requests from several virtual hosts.

To put it another way, there's a many-to-many relationship b etween virtual hosts and applications: one host

can have many applications, and the same application can b e attached to many hosts.

Note that you can create a �nested� URI scheme for your applications. For example, one application might

b e attached at the ro ot URI at a certain virtual host, �/�, while other applications might b e at di�erent URIs

b eneath the ro ot, �/cms/� and �/cms/supp ort/forum/�. The ro ot application will not �steal� requests from the

other applications, b ecause the request is routed to the right application by the virtual host. The fact that the

latter URI is the hierarchical descendant of the former makes no di�erence to the virtual host router.

A Complete Route Let's assume a client from the Internet send a request to URI

�http://www.wacky.org/cms/supp ort/forum/thread/12/.�

Our machine has two network interfaces, one facing the Internet and one facing the intranet, and we have two

servers, one for each network adapter. This particular request has come in through the external server. The request

then reaches the comp onent's router.

We have a few virtual hosts: one to handle �www.wacky.org�, our organization's main site, and another to handle

�supp ort.wacky.org�, a secure site where registered users can op en supp ort tickets.

Our forum application (in the �/applications/forum/� sub directory) is attached to b oth virtual hosts, but at

di�erent URIs. It's at �www.wacky.org/cms/supp ort/forum/� and at �supp ort.wacky.org/forum/�. In this case, our

request is routed to the �rst virtual host. Though there are a few applications installed at this virtual host, our

request follows the route to the forum application.

The remaining part of the URI, �/thread/12/� will b e further routed inside the forum application, according to

route typ es installed in its routing.js.

Implementing Resources

Prudence o�ers two options for implementing resources in which the content dynamically changes: �manual� re-

sources are �raw,� giving you complete low-level control over the b ehavior and format of the encapsulated resource,

while �template� resources are simpli�ed and highly optimized for cached textual resources, such as HTML web

pages. Prudence also provides comprehensive supp ort for static (unchanging) resources, just like conventional web

servers.

Programmable Resources

These notes apply to b oth manual and template resources:

� Resources can b e implemented using any of the supp orted programming languages.

� Uncaught exceptions in any entry p oint or scriptlet will result in the conversation ending and a 500 (�internal

server error�) HTTP status co de returned to the user. To help you debug these errors, turn on debug mo de

(page 72), which will enable a detailed debug representation. Otherwise, you can set up a custom error page

(page 30), or, in the last resort, a simple error page will b e shown, that at least noti�es the user that something

went wrong.

� Your source co de is parsed/compiled on-the-�y only when necessary . A reparsing/recompilation is triggered

when the �le is mo di�ed, or when any of its dep endent �les are mo di�ed. To keep track of dep endencies at

any distance, Prudence internally maintains a dep endency tree for each do cument. Note that checking for �le

35

mo di�cation dates involves an op erating system API call: the call is usually cached by the OS and very fast,

however you can con�gure the minimum time b etween validity checks (page 72) if necessary.

� If you've captured a URI template (page 21), you can access the captured parts of the template via

conversation.lo cals (page 83) or conversation.wildcard.

Manual Resources

These are implemented as a set of encapsulated entry p oints (page 81) in any of the supp orted programming

languages. The entry p oints all receive the current conversation API namespace as their only argument.

Prudence do es the encapsulation for you: it treats the entry p oints as together b elonging to a single logical

RESTful resource, and ensures that the same conversation namespace is used for every user request.

There are two ways to de�ne this encapsulation, dep ending on which routing paradigm (page 25) you're using:

� Resource mapping : Here, the entry p oints are in the global scop e, probably de�ned within the �le, though

they can b e imp orted via a library or created programmatically (as closures, for example). What an �entry

p oint� means exactly may vary p er programming language: it's usually a function, metho d, closure, etc. See

the programming guide (page 81) for examples in all supp orted languages.

� Resource dispatching : The default dispatchers attempt an ob ject-oriented encapsulation, which again

varies p er programming language. The dispatch ID de�nes an ob ject instance, which must in turn implement

the entry p oints.

The implementation is in essence the same for b oth styles. For simplicity, our examples b elow will b e tuned to

resource mapping.

Con�guration

Add supp ort for manual resources using the �manual� route typ e (page 23) in your routing.js, mapping it to a URI

template ending in a wildcard:

a p p . r o u t e s = {

' / � ' : ' m a n u a l '

}

The default con�guration for �manual� will map all �les from your application's �/resources/� sub directory with

the �.m.� pre-extension. Here is the ab ove con�guration with all the defaults �eshed out:

a p p . r o u t e s = {

' / � ' : {

t y p e : ' m a n u a l ' ,

r o o t : ' r e s o u r c e s ' ,

p a s s T h r o u g h s : [] ,

p r e E x t e n s i o n : ' m' ,

t r a i l i n g S l a s h R e q u i r e d : t r u e ,

i n t e r n a l U r i : ' / _ m a n u a l / ' ,

c l i e n t C a c h i n g M o d e : ' c o n d i t i o n a l ' ,

m a x C l i e n t C a c h i n g D u r a t i o n : � 1 ,

c o m p r e s s : t r u e

}

}

General con�guration for your co de is done in setting.js (page 72).

handleInit

This is the only required entry p oint. It is called once for every user request , and always before any of the other

entry p oints.

The main work is to initialize supp orted media typ es via the conversation.addMediaTyp e APIs, in order of

preference. For example:

36

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.wildcard
http://threecrickets.com/api/javascript/?namespace=conversation
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.addMediaType

f u n c t i o n h a n d l e I n i t (c o n v e r s a t i o n) {

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' a p p l i c a t i o n / j s o n ')

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' t e x t / p l a i n ')

}

Note that you can also add language information:

f u n c t i o n h a n d l e I n i t (c o n v e r s a t i o n) {

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e W i t h L a n g u a g e (' t e x t / p l a i n ' , ' e n ')

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e W i t h L a n g u a g e (' t e x t / p l a i n ' , ' f r ')

}

Prudence will use these values for content negotiation, cho osing the b est media typ e and language according to

list of acceptable and preferred formats sent by the client and this list.

handleInit is also where you should set up caching (page 62), if you're using it:

f u n c t i o n h a n d l e I n i t (c o n v e r s a t i o n) {

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' a p p l i c a t i o n / x m l ')

c a c h i n g . d u r a t i o n = ' 5 s '

c a c h i n g . t a g s . a d d (' b l o g ')

}

Dynamic Content Negotiation You might wonder why we add these supp orted media typ es via API calls for

each request , since they are usually always the same for a resource. Why not simply con�gure them into the resource

p ermanently?

The reason is that they should not always p ermanent. In handleInit, you can check for various conditions of

the conversation, or even external to the conversation, to decide which media typ es and languages to supp ort. For

example, you might not want to supp ort XHTML for old browsers, but you'd want it at the top of the list for new

browsers. Or, you might not b e able to supp ort PDF in case an external conversion service is down. In which case,

you won't want it on the list at all, and instead want content negotiation to cho ose a di�erent format that the client

supp orts, such as DVI.

So, building your content negotiation table via API gives you a lot �exibility, at no real exp ense: these API

calls are very lightweight.

Note that handleInit is called even if your resource is cached (on the server), exactly b ecause you need to set

up content negotiation b efore casting the cache key template (page 63).

handleGet

Handles HTTP �GET� requests.

In a conventional resource-oriented architecture (page 152), clients will not b e exp ecting the resource to b e

altered in any way by a GET op eration.

What you'll usually do here is construct a representation of the resource, p ossibly according to sp eci�c parameters

of the request, and then return this representation to the client, p ossibly with directions for client-side caching (page

66).

There are many kinds of payloads you can return to the client: they are discussed in depth in the web data

chapter (page 57). However, here's a reference of the supp orted return typ es:

� Numb ers: Returns the numb er as an HTTP status co de to the client. If you you wish to set your own return

representation, to o, you can use conversation.setResp onseText or conversation.setResp onseBinary. Note that

if the status co de is an error, then the error capturing (page 30) mechanism may override your resp onse. If

you wish to bypass this mechanism, set conversation.statusPassthrough to true.

� Arrays of bytes: Used for returning binary representations. Note that some languages (JavaScript, for ex-

ample) have their own implementations of arrays, which are not compatible with JVM arrays. In such

cases, you have to make sure to return JVM arrays. Internally, Prudence represents these values with a

ByteArrayRepresentation.

� Representation instances: You can construct and return a directly.

37

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.setResponseText
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.setResponseBinary
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.statusPassthrough
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/api/index.html?org/restlet/representation/ByteArrayRepresentation.html
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/api/index.html?org/restlet/representation/Representation.html

� Other return values: If the conversation.mediaTyp e is �application/internal� then the value will b e wrapp ed

in an InternalRepresentation. Otherwise, it will b e converted into a string if it isn't a string already, and

returned to the client as a StringRepresentation.

If your resource has b een cached (on the server) then handleGet wil l not be cal led . The cache entry will b e returned

to the client instead.

Integrating Template Resources It's p ossible to return template resources as your payload. This could b e

useful if you're implementing the Mo del-View-Controller (MVC) pattern. See the MVC chapter (page 125) for

complete examples.

handlePost

Handles HTTP �POST� requests.

In a conventional resource-oriented architecture (page 152), POST is the �up date� op eration (well, not exactly:

see note b elow). Clients will exp ect the resource to already exist for the POST op eration to succeed. That is, a call

to GET b efore the POST may succeed. Clients exp ect you to return a mo di�ed representation, in the selected media

typ e, if the POST succeeded. Subsequent GET op erations would then return the same mo di�ed representation. A

failed POST should not alter the resource: only a success status co de should indicate a change. That means that

ideally you should roll back changes if the entire op eration fails along the way.

Note that the entity sent by the client do es not have to b e identical in format or content to what you return. In

fact, it's likely that the client will send smaller delta up dates in a POST, rather than a comprehensive representation.

What you'll usually do here is alter existing data according to data sent by the client.

The most imp ortant thing to realize is that POST is the only HTTP op eration that is not �idemp otent,�

which means that multiple identical POST op erations on a resource may yield results that are di�erent

from that of a single POST op eration. This is why web browsers warn you if you try to refresh or go

back to a web page that is the result of a POST op eration. As such, POST is the correct op eration to use

for manipulations of a resource that cannot be repeated . So, if you're thinking in terms of CRUD, POST

can mean either �up date� or �create�: it dep ends on whether or not �create� is a rep eatable op eration

in your sp eci�c data semantics. See this blog p ost by John Calcote for one explanation.

Return value b ehavior is identical to that in handleGet (page 37). In fact, you may want handlePost to share the

same co de path as handleGet for creating the representation.

Note that the default return status for successful op erations, 200 (�ok�), is indeed OK. However, it is b etter

to return a 201 (�created�) status if indeed the resource was created, and also return the full representation. If

you cannot handle the op eration at the moment, you should return a 202 (�accepted�) status, signifying that the

op eration has b een queued for later.

handlePut

Handles HTTP �PUT� requests.

In a conventional resource-oriented architecture (page 152), PUT is the �create� op eration (well, not exactly:

see note b elow). Clients will exp ect whatever current data exists in the resource to b e discarded, and for you to

return a representation of the new resource in the selected media typ e. A failed PUT should not alter the resource.

Note that the entity sent by the client do es not have to b e identical in format or content to what you return.

What you'll usually do here is parse and store the data sent by the client, overwriting data if it already exists.

PUT, like most HTTP op erations, is �idemp otent,� which means that multiple identical PUT op erations

on a resource are exp ected to yield the same result as a single PUT op eration. PUT should thus overwrite

any existing data . If you are implementing a �create� op eration that cannot b e rep eated, then you should

use POST instead. See note in POST (page 38).

See handleGet (page 37) for supp orted return typ es. In fact, you may want handlePut to share the same co de path

as handleGet for creating the representation.

Note that the default return status for successful op erations, 200 (�ok�), is indeed OK. However, it is b etter

to return a 201 (�created�) status if indeed the resource was created, and also return the full representation. If

you cannot handle the op eration at the moment, you should return a 202 (�accepted�) status, signifying that the

op eration has b een queued for later.

38

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.mediaType
http://threecrickets.com/api/java/prudence/index.html?com/threecrickets/prudence/util/InternalRepresentation.html
http://restlet.org/learn/javadocs/2.2/jse/api/index.html?org/restlet/representation/StringRepresentation.html
http://jcalcote.wordpress.com/2008/10/16/put-or-post-the-rest-of-the-story/

handleDelete

Handles HTTP �DELETE� requests.

In a conventional resource-oriented architecture (page 152), clients exp ect subsequent GET op erations to fail

with a 404 (�not found�) co de. A DELETE should fail with 404 if the resource is not already there; it should not

silently succeed. A failed DELETE should not alter the resource.

What you'll usually do here is make sure the identi�ed resource exists, and if it do es, remove or mark it somehow

as deleted

The following return typ es are supp orted:

� Null: Signi�es success.

� Numb er: Returns the numb er as an HTTP status co de to the client, with no other content: for example,

returning 404 means �not found.� Note that error capturing (page 30) can let you take over and return an

appropriate error page to the client.

Though some languages return null if no explicit return statement is used, others return the value of

the last executed op eration, which could b e a numb er, which would in turn b ecome an HTTP status

co de for the client. This can lead to some very bizarre bugs, as clients receive apparently random status

co des! It's thus go o d practice to always explicitly return null in handleDelete, if only to add clarity to

your co de's intent.

If you cannot handle the op eration at the moment, you should return a 202 (�accepted�) status, signifying that the

op eration has b een queued for later.

handleGetInfo

Handles HTTP �GET� requests before handleGet (page 37).

This entry p oint, if it exists, is called b efore handleGet in order to provide Prudence with information required

for conditional HTTP requests (page 65). Only if conditions are not met�for example if our resource is newer

than the version the client has cached, or the tag has changed�do es Prudence continue to handleGet. Using

handleGetInfo can thus improve on the gains of conditional requests: not only are you saving bandwidth, but you

are also avoiding a p otentially costly handleGet call. Note that if the client is not doing a conditional request, then

handleGetInfo will not b e called.

The use of handleGetInfo discussed in detail in the caching chapter (page 67). However, for the sake of comple-

tion, here's a reference of the supp orted return typ es:

� Null: Means that you wish to continue directly to handleGet.

� Numb ers or JVM Date instances: Considered as Unix timestamps, and converted into the mo di�cation date

(page 66).

� Strings or Tag instances: Considered as HTTP tags (page 66).

� RepresentationInfo instances: Returned as is.

Note that even though you can only return the mo di�cation date or the tag, it is p ossible set b oth together by

returning one and setting the other via the APIs (page 65).

If you implement handleGetInfo, you should b e returning the same conditional information in your handleGet

implementation, so that the client would know how to tag the data. The return value from handleGetInfo do es not,

in fact, ever get to the client: it is only used internally by Prudence to pro cess conditional requests.

Template Resources

Though esp ecially suitable for web pages (HTML), template resources can b e used for any kind of textual asset.

They are indeed intended and optimized for arbitrary textual formats: HTML, XML, plain text, etc. The design

goal is to make it as easy as p ossible to generate the text dynamically, by allowing develop ers and designers to mix

static elements with dynamic elements into a single �le.

Using the default �scriptlets� parser, this means that the �le is static text optionally emb edded with delimited

programming source co de�these are the scriptlets. There are a few built-in shortcut scriptlets for common tasks,

and it's also easy to write plugins to implement your own custom shortcuts.

39

http://docs.oracle.com/javase/6/docs/api/index.html?java/util/Date.html
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/api/index.html?org/restlet/data/Tag.html
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/api/index.html?org/restlet/representation/RepresentationInfo.html

The �scriptlets� parser is intended to b e as straightforward and �exible as p ossible, mimicking the familiar

paradigm of PHP/ASP/JSP, which allows for raw co de that is executed in-place. However, it's p ossible

to replace this parser with your own should you desire. For example, you might prefer declarative rather

than pro cedural templates (mimicking the structure of HTML/XML), and rather than have opaquely

delimited areas, you might prefer structural parsing of XML attributes. The parser system is pluggable

and easy to extend.

Whatever parser you use, it will compile the whole �le into one or more �programs� that are executed in sequence.

Thus, unlike manual resources, template resources have no �entry p oints,� and work in quite a di�erent execution

environment, and indeed each �program� can b e in a di�erent programming language, allowing for mixed-language

templates.

Con�guration

Add supp ort for template resources using the �templates� route typ e (page 23) in your routing.js, mapping it to a

URI template ending in a wildcard:

a p p . r o u t e s = {

' / � ' : ' t e m p l a t e s '

}

The default con�guration for �templates� will map all �les from your application's �/resources/� sub directory

with the �.t.� pre-extension. Here is the ab ove con�guration with all the defaults �eshed out:

a p p . r o u t e s = {

' / � ' : {

t y p e : ' t e m p l a t e s ' ,

r o o t : ' r e s o u r c e s ' ,

i n c l u d e R o o t : [' l i b r a r i e s ' , ' i n c l u d e s '] ,

p a s s T h r o u g h s : [] ,

p r e E x t e n s i o n : ' t ' ,

t r a i l i n g S l a s h R e q u i r e d : t r u e ,

d e f a u l t D o c u m e n t N a m e : ' i n d e x ' ,

d e f a u l t E x t e n s i o n : ' h t m l ' ,

c l i e n t C a c h i n g M o d e : ' c o n d i t i o n a l ' ,

m a x C l i e n t C a c h i n g D u r a t i o n : � 1 ,

c o m p r e s s : t r u e

}

}

General con�guration for templates is in setting.js (page 73), as are the general con�guration for co de (page 72).

MIME Typ es and Compression

Prudence will handle HTTP content negotiation for your template resources, and will assume a single MIME

typ e p er resource. That MIME typ e is determined by the �lename extension. For example, a resource named

�pro�le.t.html� will have the �text/html� MIME typ e.

Prudence recognizes many common �le typ es by default, but you can add your own mappings in you application's

settings.js, using app.settings.mediaTyp es (page 74).

When �compress� is true, Prudence will negotiate the b est compression format (gzip and zip are supp orted) and

compress on the �y. Compression can b e con�gured in settings.js (page 73).

Scriptlets

By default, you can use either �<%. . . %>� (ASP/JSP-style) or �<?. . . ?>� (PHP-style) scriptlet delimiters in your

templates. Note that you can only use one or the other, though, in the same template.

The entire template is turned into a single program (or several programs if you are mixing languages: more on

that b elow): the co de b etween the delimiters is output as-is to the program, while the rest will b e printed out. For

example, the following template:

40

<% f o r (v a r x = 0 ; x < 1 0 ; x++) { %>

<p>T h i s i s a " l i n e " </ p>

<% } %>

Will b ecome the following program b ehind the scenes:

f o r (v a r x = 0 ; x < 1 0 ; x++) {

p r i n t (" < p>T h i s i s a \ " l i n e \ " < / p > ")

}

You can see the programs generated b ehind the scenes by enabling debug mo de (page 73).

It's imp ortant to emphasize that any co de can b e used in templates: you can imp ort libraries, de�ne

functions and classes, etc. It's up to you to decide how much and what kind of programming logic to use

in templates. There are indeed strict co ding disciplines, such as MVC, that forbid anything but visual

logic in template. See the MVC chapter (page 125) for a complete discussion.

You can sp ecify the language of the scriptlet in its op ening delimiter:

<%r u b y p r i n t 1 + 2 %>

Full language names are supp orted, as ab ove, as well as shortcuts that are usually the common �lename exten-

sions for that language: �rb� for Ruby, �py� for Python, �js� for JavaScript, etc.

If the language of a scriptlet is not sp eci�ed, it will default to the language of the previous scriptlet, so that you

only need to sp ecify the language if you are changing languages. If the �rst scriptlet do es not sp ecify a language,

it will use the �defaultLanguageTag� setting (page 72). The default for that is JavaScript.

Built-In Shortcuts

Shortcuts use a sp ecial marker after the scriptlet's op ening delimiter.

To output an expression:

<%= x � 2 %>

The ab ove is equivalent to:

<% p r i n t (x � 2) %>

To include another template:

<%& ' / h e a d e r / ' %>

The ab ove is equivalent to:

<% d o c u m e n t . i n c l u d e (' / h e a d e r / ') ; %>

A shortcut to print out conversation.base:

<%.%>

Scriptlet comments can b e used for human-readable explanations, or to temp orarily disable scriptlets:

<%# T h i s s c r i p t l e t w i l l b e i g n o r e d b y t h e p a r s e r . %>

All the ab ove shortcuts work for all supp orted programming languages, generating source co de in that language.

To combine a language sp eci�cation with a shortcut symb ol, put the shortcut symb ol �rst :

<%=r b x � 2 %>

A few other built-in shortcuts are intro duced under inheritance (page 42), and it's also p ossible create your own

shortcuts (page 44).

41

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.base

Fragments

You can comp ose your templates out of reusable �fragments� by placing them in the �/libraries/includes/� directory,

and then including them in other templates using the the �<%&. . . %>� shortcut (or the do cument.include API

directly). For example, we can create this fragment in �/libraries/includes/lists/simple.t.html�:

< l i ><%= l i n e %></ l i >

And then use it like so:

<% f o r (i n t l i n l i n e s) { v a r l i n e = l i n e s [l] %>

<%& ' / l i s t s / s i m p l e / ' %>

<% } %>

Fragments don't have to include scriptlets: they can b e purely textual. On the other hand, they can contain

sophisticated co de to generate their HTML. Fragments can also b e nested to any depth: a fragment can include

others, those can include others, and so on.

Fragments in Prudence are not merely �server-side includes�: in fact, each fragment is cached separately,

with its own cache key and cache duration. This allows you to create sophisticated and extremely

e�cient �ne-grained caching strategies. See the caching chapter (page 61).

To share fragments with al l applications, put them in your container's �/libraries/prudence-includes/� directory.

Files in your application's �/libraries/includes/� will always override the shared versions.

Blo cks and Inheritance

This feature is very similar to fragments, but can b e understo o d as its inverse: rather than inserting a fragment into

the current lo cation using �<%&. . . %>�, you de�ne blo cks that will only later b e inserted into a template. Unlike

fragments, blo cks cannot b e individually cached, but they can otherwise provide additional �exibility in assembling

your page. It's a go o d idea to use b oth: blo cks when you need design �exibility and fragments when you need

�ne-grained caching.

There are sp ecial scriptlets for blo cks. As an example, let's de�ne a blo ck and then include the actual template:

<%{ t i t l e %>

<h 1>My T i t l e </h 1>

<%}%>

<%& ' / t e m p l a t e s / m a i n / ' %>

The blo ck de�nition is enclosed in �<%{. . . %>� and �<%}%>� scriptlets: instead of b eing printed out to the

page, it will b e saved for later use. Indeed, the template ab ove generates no actual output in itself.

Now, let's see the actual template, in �/includes/templates/main.t.html�:

<h t m l >

<b o d y>

<%== t i t l e %>

</ b o d y>

</ h t m l >

The �<%==. . . %>� scriptlet is a shortcut to print any conversation.lo cal: indeed, our blo ck was sim-

ply a temp orary capturing of output into a conversation.lo cal. Behind the scenes, blo cks are simply calls to

do cument.startCapture and do cument.endCapture.

But what if you want to give the blo ck a default value in the template? There are sp ecial scriptlets for that,

to o. Let's change our �main.t.html�:

<h t m l >

<b o d y>

<%[t i t l e %>

<h 1> D e f a u l t T i t l e </h 1>

<%]%>

</ b o d y>

</ h t m l >

The �<%[. . . %>� and �<%]%>� scriptlets are like a conditional �<%==. . . %>�: the co de b etween them will

not b e executed if the conversation.lo cal is already de�ned. If it is de�ned, then it will simply b e printed out.

42

http://threecrickets.com/api/javascript/?namespace=document&item=document.include
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.local
http://threecrickets.com/api/javascript/?namespace=document&item=document.startCapture
http://threecrickets.com/api/javascript/?namespace=document&item=document.endCapture

Blo cks with Arguments You may need blo cks that change their content according to external parameters.

Nothing magical ab out these: they are simply functions! For example:

<% f u n c t i o n h e a d e r 1 (c o n t e n t) { %>

<h 1><%= c o n t e n t %></h 1>

<% } %>

To use it, just call it:

<% h e a d e r 1 (' H e l l o ') ; %>

You can send blo ck content as an argument to the function:

<%{ m y A r g u m e n t %>

<a h r e f ="/"> T h i s HTML c o d e w i l l b e s e n t a s a n a r g u m e n t

<%}%>

<% h e a d e r 1 (c o n v e r s a t i o n . l o c a l s . g e t (' m y A r g u m e n t ')) ; %>

Templating Languages

Scriptlets can b e used not only with programming languages, but also with templating languages. Succinct and

Velo city are b oth supp orted. Here's an example using Velo city and JavaScript together:

<% j s

c o n v e r s a t i o n . l o c a l s . p u t (' t e s t ' , ' TEST ')

%>

<% v e l o c i t y

#m a c r o (h e l l o $ n a m e)

< d i v > H e l l o , $ n a m e ! < / d i v >

#e n d

< d i v >

h e l l o (' M o z a r t ')

h e l l o (' B a c h ')

H e r e i s a c o n v e r s a t i o n l o c a l : $! c o n v e r s a t i o n . l o c a l s . t e s t

</ d i v >

%>

As with programming languages, you will need to install the engine �rst:

s i n c e r i t y a d d v e l o c i t y : i n s t a l l

You might prefer to use templating engines indep endently of template resources, as MVC �views.� See the MVC

chapter (page 127) for a guide.

HTML Markup Languages

You can also render the following HTML markup language via scriptlets: Markdown, Con�uence, MediaWiki,

TWiki, Trac and Textile. Here's a Markdown example:

<h t m l >

<b o d y>

<%md

O u r C o n f e r e n c e

==============

� T h e f i r s t i t e m o f b u s i n e s s

� T h e s e c o n d i t e m o f b u s i n e s s

%>

</ b o d y>

</ h t m l >

43

http://threecrickets.com/succinct/
http://velocity.apache.org/

As with programming languages, you will need to install the engine �rst:

s i n c e r i t y a d d o r g . p e g d o w n p e g d o w n : i n s t a l l

Here's a list of package identi�ers for all supp orted languages (note there are two implementation options for

Markdown):

Language Identi�er

Markdown org.p egdown p egdown

Markdown org.eclipse.mylyn wikitext-markdown

Con�uence org.eclipse.mylyn wikitext-con�uence

MediaWiki org.eclipse.mylyn wikitext-mediawiki

TWiki org.eclipse.mylyn wikitext-twiki

Trac org.eclipse.mylyn wikitext-trac

Textile org.eclipse.mylyn wikitext-textile

PHP

Of all the supp orted programming languages, PHP is sp ecial in that it already has a scriptlet parser. In Prudence,

PHP co de will work pretty much as is, as it mimics the PHP format. You actually have the choice of using the

standard PHP-style delimiters, �<?. . . ?>�, or the ASP/JSP-style delimiters instead: �<%. . . %>�.

For example:

<? p h p

f o r ($ i = 0 ; $ i < 1 0 ; $ i ++) {

p r i n t ' < p > ' . $ i . ' < / p > ' ;

}

?>

PHP is sp ecial also in that it is designed for server-side web programming. Thus, though you can use all of

Prudence's APIs in PHP, Prudence also explicitly supp orts many of PHP's prede�ned variables as a more standard

alternative:

<? p h p

p r i n t $_GET [' i d ']

?>

The convention when programming in PHP is to use �.php� extensions for �les, even though the MIME typ e is

�text/html�. This is easy to achieve in Prudence by using a �.t.php� for your �les, while also mapping the extension

to the MIME typ e in your settings.js (page 74):

a p p . s e t t i n g s = {

. . .

m e d i a T y p e s : {

p h p : ' t e x t / h t m l '

}

}

Scriptlet Plugins

The default �scriptlets� parser comes with various useful shortcuts, but it's easy to create your own.

Con�gure your scriptlet plugins in settings.js (page 73) using a dict that maps the shortcut co des to the library

that will handle them. For this tutorial, we'll de�ne two shortcuts in the same library:

a p p . s e t t i n g s = {

. . .

t e m p l a t e s : {

p l u g i n s : {

' _ ' : ' / p l u g i n s / c u s t o m / ' ,

' & ? ' : ' / p l u g i n s / c u s t o m / '

}

44

http://daringfireball.net/projects/markdown/syntax
http://daringfireball.net/projects/markdown/syntax
https://confluence.atlassian.com/display/DOC/Confluence+Wiki+Markup
http://www.mediawiki.org/wiki/Markup_spec
http://twiki.org/cgi-bin/view/TWiki/TextFormattingRules
http://trac.edgewall.org/wiki/WikiFormatting
http://redcloth.org/textile
http://www.php.net/manual/en/reserved.variables.php

}

}

The � _� shortcut will b e used to print out lo calized text strings. The �&?� shortcut will b e a conditional include.

Let's now implement them in �/libraries/plugins/custom.js�:

f u n c t i o n h a n d l e G e t S c r i p t l e t (c o d e , l a n g u a g e A d a p t e r , c o n t e n t) {

i f (c o d e == ' _ ') {

r e t u r n " p r i n t (a p p l i c a t i o n . g l o b a l s . g e t (' t e x t . ' + c o n v e r s a t i o n . l o c a l s . g e t (' l o c a l e ') + ' . " + c o n t e n t . t r i m () + " ')) ; "

}

e l s e i f (c o d e == ' & ? ') {

r e t u r n " i f (c o n v e r s a t i o n . l o c a l s . g e t (' i n c l u d e ')=== t r u e) { d o c u m e n t . i n c l u d e (" + c o n t e n t + ") } "

}

r e t u r n ' '

}

As you can see, the �handleGetScriptlet� function returns JavaScript source co de that will b e em-

b edded into the generated program. You can optionally use the content of the scriptlet via the �con-

tent� param. If you wish to supp ort multiple programming languages, you can test for them using �lan-

guageAdapter.attributes.get('language.name')�.

Let's now use our shortcuts in a template resource:

<%

c o n v e r s a t i o n . l o c a l s . p u t (' l o c a l e ' , ' e n ')

c o n v e r s a t i o n . l o c a l s . p u t (' i n c l u d e ' , f a l s e)

%>

<p>

How t o s a y " h e l l o " i n y o u r l a n g u a g e : <%_ b a s i c . h e l l o %>

</p>

<p>

T h i s f r a g m e n t w i l l n o t b e i n c l u d e d : <%&? ' / h e l l o / ' %>

</p>

Our � _� shortcut exp ects certain application.global de�nitions, so let's de�ne them in our settings.js (page 75):

a p p . g l o b a l s = {

t e x t : {

e n : {

b a s i c : {

h e l l o : ' H i ! '

}

} ,

e s : {

b a s i c : {

h e l l o : ' ½ H o l a ! '

}

}

}

}

Some things to note ab out scriptlet plugins:

� It's up to you, of course, to make sure that the co de you generate is compilable.

� Plugins are tested for before the built-in shortcuts, allowing you to override the built-in ones.

� If you change your plugin co de, it will not cause all template resources that use it to recompile. To force a

recompile, you will need to change the mo di�cation date of those �les, p ossibly by using the �touch� to ol (on

*nix).

45

Static Resources

Prudence works �ne as a static web server: it's fast, supp orts non-blo cking chunking, and has many useful features

detailed b elow.

Of course, there are servers out there that sp ecialize in serving static �les and might do a b etter job, but you

might b e surprised by how far Prudence can take you.

Note that if Internet scalability is really imp ortant to you, it's b etter to even not use a standard web server at

all, but instead rely on a CDN (Content Delivery Network) pro duct or service with true global reach.

Con�guration

Add supp ort for static resources using the �static� route typ e (page 22) in your routing.js, mapping it to a URI

template ending in a wildcard:

a p p . r o u t e s = {

' / � ' : ' s t a t i c '

}

The default con�guration for �static� will map all �les from your application's �/resources/� sub directory, as

wel l as the container's �/libraries/web/� directory. Here is the ab ove con�guration with all the defaults �eshed out:

a p p . r o u t e s = {

' / � ' : {

t y p e : ' s t a t i c ' ,

r o o t s : [

' r e s o u r c e s ' ,

s i n c e r i t y . c o n t a i n e r . g e t L i b r a r i e s F i l e (' w e b ')

] ,

l i s t i n g A l l o w e d : f a l s e ,

n e g o t i a t e : t r u e ,

c o m p r e s s : t r u e

}

}

Note that the �ro ots� (pluralized) param is a shortcut to create a chain of two �static� instances. The ab ove is

equivalent to:

a p p . r o u t e s = {

' / � ' : [

{ t y p e : ' s t a t i c ' , r o o t : ' r e s o u r c e s ' } ,

{ t y p e : ' s t a t i c ' , r o o t : s i n c e r i t y . c o n t a i n e r . g e t L i b r a r i e s F i l e (' w e b ') }

]

}

If you want to also supp ort manual and template resources, make sure to chain �static� after them, so it will

catch whatever do esn't have the sp ecial �.m.� and �.t.� pre-extensions:

a p p . r o u t e s = {

' / � ' : [

' m a n u a l ' ,

' t e m p l a t e s ' ,

' s t a t i c '

]

}

MIME Typ es and Compression

When �negotiate� is true, Prudence will handle HTTP content negotiation for your static resources, and will assume

a single MIME typ e p er resource. That MIME typ e is determined by the �lename extension. For example, a resource

named �logo.png� will have the �image/png� MIME typ e.

46

Prudence recognizes many common �le typ es by default, but you can add your own mappings in you application's

settings.js, using app.settings.mediaTyp es (page 74).

When �compress� is also true, Prudence will negotiate the b est compression format (gzip and zip are supp orted)

and compress on the �y. Compression can b e con�gured in settings.js (page 73).

Client-Side Caching

Prudence adds mo di�cation timestamp headers to all static resources, which allow clients, such as web browsers,

to cache the contents and use conditional HTTP requests to later check if the cache needs to b e refreshed.

Conditional HTTP is e�cient and fast, but you can go one step further and tell clients to avoid even that check.

Use the �cacheControl� �lter (page 24) b efore your �static� route typ e:

a p p . r o u t e s = {

' / � ' : {

t y p e : ' c a c h e C o n t r o l ' ,

m e d i a T y p e s : {

' i m a g e / � ' : ' 1 0m ' ,

' t e x t / c s s ' : ' 1 0m ' ,

' a p p l i c a t i o n / x � j a v a s c r i p t ' : ' 1 0 m '

} ,

n e x t : ' s t a t i c '

}

}

With the ab ove, Prudence will ask web browsers to cache common image typ es, CSS and JavaScript for 10

minutes b efore sending conditional HTTP requests.

Make sure you understand the implications of this: after the client's �rst hit, for 10 minutes it wil l not be able to

see changes to that static resource . The client's web browser would continue using the older version of the resource

until its cache expires.

For a full discussion of client-side caching, see the caching chapter (page 65).

Bypassing the Client Cache There is a widely-used trick that lets you use client-side caching while still letting

you propagate changes immediately . It makes use of the fact that the client cache uses the complete URL as the

cache key, which includes the query matrix . If you use a query param with the URL, the �static� resource will ignore

it, but the client will still consider it a new resource in terms of caching. For example, let's say you include an

image in an HTML page:

<i m g s r c ="/ m e d i a / l o g o . p n g " />

If you made a change to the �logo.png� �le, and you want to bypass the client cache, then just change the HTML

to this:

<i m g s r c ="/ m e d i a / l o g o . p n g ?_=1" />

Voila: it's a new URL, so older cached values will not b e used. For Prudence, the query makes no di�erence.

You can then simply increase the value of the � _� query param every time you make a change.

This trick works so well that, if you use it, it's recommended that you actually ask clients to cache these resources

forever . �Forever� is not actually supp orted, but it's customary to use 10 years in the future as a practical equivalent.

Use �farFuture� as a shortcut in �cacheControl�:

a p p . r o u t e s = {

' / � ' : {

t y p e : ' c a c h e C o n t r o l ' ,

m e d i a T y p e s : {

' i m a g e / � ' : ' f a r F u t u r e '

} ,

n e x t : ' s t a t i c '

}

}

47

Rememb ering to increase the query param in all uses of the resource might b e to o cumb ersome and error-prone.

Consider using the Diligence Assets service, or something similar, instead: it calculates digests for the resource �le

contents and use them as the query param. Thus, any change to the �le contents will result in a new, unique URL.

What happ ens to cache entries that have b een marked to expire in 10 years, but are no longer used by

your site? They indeed will linger in your client's web browser cache. This isn't to o bad: web browsers

normally are con�gured with a maximum cache size and the disk space will b e cleared and reused if

needed. It's still an inelegant waste, for which unfortunately there is no solution in HTTP and HTML.

JavaScript and CSS Optimization

When writing JavaScript co de, you likely want to use a lot of spacing, indentation and comments to keep the co de

clear and manageable. You would likely also want to divide a large co de base among multiple �les. Unfortunately,

this is not so e�cient, b ecause clients must download these �les.

Prudence's �javaScriptUnifyMinify� �lter (page 24) can help. To con�gure:

a p p . r o u t e s = {

' / � ' : {

t y p e : ' j a v a S c r i p t U n i f y M i n i f y ' ,

n e x t : ' s t a t i c '

}

}

The �lter will catch URLs ending in �/all.js� or �/all.min.js�, the former b eing uni�ed and the latter uni�ed and

mini�ed. The contents to b e used, by default, will b e all the �.js� �les under your application's �/resources/scripts/�

sub directory as wel l as those under your container's �/libraries/web/scripts/� directory. The �lter writes out the

generated �all.js� and �all.min.js� �les to �/resources/scripts/�, and makes sure to up date these �les (unifying and

minifying again) if any one of the source �les are changed.

Note that the �les are uni�ed in alphab etical order, so make sure to rename them accordingly if order of execution

is imp ortant.

Here is the ab ove con�guration with all the defaults �eshed out:

a p p . r o u t e s = {

' / � ' : {

t y p e : ' j a v a S c r i p t U n i f y M i n i f y ' ,

r o o t s : [

' r e s o u r c e s / s c r i p t s ' ,

s i n c e r i t y . c o n t a i n e r . g e t L i b r a r i e s F i l e (' w e b ' , ' s c r i p t s ')

] ,

n e x t : ' s t a t i c '

}

}

For a usage example, let's say we have the following three �les under the application's sub directory:

/ r e s o u r c e s / s c r i p t s / j q u e r y . j s

/ r e s o u r c e s / s c r i p t s / j q u e r y . h i g h l i g h t . j s

/ r e s o u r c e s / s c r i p t s / j q u e r y . p o p u p . j s

Your HTML �les can then include something like this:

<h e a d >

. . .

< s c r i p t s r c ="/ s c r i p t s / a l l . m i n . j s "></ s c r i p t >

</ h e a d >

Note that the �rst entry in the �ro ots� array is where the generated �all.js� and �all.min.js� �les are stored.

The �cssUnifyMinify� �lter (page 24) do es the same for CSS �les, with the default ro ots b eing the application's

�/resources/style/� sub directory and the container's �/libraries/web/style/� directory. The relevant �les are �all.css�

and �all.min.css�. Note, however, that similar functionality is provided by using LESS (page 49).

Here's an example with b oth �lters con�gured:

48

http://threecrickets.com/diligence/manual/service/assets/

a p p . r o u t e s = {

' / � ' : {

t y p e : ' j a v a S c r i p t U n i f y M i n i f y ' ,

n e x t : {

t y p e : ' c s s U n i f y M i n i f y ' ,

n e x t : ' s t a t i c '

}

}

}

Usage in HTML:

<h e a d >

. . .

< l i n k r e l =" s t y l e s h e e t " t y p e =" t e x t / c s s " h r e f ="/ s t y l e / a l l . m i n . c s s " />

</ h e a d >

LESS to CSS

LESS is an extended CSS language. It greatly increases the p ower of CSS by allowing for co de re-usability, variables

and expressions, as well as nesting CSS. Using the the �less� �lter (page 24) you can compile �.less� �les to CSS,

and also apply the same mini�er used by �cssUnifyMinify� (page 24).

To con�gure:

a p p . r o u t e s = {

' / � ' : {

t y p e : ' l e s s ' ,

n e x t : ' s t a t i c '

}

}

The �lter works by catching all URLs ending in �.css� or �.min.css�. It will then try to �nd an equivalent �.less�

�le, and if it do es, will compile it and pro duce the equivalent �.css� or �.min.css� �le. It makes sure to recompile if

the source �.less� �le is changed.

For a usage example, let's say we have a �/resources/style/dark/main.less� �le the application's sub directory.

Your HTML �les can then include something like this:

<h e a d >

. . .

< l i n k r e l =" s t y l e s h e e t " t y p e =" t e x t / c s s " h r e f ="/ s t y l e / d a r k / m a i n . m i n . c s s " />

</ h e a d >

The �less� �lter can b e con�gured with a �ro ots� param similarly to the �javaScriptMinifyUnify� and

�cssUnifyMinify� (page 48).

See the FAQ (page 100) as to why Prudence supp orts LESS but not SASS.

Other E�ects

Because static resources don't allow for co de (unlike manual and template resources), the way to program your own

e�ects is to add �lters (page 108).

For example, let's say we want to force all �.p df � �les to b e downloadable (by default, web browsers might prefer

to display the �le using a browser plugin). We'll b e using the technique describ ed here (page 60) to change the

resp onse's �disp osition�.

Here's our �lter co de, in �/libraries/�lters/download-p df.js�:

f u n c t i o n h a n d l e A f t e r (c o n v e r s a t i o n) {

v a r e n t i t y = c o n v e r s a t i o n . r e s p o n s e . e n t i t y

i f (e n t i t y . m e d i a T y p e . n a m e == ' a p p l i c a t i o n / p d f ') {

e n t i t y . d i s p o s i t i o n . t y p e = ' a t t a c h m e n t '

}

}

49

http://lesscss.org/

To install it in routing.js:

a p p . r o u t e s = {

' / � ' : {

t y p e : ' f i l t e r ' ,

l i b r a r y : ' / f i l t e r s / d o w n l o a d � p d f / ' ,

n e x t : ' s t a t i c '

}

}

On-the-Fly Resources

You can add supp ort for on-the-�y resources to your application via the �execute� route typ e (page 22). This

p owerful�and dangerous�resource executes all POST payloads as if they were template resources in the applica-

tion, and is very useful for debugging (page 87) and maintenance.

Another p ossibly exciting use case is to allow an esp ecially rich API: instead of exp osing your facilities via a

RESTful API, you can allow certain clients full access to, well, everything. It's hard to recommend this usage for

most applications due to its severe security risks, as well as limitations to scalability, but for some internally running

applications it could prove extremely useful.

Diligence comes with the console feature, which o�ers a user-friendly variation of this functionality: it's

a web-based mini-IDE that features p ersistent programs, JavaScript syntax coloring, and log tailing/-

�ltering.

To install it, mo dify your application's routing.js and create a route for the �execute� typ e:

a p p . r o u t e s = {

. . .

' / e x e c u t e / ' : ' e x e c u t e '

}

Because it allows execution of arbitrary co de, you very likely do not want its URL publicly exp osed.

Make sure to protect its URL on publicly available machines!

Example use with cURL command line:

c u r l �� d a t a '<% p r i n t l n (1 + 2) %>' h t t p : / / l o c a l h o s t : 8 0 8 0 / myapp / e x e c u t e /

Note that if you use cURL with a �le, you need to send it as binary, otherwise curl will strip your newlines:

c u r l �� d a t a � b i n a r y @ m y s c r i p t f i l e h t t p : / / l o c a l h o s t : 8 0 8 0 / myapp / e x e c u t e /

Where �myscript�le� could b e something like this:

<%

d o c u m e n t . r e q u i r e (' / s i n c e r i t y / t e m p l a t e s / ')

p r i n t l n (H e l l o , { 0 } ' . c a s t (' L i n u s '))

%>

Almost all the usual template resource APIs work (with the exception of caching, which isn't supp orted):

<%

d o c u m e n t . r e q u i r e (' / s i n c e r i t y / t e m p l a t e s / ')

v a r n a m e = c o n v e r s a t i o n . q u e r y . g e t (' n a m e ') | | ' L i n u s '

p r i n t l n (' H e l l o , { 0 } ' . c a s t (n a m e))

%>

For the ab ove, you could then POST with a query param:

c u r l �� d a t a � b i n a r y @ m y s c r i p t f i l e ' h t t p : / / l o c a l h o s t : 8 0 8 0 / myapp / e x e c u t e / ? n a m e=R i c h a r d '

Note that you can, as usual, use scriptlets in any supp orted programming language:

50

http://threecrickets.com/diligence/manual/feature/console/
http://curl.haxx.se/

<%p y t h o n

n a m e = c o n v e r s a t i o n . q u e r y [' n a m e '] o r ' L i n u s '

p r i n t ' H e l l o , %s ' % n a m e

%>

Also note that the default resp onse MIME typ e is �text/plain�, but you can mo dify it with the

conversation.mediaTyp e APIs:

<%

d o c u m e n t . r e q u i r e (' / s i n c e r i t y / j s o n / ')

c o n v e r s a t i o n . m e d i a T y p e N a m e = ' a p p l i c a t i o n / j s o n '

p r i n t l n (S i n c e r i t y . JSON . t o ({ g r e e t i n g : ' H e l l o ' } , t r u e))

%>

Java Resources

You may prefer to implement some of your manual resources directly in Java, by inheriting ServerResource, or

p erhaps you are relying a JVM library that already comes with such resources. To use them, set them up in your

routing.js via the �resource� route typ e (page 22).

Some notes:

� Sure, Java can o�er b etter p erformance than dynamic languages, but it's very rare for language p erformance

to b e the b ottleneck: communication with a database server, for example, is orders of magnitude slower.

Don't �drop down� to Java in order to optimize unless you've really con�rmed that language p erformance is

a problem.

� Prudence's manual resources are not merely dynamic-language implementations of ServerResource, but also

provide extra features such as integrated server-side caching (page 61). If you switch to Java, you would have

to implement such features on your own.

Resource Typ e Comparison Table

Manual Template Static

Supports URI Mapping Yes Yes Yes

Supports URI

Dispatching

Yes No No

Filename Extension Determines programming

language

Determines MIME typ e Determines MIME typ e

Filename Pre-extension *.m.* *.t.* n/a

Programming Languages Determined by �lename

extension

Determined by scriptlet

tags (multiple languages

p ossible p er resource)

n/a

Content Negotiation Manually determined in

handleInit; multiple

MIME typ es p ossible;

multiple compression

typ es automatically

supp orted and cached

Single MIME typ e

determined by �lename

extension; multiple

compression typ es

automatically supp orted

and cached

Single MIME typ e

determined by �lename

extension; multiple

compression typ es

automatically supp orted

Server-Side Caching Manual (via API) Automatic (determined

by server-side caching)

n/a

Client-Side Caching Manual (via API) Automatic (determined

by server-side caching)

Can b e added with

CacheControlFilter

Web Data

This chapter deals with sending and receiving data to and from the client (as well as external servers) via REST,

fo cusing esp ecially on the particulars for HTTP and HTML. It do es not deal with storing data in backend databases.

51

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.mediaType
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/api/index.html?org/restlet/resource/ServerResource.html

Prudence is a minimalist RESTful platform, not a data-driven web framework, though such frameworks

are built on top of it. Check out our Diligence, which is a full-blown framework based on Prudence and

MongoDB. You may also b e interested in the Mo del-View-Controller (MVC) chapter (page 125), which

guides you through an approach to integrating data backends.

URLs

The simplest way in which a client sends data to the server is via the URL. The main part of the URL is parsed by

Prudence and used for routing (page 21), but some of it is left for your own uses.

Generally, the whole or parts of the request URL can b e accessed via the conversation.reference API .

Query Parameters

This is the matrix of parameters after the �?� in the URI.

For example, consider this URL:

h t t p : / / m y s i t e . o r g / myapp / u s e r ? n a m e= A l b e r t %20 E i n s t e i n & e n a b l e d = t r u e

Note the �%20� URI enco ding for the space character. Query params will b e automatically deco ded by Prudence.

In JavaScript, you can use Prudence.Resources.getQuery API :

d o c u m e n t . r e q u i r e (' / p r u d e n c e / r e s o u r c e s / ')

v a r q u e r y = P r u d e n c e . R e s o u r c e s . g e t Q u e r y (c o n v e r s a t i o n , {

n a m e : ' s t r i n g ' ,

e n a b l e d : ' b o o l '

})

In the case of multiple params with the same name, the API would return the �rst param that matches the

name. Otherwise, you can also retrieve all values into an array:

v a r q u e r y = P r u d e n c e . R e s o u r c e s . g e t Q u e r y (c o n v e r s a t i o n , {

n a m e : ' s t r i n g [] ' ,

e n a b l e d : ' b o o l '

})

Low Level For non-JavaScript you can use the lower-level conversation.query API:

v a r q u e r y = {

n a m e : c o n v e r s a t i o n . q u e r y . g e t (' n a m e ') ,

e n a b l e d : c o n v e r s a t i o n . q u e r y . g e t (' e n a b l e d ') == ' t r u e '

}

Use conversation.queryAll if you need to �nd multiple params with the same name.

Captured Segments

Variables in the URI template (page 21) you con�gured in routing.js will b e captured into conversation.lo cals (page

83). Note that you can also interp olate the captured variables into the target URI (page 115).

The Wildcard

If you've con�gured a URI template with a wildcard (page 21) in routing.js, you can access the � *� value using

conversation.wildcard. Note that you can also interp olate the wildcard into the target URI (page 114).

Fragments

This is whatever app ears after the �#� in the URI. Note that for the web fragments are only used for response

URLs : those sent from the server to the client. This is enforced: web browsers will normally strip fragments b efore

sending URLs to the server, but the server can send them to web browsers. They are commonly used in HTML

anchors:

52

http://threecrickets.com/diligence
http://www.mongodb.org/
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.reference
http://threecrickets.com/api/javascript/?namespace=Prudence.Resources&item=Prudence.Resources.getQuery
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.query
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.queryAll
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.wildcard

<a n a m e=" t o p " /><h 1>T h i s i s t h e t o p ! < / h 1>

<p> C l i c k <a h r e f ="#t o p "> h e r e t o g o t o t h e t o p </p>

But you can also use them in redirects (page 55):

c o n v e r s a t i o n . r e d i r e c t S e e O t h e r (c o n v e r s a t i o n . b a s e + ' # t o p ')

Request Payloads

These are used in �POST� and �PUT� verbs.

In JavaScript, you can use Prudence.Resources.getEntity API to extract the data in various formats:

d o c u m e n t . r e q u i r e (' / p r u d e n c e / r e s o u r c e s / ')

v a r d a t a = P r u d e n c e . R e s o u r c e s . g e t E n t i t y (c o n v e r s a t i o n , ' j s o n ')

Otherwise, you can use the lower-level conversation.entity API :

d o c u m e n t . r e q u i r e (' / s i n c e r i t y / j s o n / ')

v a r t e x t = c o n v e r s a t i o n . e n t i t y . t e x t

v a r d a t a = S i n c e r i t y . JSON . f r o m (t e x t)

Note that if the payload comes from a HTML �p ost� form, b etter APIs are available (page 56).

MIME Typ es

If you wish to supp ort multiple request payload MIME typ es, b e sure to check b efore retrieving:

v a r t y p e = c o n v e r s a t i o n . e n t i t y . m e d i a T y p e . n a m e

i f (t y p e == ' a p p l i c a t i o n / j s o n ') {

v a r d a t a = P r u d e n c e . R e s o u r c e s . g e t E n t i t y (c o n v e r s a t i o n , ' j s o n ')

. . .

} e l s e i f (t y p e == ' i m a g e / p n g ') {

v a r d a t a = P r u d e n c e . R e s o u r c e s . g e t E n t i t y (c o n v e r s a t i o n , ' b i n a r y ')

. . .

}

Consumption

Note that you can only retrieve the request payload once . Once the data stream is consumed, its data resources are

released. Thus, the following would result in an error:

p r i n t (c o n v e r s a t i o n . e n t i t y . t e x t)

p r i n t (c o n v e r s a t i o n . e n t i t y . t e x t)

The simple solution is retrieve once and store in a variable:

v a r t e x t = c o n v e r s a t i o n . e n t i t y . t e x t

p r i n t (t e x t)

p r i n t (t e x t)

Parsing Formats

Which formats can Prudence parse, and how well?

This dep ends on which programming language you're using: for example, b oth Python and Ruby b oth come with

basic JSON supp ort in their standard libraries, and Python supp orts XML, as well. Sincerity provides JavaScript

with supp ort for b oth. Of course, you can install libraries that handle these and other formats, and even use JVM

libraries.

For other formats, you may indeed need to add other libraries.

53

http://threecrickets.com/api/javascript/?namespace=Prudence.Resources&item=Prudence.Resources.getEntity
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.entity

A decent starting p oint is Restlet's ecosystem of extensions, which can handle several data formats and

conversions. However, these are likely more useful in pure Java Restlet programming, where they can

plug into Restlet's sophisticated annotation-based conversion system. In Prudence, you will usually b e

applying any generic parsing library to the raw textual or binary data. Still, the Restlet extensions are

useful for resp onse payloads (page 58).

Co okies

Co okies represent a small client-side database, which the server can use to retrieve or store p er-client data. Not all

clients supp ort co okies, and even those that do (most web browsers) might have the feature disabled, so it's not

always a go o d idea to rely on co okies.

From the Client

Retrieve a sp eci�c co okie from those the client sent you according to its name using conversation.getCo okie:

v a r s e s s i o n = c o n v e r s a t i o n . g e t C o o k i e (' s e s s i o n ')

i f (n u l l !== s e s s i o n) {

p r i n t (s e s s i o n . v a l u e)

}

Or use conversation.co okies to iterate through all available co okies.

The following attributes are available:

� name: (read only)

� version: (integer) p er a sp eci�c co okie

� value: textual, or text-enco ded binary data (note that most clients have strict limits on how much total data

is allowed to b e stored in all co okies p er domain)

� domain: the client should only use the co okie with this domain and its sub domains (web browsers will not

let you set a co okie for a domain which is not the domain of the request or a sub domain of it)

� path: the client should only use the co okie with URIs that b egin with this path (�/�, the default, would mean

to use it with all URIs)

To the Client

You can ask that a client mo dify any of the co okies you've retrieved from it, up on a successful resp onse, by calling

the �save� metho d:

v a r s e s s i o n = c o n v e r s a t i o n . g e t C o o k i e (' s e s s i o n ')

i f (n u l l !== s e s s i o n) {

s e s s i o n . v a l u e = ' n e w s e s s i o n '

s e s s i o n . s a v e ()

}

Ask the client to create a new co okie using conversation.createCo okie:

v a r s e s s i o n = c o n v e r s a t i o n . c r e a t e C o o k i e (' s e s s i o n ')

s e s s i o n . v a l u e = ' n e w s e s s i o n '

s e s s i o n . s a v e ()

Note that createCo okie will retrieve the co okie if it already exists.

When sending co okies to the client, you can set the following attributes in addition to those mentioned ab ove,

but note that you cannot retrieve them later:

� maxAge: age in seconds, after which the client should delete the co okie; maxAge=0 deletes the co okie

immediately, while maxAge=-1 (the default) asks the client to keep the co okie only for the duration of the

�session� (this is de�ned by the client; for most web browsers this means that the co okie will b e deleted when

the browser is closed)

54

http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/ext/index.html?overview-summary.html
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.getCookie
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.cookies
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.createCookie

� secure: true if the co okie is meant to b e used only in secure connections (defaults to false)

� accessRestricted: true if the co okie is meant to b e used only in authenticated connections (defaults to false)

� comment: some clients store this, some discard it

You can ask the client to delete a co okie by calling its �remove� metho d. This is identical to setting maxAge=0 and

calling �save�.

Security Concerns

You should never store any unencrypted secret data in co okies: though web browsers attempt to �sandb ox� co okies,

making sure that only the server (�domain�) that stored them can retrieve them, they can b e hijacked by other

means. Better yet, don't store any secrets in co okies, even if encrypted, b ecause even encryptions can b e hacked.

A cautious exception can b e made for short-term secrets: for example, if you store a session ID in a co okie, make

sure to expire it on the server so that it cannot b e used later by a hacker.

A separate security concern for users is that co okies can b e used to surreptitiously track user activity. This

works b ecause any resource on a web page�even an image hosted by an advertising company�can use co okies,

and can also track your client's IP address. Using various heuristics it is p ossible to identify individual users and

track parts of their browser history.

Because of these security concerns, it is recommended that you devise a �co okie p olicy� for users and make it

public, assuming you require the use of co okies for your site. In particular, let users know which 3rd-party resources

you are including in your web pages that may b e storing co okies, and for what purp ose.

Co okies are a security concern for you, to o: you cannot exp ect all your clients to b e standard, friendly web

browsers. Clients might not b e honoring your requests for co okie mo di�cations, and might b e sending you co okies

that you did not ask them to store.

Be careful with co okies! They are a hacker's playground.

Custom Headers

The most commonly used request and resp onse HTTP headers are supp orted by Prudence's standard APIs. For ex-

ample: conversation.disp osition, conversation.maxAge and conversation.client. However, Prudence also let's you use

other headers, including your custom headers, via conversation.requestHeaders and conversation.resp onseHeaders.

Note that you must use Prudence's standard APIs for headers if such exist: these APIs will only work for additional

headers.

These APIs b oth return a Series ob ject. (You usually won't need to access the elements directly, but in case

you do: they are Header ob jects.) An example of fetching a request header:

v a r h o s t = c o n v e r s a t i o n . r e q u e s t H e a d e r s . g e t F i r s t V a l u e (' H o s t ')

An example of setting a resp onse header:

c o n v e r s a t i o n . r e s p o n s e H e a d e r s . s e t (' X � P i n g b a c k ' , ' h t t p : / / m y s i t e . o r g / p i n g b a c k / ')

Redirection

Client-side redirection in HTTP is handled via resp onse headers.

By Routing

If you need to constantly redirect a sp eci�c resource or a URI template, you should con�gure it in your routing.js,

using the �redirect� route typ e (page 23):

a p p . r o u t e s = {

. . .

' / i m a g e s / � ' : ' > / m e d i a / { r w } '

}

Note that in this example we interp olated the wildcard (page 114).

55

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.disposition
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.maxAge
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.client
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.requestHeaders
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.responseHeaders
http://restlet.com/learn/javadocs/2.2/jse/api/index.html?org/restlet/util/Series.html
http://restlet.com/learn/javadocs/2.2/jse/engine/index.html?org/restlet/engine/header/Header.html

By API

You can also redirect programmatically by using the conversation.redirectPermament,

conversation.redirectSeeOther or conversation.redirectTemp orary APIs:

c o n v e r s a t i o n . r e d i r e c t S e e O t h e r (c o n v e r s a t i o n . b a s e + ' / h e l p / ')

Note that if you redirect via API, the client will ignore the resp onse payload if there is one.

In HTML

We're mentioning this here only for completion: via HTML, redirection is handled entirely in the web browser, with

no data going to/from the server. A template resource example:

Go <a h r e f ="<%.%>/ e l s e w h e r e /" > e l s e w h e r e .

Server-Side Redirection

In Prudence, this is called �capturing� (page 28) and has particular use cases. (It can indeed b e confusing that this

functionality is often group ed together with client-side redirection.)

HTML Forms

HTML's �form� tag works in two very di�erent mo des, dep ending on the value of its �metho d� param:

� �get�: The form �elds are all turned into query params and app ended to the �action� URL. It is imp ortant

to rememb er that an HTTP �GET� is idempotent and should not b e used to store new data, but rather as a

way to represent existing data in a particular way. Actually, �get� forms are not that useful, and are mostly

an o dd legacy from the early days of the World Wide Web, where �GET� was the only the supp orted HTTP

verb on some platforms. See query parameters (page 52) for handling.

� �p ost�: The form �elds are actually enco ded in the same way that query params are, but instead of b eing

a�xed to the URL, they are sent as the payload with an �application/x-www-form-urlenco ded� MIME typ e.

Though you can of course access this payload directly (page 53), it is recommended to use the sp ecialized

APIs detailed here.

Example form:

< f o r m a c t i o n ="<%.%>/ u s e r / " m e t h o d =" p o s t ">

<p>Name : < i n p u t t y p e =" t e x t " n a m e="n a m e"></p>

<p>E n a b l e d : < i n p u t t y p e =" r a d i o " n a m e=" e n a b l e d " v a l u e =" t r u e "></p>

<p> D i s a b l e d : < i n p u t t y p e =" r a d i o " n a m e=" e n a b l e d " v a l u e =" f a l s e "></p>

<p><b u t t o n t y p e =" s u b m i t "> S e n d </ b u t t o n ></p>

</ f o r m >

In JavaScript, you can use Prudence.Resources.getForm API:

d o c u m e n t . r e q u i r e (' / p r u d e n c e / r e s o u r c e s / ')

v a r f o r m = P r u d e n c e . R e s o u r c e s . g e t F o r m (c o n v e r s a t i o n , {

n a m e : ' s t r i n g ' ,

e n a b l e d : ' b o o l '

})

In the case of multiple �elds with the same name, the API would return the �rst �elds that matches the name.

Otherwise, you can also retrieve all values into an array:

v a r f o r m = P r u d e n c e . R e s o u r c e s . g e t F o r m (c o n v e r s a t i o n , {

n a m e : ' s t r i n g [] ' ,

e n a b l e d : ' b o o l '

})

56

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.redirectPermament
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.redirectSeeOther
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.redirectTemporary
http://threecrickets.com/api/javascript/?namespace=Prudence.Resources&item=Prudence.Resources.getQuery

Low Level For non-JavaScript you can use the lower-level conversation.form API family:

v a r f o r m = {

n a m e : c o n v e r s a t i o n . f o r m . g e t (' n a m e ') ,

e n a b l e d : c o n v e r s a t i o n . f o r m . g e t (' e n a b l e d ') == ' t r u e '

}

Use conversation.formAll if you need to �nd multiple �elds with the same name.

Accepting Uploads

HTML supp orts �le uploads using forms and the ��le� input typ e. However, the default �application/x-www-form-

urlenco ded� MIME typ e for forms will not b e able to enco de �les, so you must change it to �multipart/form-data�.

For example:

< f o r m a c t i o n ="<%.%>/ u s e r / " m e t h o d =" p o s t " e n c t y p e =" m u l t i p a r t / f o r m � d a t a ">

<p>Name : < i n p u t t y p e =" t e x t " n a m e="n a m e"></p>

<p>U p l o a d y o u r a v a t a r (a n i m a g e f i l e) : < i n p u t n a m e=" a v a t a r " t y p e =" f i l e " /></p>

<p><b u t t o n t y p e =" s u b m i t "> S e n d </ b u t t o n ></p>

</ f o r m >

Prudence has �exible supp ort for handling uploads: you can con�gure them to b e stored in memory, or to disk.

See the application con�guration guide (page 73).

You can access the uploaded data using the conversation.form API family. Here's a rather sophisticated example

for displaying the uploaded �le to the user:

<%

v a r n a m e = c o n v e r s a t i o n . f o r m . g e t (n a m e ')

v a r t m p A v a t a r = c o n v e r s a t i o n . f o r m . g e t (' a v a t a r ') . f i l e

/ / T h e m e t a d a t a s e r v i c e c a n p r o v i d e u s w i t h a d e f a u l t e x t e n s i o n f o r t h e m e d i a t y p e

v a r m e d i a T y p e = c o n v e r s a t i o n . f o r m . g e t (' a v a t a r ') . m e d i a T y p e

v a r e x t e n s i o n = a p p l i c a t i o n . a p p l i c a t i o n . m e t a d a t a S e r v i c e . g e t E x t e n s i o n (m e d i a T y p e)

/ / We w i l l p u t a l l a v a t a r s u n d e r t h e " / r e s o u r c e s / a v a t a r s / " d i r e c t o r y , s o t h a t t h e y

/ / c a n b e v i s i b l e t o t h e w o r l d

v a r a v a t a r s = n e w F i l e (d o c u m e n t . s o u r c e . b a s e P a t h , ' a v a t a r s ')

a v a t a r s . m k d i r s ()

v a r a v a t a r = n e w F i l e (a v a t a r s , n a m e + ' . ' + e x t e n s i o n)

/ / Move t h e f i l e t o t h e n e w l o c a t i o n

t m p A v a t a r . r e n a m e T o (a v a t a r)

%>

<p>H e r e ' s t h e a v a t a r y o u u p l o a d e d , <%= n a m e %></p>

<i m g s r c ="<%.%>/ a v a t a r s /<%= a v a t a r . n a m e %>" />

Resp onse Payloads

This section is mostly applicable to manual resources (page 36), although it can prove useful to a�ect the textual

payloads of template resources (page 39). For static resources (page 46), the resp onse payloads are of course the

contents of the resource �les.

Two imp ortant notes:

� Prudence can automatically cache your resp onse payloads (page 61). Up on a successful cache hit, Prudence

will in fact bypass execution of (most of) your co de.

� If you are using your resources internally, it's p ossible to improve p erformance by avoiding serialization (page

116).

57

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.form
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.formAll
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.form

Textual and Binary Payloads

Template resources (page 39) might seem to always return textual payloads. Actually, by default they will negotiate

a compression format, which if selected will result in a binary: the compressed version of the text. But all of that

is handled automatically by Prudence for that highly-optimized use case.

For manual resources (page 36), you can return any arbitrary payload by simply returning a value in handleGet,

handlePost or handlePut. Both strings and JVM byte arrays are supp orted. A textual example:

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

r e t u r n ' My p a y l o a d '

}

A binary example:

d o c u m e n t . r e q u i r e (' / s i n c e r i t y / j v m / ')

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

v a r p a y l o a d = S i n c e r i t y . JVM . n e w A r r a y (1 0 , ' b y t e ')

f o r (v a r i = 0 ; i < 1 0 ; i ++) {

p a y l o a d [i] = i

}

r e t u r n p a y l o a d

}

Note that if you return a number , it will b e treated sp ecially as an HTTP status co de. If you wish to return the

numb er as the content of a textual payload , simply convert it to a string:

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

r e t u r n S t r i n g (4 0 4)

}

If you wish to set b oth the payload and the status co de, use an API for either one. Here well use the

conversation.status API family. Note that if your status co de is an error status co de, you'll also want to bypass

this error page using conversation.statusPassthrough:

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

c o n v e r s a t i o n . s t a t u s C o d e = 4 0 4

c o n v e r s a t i o n . s t a t u s P a s s t h r o u g h = t r u e

r e t u r n ' N o t f o u n d ! '

}

Alternatively, we can use the conversation.setResp onseText or conversation.setResp onseBinary:

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

c o n v e r s a t i o n . s e t R e s p o n s e T e x t (' N o t f o u n d ! ' , n u l l , n u l l , n u l l)

c o n v e r s a t i o n . s t a t u s P a s s t h r o u g h

r e t u r n 4 0 4

}

Binary Streaming Streaming using background tasks (page 102) is not directly supp orted by Prudence as of

version 2.0. However, this feature is planned for a future version, dep ending on supp ort b eing added to Restlet.

Restlet Data Extensions

Instead of returning a string or a byte array, you can return an instance of any class inheriting from Representation.

Restlet comes with a few basic classes to get you started. Here's a rather b oring example:

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

r e t u r n n e w o r g . r e s t l e t . r e p r e s e n t a t i o n . S t r i n g R e p r e s e n t a t i o n (' My p a y l o a d ')

}

58

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.status
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.statusPassthrough
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.setResponseText
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.setResponseBinary
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/api/index.html?org/restlet/representation/Representation.html
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/api/index.html?org/restlet/representation/package-summary.html

Where Restlet really shines is in its ecosystem of extensions, which can handle several data formats and con-

versions. For these extensions to work, you will need to install the appropriate library in your container's �/li-

braries/jars/� directory, as well as all dep endent libraries. Please refer to the Restlet distribution for complete

details.

Note that you can also set the resp onse via the conversation.resp onse.entity API :

v a r p a y l o a d = n e w o r g . r e s t l e t . r e p r e s e n t a t i o n . S t r i n g R e p r e s e n t a t i o n (' My p a y l o a d ')

c o n v e r s a t i o n . r e s p o n s e . e n t i t y = p a y l o a d

Or via the conversation.setResp onseText API shortcut:

c o n v e r s a t i o n . s e t R e s p o n s e T e x t (' My p a y l o a d ' , n u l l , n u l l , n u l l)

Overriding the Negotiated Format

The resp onse payload's MIME typ e and language have likely b een selected for you automatically by Prudence,

via HTTP content negotiation, based on the list of preferences you set up in handleInit. However, it's p ossible to

override these values via the conversation.mediaTyp e and conversation.language API families. This should b e done

sparingly: content negotiation is the preferred RESTful mechanism for determining the resp onse format, and the

negotiated values should b e honored. However, it could b e useful and even necessary to override it if you cannot

use content negotiation, which might b e the case if your clients don't supp ort it, and yet you still want to supp ort

multiple formats.

In this example, we'll allow a �format=html� query param to override the negotiated MIME typ e:

f u n c t i o n h a n d l e I n i t (c o n v e r s a t i o n) {

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' t e x t / h t m l ')

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' t e x t / p l a i n ')

}

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

i f (c o n v e r s a t i o n . q u e r y . g e t (' f o r m a t ') == ' h t m l ') {

c o n v e r s a t i o n . m e d i a T y p e N a m e = ' t e x t / h t m l '

}

r e t u r n c o n v e r s a t i o n . m e d i a T y p e N a m e == ' t e x t / h t m l ' ?

' < h t m l ><b o d y>My p a g e </ b o d y ></h t m l > ' :

' My p a g e '

}

An example of overriding the negotiated language:

f u n c t i o n h a n d l e I n i t (c o n v e r s a t i o n) {

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e W i t h L a n g u a g e (' t e x t / h t m l ' , ' e n ')

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e W i t h L a n g u a g e (' t e x t / h t m l ' , ' f r ')

}

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

i f (c o n v e r s a t i o n . q u e r y . g e t (' l a n g u a g e ') == ' f r ') {

c o n v e r s a t i o n . l a n g u a g e N a m e = ' f r '

}

i f (c o n v e r s a t i o n . l a n g u a g e N a m e == ' f r ') {

. . .

}

e l s e {

. . .

}

}

Note that these APIs works just as well for template resources, though again content negotiation should b e

preferred.

59

http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/ext/index.html?overview-summary.html
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.response
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.setResponseText
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.mediaType
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.language

Under the Ho o d When the MIME typ e is �application/internal�, Prudence is actually wrapping your return

value in an InternalRepresentation. You can also construct it explicitly (page 58):

r e t u r n n e w com . t h r e e c r i c k e t s . p r u d e n c e . u t i l . I n t e r n a l R e p r e s e n t a t i o n (d a t a)

Note that, of course, if you return an instance of a class inheriting from Representation, Prudence will detect

this and not wrap it again in an InternalRepresentation.

Browser Downloads

You can create browser-friendly downloadable resp onses using the conversation.disp osition API . Here's an example

using a manual resource:

f u n c t i o n h a n d l e I n i t (c o n v e r s a t i o n) {

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' t e x t / c s v ')

}

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

v a r c s v = ' I t e m , C o s t , S o l d , P r o f i t \ n '

c s v += ' K e y b o a r d , $ 1 0 . 0 0 , $ 1 6 . 0 0 , $ 6 . 0 0 \ n '

c s v += ' M o n i t o r , $ 8 0 . 0 0 , $ 1 2 0 . 0 0 , $ 4 0 . 0 0 \ n '

c s v += ' M o u s e , $ 5 . 0 0 , $ 7 . 0 0 , $ 2 . 0 0 \ n '

c s v += ' , , T o t a l , $ 4 8 . 0 0 \ n '

c o n v e r s a t i o n . d i s p o s i t i o n . t y p e = ' a t t a c h m e n t '

c o n v e r s a t i o n . d i s p o s i t i o n . f i l e n a m e = ' b i l l . c s v '

r e t u r n c s v

}

Most web browsers would recognize the MIME typ e and ask the user if they would prefer to either download

the �le with the suggested �bill.csv� �lename, or op en it in a supp orting application, such as a spreadsheet editor.

Note that the disp osition is not cached. If you wish to use this feature, you need to disable caching on

the particular resource.

External Requests

Prudence uses the Restlet library to serve RESTful resources, but can also use it to consume them. In fact, the

client API nicely mirrors the server API.

Note that Prudence can also handle internal REST requests without going through HTTP or ob ject serialization.

There is an entire internal URI-space (page 115) at your �ngertips.

It's not a go o d idea to send an external request while handling a user request, b ecause it could p otentially

cause a long delay and hold up the user thread. It would b e b etter to use a background task (page 102).

A p ossible exception is requests to servers that you control yourself, and that represent a subsystem

of your application. In that case, you should still use short timeouts (page 61) and fail quickly and

gracefully.

For our examples, let's get information ab out the weather on Mars from MAAS .

In JavaScript, you can use the p owerful Prudence.Resources.request API :

d o c u m e n t . r e q u i r e (' / p r u d e n c e / r e s o u r c e s / ')

v a r w e a t h e r = P r u d e n c e . R e s o u r c e s . r e q u e s t ({

u r i : ' h t t p : / / m a r s w e a t h e r . i n g e n o l o g y . com / v 1 / l a t e s t / ' ,

m e d i a T y p e : ' a p p l i c a t i o n / j s o n '

})

i f (n u l l !== w e a t h e r) {

p r i n t (' T h e max t e m p e r a t u r e o n M a r s t o d a y i s ' + w e a t h e r . r e p o r t . max_temp + ' d e g r e e s ')

}

The API will automatically convert the resp onse according to the media typ e. In this case, we requested

�application/json�, so the textual resp onse will b e converted from JSON to JavaScript native data. The API will

also automatically follow redirects.

Payloads sent to the server, for the �POST� and �PUT� verbs, are also automatically converted:

60

http://threecrickets.com/api/java/prudence/index.html?com/threecrickets/prudence/util/InternalRepresentation.html
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/api/index.html?org/restlet/representation/Representation.html
http://threecrickets.com/api/java/prudence/index.html?com/threecrickets/prudence/util/InternalRepresentation.html
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.disposition
http://marsweather.ingenology.com/
http://threecrickets.com/api/javascript/?namespace=Prudence.Resources&item=Prudence.Resources.request

v a r n e w U s e r = P r u d e n c e . R e s o u r c e s . r e q u e s t ({

u r i : ' h t t p : / / m y s i t e . o r g / u s e r / n e w t o n / ' ,

m e t h o d : ' p u t ' ,

m e d i a T y p e : ' a p p l i c a t i o n / j s o n ' ,

p a y l o a d : {

t y p e : ' j s o n ' ,

v a l u e : {

n a m e : ' I s a a c ' ,

n i c k n a m e s : [' I z z y ' , ' Z a c k y ' , ' S i r ']

}

}

})

Read the API do cumentation carefully, as it supp orts many useful parameters.

Low Level For non-JavaScript you can use the lower-level do cument.external API :

d o c u m e n t . r e q u i r e (' / s i n c e r i t y / j s o n / ')

v a r r e s o u r c e = d o c u m e n t . e x t e r n a l (' h t t p : / / m a r s w e a t h e r . i n g e n o l o g y . com / v 1 / l a t e s t / ' , ' a p p l i c a t i o n / j s o n ')

r e s u l t = r e s o u r c e . g e t ()

i f (n u l l !== r e s u l t) {

w e a t h e r = S i n c e r i t y . JSON . f r o m (r e s u l t . t e x t)

p r i n t (' T h e max t e m p e r a t u r e o n M a r s t o d a y i s ' + w e a t h e r . r e p o r t . max_temp + ' d e g r e e s ')

}

Timeout

Surprisingly, you cannot set the timeout p er request, but instead you need to con�gure the timeout globally for the

HTTP client (page 122). This is due to a limitation in Restlet that may b e �xed in the future.

Secure Requests

These APIs supp ort secure requests to �https:� servers. Such requests rely on the JVM's built-in authorization

mechanism. Like most web browsers, the JVM recognizes the common Internet certi�cate authorities. This means

that if you're using your own self-created keys, that don't use an approved certi�cate, you need to sp ecify these

keys via a �trust store� for the JVM. For an example, see secure servers (page 120) in the con�guration chapter.

RESTful Files

The same APIs can b e used to easily access resources via the ��le:� pseudo-proto col. Let's read a JSON �le:

v a r d a t a = P r u d e n c e . R e s o u r c e s . r e q u e s t ({

f i l e : ' / tmp / w e a t h e r . j s o n ' ,

m e d i a T y p e : ' a p p l i c a t i o n / j s o n '

})

The ab ove is simply a shortcut to this:

v a r d a t a = P r u d e n c e . R e s o u r c e s . r e q u e s t ({

u r i : ' f i l e : / / / tmp / w e a t h e r . j s o n ' ,

m e d i a T y p e : ' a p p l i c a t i o n / j s o n '

})

You can even �PUT� new �le data, and �DELETE� �les using this API.

Caching

The State of the Art

Doing caching right is far from trivial: it's much more than just storing data in a key-value store, which is what

most web platforms o�er you.

61

http://threecrickets.com/api/javascript/?namespace=conversation&item=document.external
https://github.com/restlet/restlet-framework-java/issues/815

Prudence's caching mechanism features the following:

� Template-based cache key generation with supp ort for custom plugins. This allows you full �exibility in

caching data that varies p er external and internal conditions.

� Fully integrated with client-side caching: uses conditional HTTP requests to make sure clients don't download

data they already have, while guaranteeing that they will download newer versions of the data. This enhances

the user exp erience (faster resp onses) while saving you on bandwidth.

� Allows tagging of cache entries, so that whole swaths of the cache can b e invalidated at once just by sp ecifying

a tag.

� Tiered caching strategies: allows chaining cache backends in sequence, such that faster backends can b e placed

b efore slower ones.

� Prudence caches compressed (gzip and DEFLATE) representations separately, allowing you to save precious

CPU cycles on the server.

� Not just pages: Prudence caches your web APIs, to o, with all the same features mentioned ab ove.

� For page caching, Prudence caches included fragments individually, allowing for �ne-grained control over

which parts of the page are cached. With smart use of cache key templates, you can optimize page caching

to p erfection.

But what's really great ab out Prudence is how easy it is to use these features: in most cases caching is pretty much

automatic. When you need to customize, the API is clear and easy to use.

Server-Side Caching

Five of the caching APIs are in the �caching� namespace, and one is in �application�.

For template resources, you may call these APIs anywhere on the page, but for manual resources they should

b e called in handleInit (page 36).

caching.duration

Sp eci�es the duration of cache entries in milliseconds. Set this to a greater-than-zero value to enable caching on

the current resource. The default is zero, meaning that caching is disabled.

You can set this value to a either a numb er or a string (page 71). For example, �1.5m� is 90000 milliseconds.

Note, though, they when you read the value, it will always b e numeric (a long integer data typ e).

Once enabled, every incoming request will have a cache key generated for it based on the cache key template,

plus compression information. Prudence will attempt to fetch the cache entry from the cache, and if it's still valid,

will display it to the user (this is called a �cache hit�). If there is no cache entry, or it's invalid, Prudence will run

the resource as usual (this is called a �cache miss�), and then store a new cache entry via the key.

Compression is handled sp ecially: if the requested compressed cache entry do es not exist, then Prudence will

attempt to fetch the uncompressed cache entry. If that exists, Prudence would simply compress it and store the

compressed version so that compression could b e avoided in the future. In the debug headers, this would app ear

as a �hit;enco de� event. Likewise, when storing a new compressed cache entry (during a �miss�), Prudence actually

stores b oth the compressed version as well as the uncompressed version.

See the API do cumentation for more details.

A Little Bit of Caching Go es a Long Way Remarkably, even a very small cache duration of just a second or

two can b e immensely b ene�cial. It will ensure that if you're b ombarded with a sudden upsurge of user requests to

the resource, your application won't collapse. The cost is often very much worth it: having the �freshness� of your

data b eing delayed by just a few seconds is usually not a big deal.

It's Not Always Worth It It's imp ortant to rememb er that caching is not always faster than fully generating

the page. Caching backends are generally very fast, but they still intro duce overhead. So, just like in any scenario,

avoid premature optimization and b enchmark your resources to b e sure that caching would indeed improve your

p erformance and scalability.

62

http://threecrickets.com/api/javascript/?namespace=caching&item=caching.duration

Caching Forever? You might think that your invalidation scheme is so p erfect that there's no reason to ever

have your cache entries expire. Well, think again: without a clear expiration time, your cache would continue

growing forever. Finite durations thus allow for a way for the cache to recycle.

caching.tags

Tags are simple strings that you can asso ciate with a resource's cache entries, which can then b e used to invalidate

all entries b elonging to a particular tag. You may add as many tags as you wish:

c a c h i n g . t a g s . a d d (' b l o g ')

c a c h i n g . t a g s . a d d (' n e w s . ' + n e w s D a t e)

Note that tags are asso ciated with al l cache entries based on the resource, whatever their �nal cache key.

See the API do cumentation for more details.

caching.keyTemplate

The cache key template is a string with variables delimited in curly brackets that is cast into a cache key p er request.

The variables are elab orated in the chapter on string interp olation (page 113), and are essentially the same as those

used for URI templates. However, Prudence also lets you install plugins (page 64) to supp ort your own sp ecialized

template variables. You can debug the cache key template by using the caching debug headers (page 73).

See the API do cumentation for more details.

Prudence's default cache key template is sensible enough for most scenarios: � {ri}|{dn}|{nmt}|{nl}|{ne}�. You

can change it in your settings.js (page 73). Let's break it down:

� The �ri� variable is cast to the entire client URI, while �dn� is the do cument (�le) name.

� It's a convention in Prudence, but not a requirement, to use �|� as a separator of cache key elements, b ecause

it's a character that won't b e used by most template variables.

� �dn� makes sure that dynamic captures (page 27) and other server-side redirections would still b e cached

uniquely: the same URI might reach a di�erent do cument dep ending on an external factor.

� �nmt�, �nl� and �ne� all make sure that we have a di�erent key p er negotiated format.

� Pay special attention to �ne� : if you are supp orting compression, you will need it in your cache key templates.

Because Prudence usually handles compression automatically for you, it's easy to forget this imp ortant vari-

able.

The ab ove is a go o d cache key template, but you may want to mo dify it. Here are two common reasons:

Per-User Caching A common scenario is for a resource to b e generated di�erent accordingly to the logged-in

user. You would thus want to include a user identi�er in the cache key. To do this, you would likely need to

write a plugin (page 64) to interp olate that identi�er. You cache key template could then lo ok something like

� {ri}|{uid}|{MT}|{L}�, where �uid� is handled by your plugin.

Caching Fragments You might b e including the same fragment in many pages, but the fragment in fact will b e

mostly identical. In this case, you can optimize by using a shorter cache key, such that the fragment would b e cached

only once for all inclusions. You would thus not want to use �ri�. A simple example would b e � {dn}|{MT}|{L}�.

This can also b e used in conjunction with p er-user caching: for example, if you want to cache the same fragment

p er-user, it would b e � {dn}|{uid}|{MT}|{L}�. Note that fragments are never compressed, so you don't need � {ne}�.

Generally, creating the b est key template involves a delicate balance b etween on the one hand making sure that

di�ering data is indeed cached separately, while on the other hand making sure that you're not needlessly caching

the same data more than once.

63

http://threecrickets.com/api/javascript/?namespace=caching&item=caching.tags
http://threecrickets.com/api/javascript/?namespace=caching&item=caching.keyTemplate

caching.keyTemplatePlugins

This p owerful feature allows you to interp olate your own custom values into cache keys. While this do es mean that

some co de will b e run for every request, even for cache hits, it gives you the opp ortunity to write e�cient, fast co de

that is used only for handling caching.

A common scenario requiring a key template plugin is to interp olate a user ID. We'd install it like so:

c a c h i n g . k e y T e m p l a t e P l u g i n s . p u t (' u i d ' , ' / p l u g i n s / s e s s i o n / ')

The ab ove means that existence of a �uid� variable in a key template would trigger the invo cation of the

�/plugins/session/� library to handle it.

Actually, Prudence also allows you to install key template plugins by con�guring them in your application's

settings.js (page 73). In that case, the plugin would b e installed for al l resources:

a p p . s e t t i n g s = {

. . .

c o d e : {

c a c h e K e y T e m p l a t e P l u g i n s : {

u i d : ' / p l u g i n s / s e s s i o n / '

}

}

}

The implementation of the plugin, however, would b e the same however we install it. Our plugin would b e in

�/libraries/plugins/session.js�:

d o c u m e n t . r e q u i r e (' / s i n c e r i t y / o b j e c t s / ')

f u n c t i o n h a n d l e I n t e r p o l a t i o n (c o n v e r s a t i o n , v a r i a b l e s) {

f o r (v a r v i n v a r i a b l e s) {

v a r v a r i a b l e = v a r i a b l e s [v]

i f (v a r i a b l e == ' u i d ') {

v a r s e s s i o n C o o k i e = c o n v e r s a t i o n . g e t C o o k i e (' s e s s i o n ')

i f (S i n c e r i t y . O b j e c t s . e x i s t s (s e s s i o n C o o k i e)) {

v a r s e s s i o n = g e t S e s s i o n (s e s s i o n C o o k i e . v a l u e)

i f (S i n c e r i t y . O b j e c t s . e x i s t s (s e s s i o n)) {

c o n v e r s a t i o n . l o c a l s . p u t (' u i d ' , s e s s i o n . g e t U s e r I d ())

}

}

}

}

}

f u n c t i o n g e t S e s s i o n (s e s s i o n I d) {

. . .

r e t u r n s e s s i o n

}

Implementation notes:

� The entry p oint is �handleInterp olation�, and accepts as arguments the current conversation as well as an

array of the variables to interp olate. Prudence makes sure to optimize these call by gathering into the array

only those variables actually used in the key template. Of course, it would not call your plugin at all if the

variables are not present. Also, no cache key casting would b e done at all if caching.duration is zero. (This

makes it very safe to install the plugin for all resources in setting.js, knowing that it would never b e called

unless necessary.)

� In this implementation, we're assuming that a co okie named �session� is sent with the session ID. We would

then have some functionality in getSession to retrieve a session ob ject.

� The interp olation �trick� is to set up our variable as a conversation.lo cal. Because conversation.lo cals are

interp olated as is (page 115), we've e�ectively allowed the cache key template to b e correctly cast.

64

See the API do cumentation for more details.

An Optimization In the ab ove example, we are retrieving the session in order to discover the user ID, an

op eration that could p otentially b e costly. Consider that if we have a cache miss, then the session might b e

retrieved again in the implementation of the resource.

It's easy to optimize for this situation by storing the session as a conversation.lo cal, such that it would b e

available in the resource implementation. We'd mo dify our ab ove plugin co de like so:

i f (S i n c e r i t y . O b j e c t s . e x i s t s (s e s s i o n)) {

c o n v e r s a t i o n . l o c a l s . p u t (' s e s s i o n ' , s e s s i o n)

c o n v e r s a t i o n . l o c a l s . p u t (' u i d ' , s e s s i o n . g e t U s e r I d ())

}

Then, in our resource implementation, would could check to see if this value is present:

v a r s e s s i o n = c o n v e r s a t i o n . l o c a l s . g e t (' s e s s i o n ')

i f (! S i n c e r i t y . O b j e c t s . e x i s t s (s e s s i o n)) {

v a r s e s s i o n C o o k i e = c o n v e r s a t i o n . c o o k i e s . g e t (' s e s s i o n ')

i f (S i n c e r i t y . O b j e c t s . e x i s t s (s e s s i o n C o o k i e)) {

s e s s i o n = g e t S e s s i o n (s e s s i o n C o o k i e . v a l u e)

}

}

caching.key

This is a read-only value, meant purely for debugging purp oses. By logging or otherwise displaying it, you can see

the cache key that Prudence would use for the current resource. Would is the key quali�er here: of course, your

co de displaying the cache key won't actually b e run in the case of a cache hit.

Another way to see the cache key is to enable the caching debug headers (page 73).

See the API do cumentation for more details.

application.cache

You'll most likely want to use this API to invalidate a cache tag:

a p p l i c a t i o n . c a c h e . i n v a l i d a t e (' b l o g ')

See the API do cumentation for more details.

Backends

See the con�guration chapter (page 123) for a full guide to con�guring your tiered caching backends. Prudence

comes with many p owerful options.

Client-Side Caching

Many HTTP clients, an in particular web clients, can cache results lo cally. Actually, HTTP sp eci�es two di�erent

caching mo des:

� Conditional mo de : Here, the client caches the downloaded data, but checks with the server to make sure

new data is not available. If new data is not available, then the cached data is used, otherwise it is downloaded.

Remarkably, this is done in a single step: the HTTP headers returned from the server provide the necessary

information ab out the freshness of the data, and if there is no need to download, then the client will stop

there. The request will end with a 304 �not mo di�ed� HTTP status co de. Prudence provides you with various

to ols to optimize conditional HTTP, so that you can b e sure to do only the minimal amount of work necessary

for the check.

� O�ine mo de : Here, the client is told explicitly not to check with the server for a certain amount of time.

Obviously, this provides the b est p ossible p erformance and user exp erience: no network chatter is necessary.

But, also obviously, this means that during that p erio d there is no way for your application to push new data

to the client. Prudence provides you with to ols for using o�ine mo de, but you should use it with care.

65

http://threecrickets.com/api/javascript/?namespace=caching&item=caching.keyTemplatePlugins
http://threecrickets.com/api/javascript/?namespace=caching&item=caching.key
http://threecrickets.com/api/javascript/?namespace=application&item=application.cache

Automatic Client-Side Caching

Here's the go o d news: if you're using server-side caching, then client-side caching in conditional mo de is enabled

for you automatically, by default, for the cached resources. Moreover, Prudence will compute the expiration times

accordingly and sp eci�cally p er request. For example, if you are caching a particular resource for 5 minutes, and

a client tries to access that resource for the �rst time after 1 minute has passed since the cache entry was stored,

then the client will b e told to cache the resource for 4 minutes. After those 4 minutes have passed, the client won't

need to do a conditional HTTP request: it knows that it would need new data.

Automatic client-side caching applies to b oth template and manual resources.

Changing the Mo de If you wish, you may change the default mo de from conditional to o�ine in your routing.js:

a p p . r o u t e s = {

. . .

{

t y p e : ' t e m p l a t e s ' ,

c l i e n t C a c h i n g M o d e : ' o f f l i n e ' ,

m a x C l i e n t C a c h i n g D u r a t i o n : ' 3 0 m '

}

}

Note that �maxClientCachingDuration� only has an e�ect in o�ine mo de: it provides a certain safety cap against

to o-long cache durations. The default is -1, which means this cap is disabled.

Just make sure you understand the implications of o�ine mo de: you will not b e able to push changes to the

client for the cached duration. You can also turn o� client-side caching by setting �clientCachingMo de� to �disabled�.

Static Resources You can add automatic client-side caching to static resources, to o (page 47).

Manual Client-Side Caching

If you're not using Prudence's automatic caching, you can still b ene�t from client-side caching by using the APIs.

For conditional mo de, you have the option of using mo di�cation timestamps and/or tags:

� conversation.mo di�cationTimestamp: The client will compare the mo di�cation timestamp it stored with its

cached entry to this.

� conversation.tagHttp: The client will compare the tag it stored with its cached entry to this.

For o�ine mo de:

� conversation.maxAge: The client will not contact your server regarding the resource until this numb er of

seconds has passed.

� conversation.expirationTimestamp: Similar to �maxAge�, but using an explicit expiration time. Note that

if b oth are set, most clients will treat �maxAge� as sup erseding �expirationTimestamp�. (�maxAge� was

intro duced in HTTP/1.1, �expirationTimestamp� is from HTTP/1.0.)

Manual Ain't Easy Note that though the APIs are very simple, leveraging them is not trivial, and may require

you to design your data structures and subsystems with signi�cant thought towards client-side caching.

For example, storing a mo di�cation timestamp within a single database entry is simple enough, but what if your

�nal data is actually the result of a complex query using from several entries? You could p otentially use the latest

mo di�cation date of all of them: but, as you can see, calculating it can quickly get complicated and ine�cient.

Sometimes it might make sense to actually �bubble� mo di�cation dates upwards to all a�ected database entries as

so on as you mo dify them: it would make your save op erations heavier, but it could very well b e worth it for greater

scalability and an improved user exp erience.

In some cases, calculating a tag might b e less costly than keeping track of mo di�cation timestamps. For some

data structures, tags may even b e provided for you as a bypro duct of how they work: key hashes, serial IDs,

checksums, etc., are all great candidates for tags.

66

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.modificationTimestamp
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.tagHttp
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.maxAge
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.expirationTimestamp

Optimizing the Server Conditional mo de can improve the client exp erience, but it can improve the server

exp erience, to o.

Prudence, using a great feature of the Restlet library, lets you create the conditional HTTP headers and return

them to the client without generating the response . Thus, only if the conditional request continues would your

resp onse generation co de b e called. This feature is internally used by Prudence's automatic caching, but you can

also use it yourself in manual resources, using the �handleGetInfo� entry p oint.

Here's an example�not the most e�cient one, but it will demonstrate the �ow:

f u n c t i o n h a n d l e G e t I n f o (c o n v e r s a t i o n) {

v a r i d = c o n v e r s a t i o n . l o c a l s . g e t (' i d ')

v a r d a t a = f e t c h D a t a F r o m D a t a b a s e (i d)

c o n v e r s a t i o n . l o c a l s . p u t (' d a t a ' , d a t a)

r e t u r n d a t a . g e t M o d i f i c a t i o n T i m e s t a m p ()

}

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

v a r d a t a = g e t D a t a (c o n v e r s a t i o n)

c o n v e r s a t i o n . m o d i f i c a t i o n T i m e s t a m p = d a t a . g e t M o d i f i c a t i o n T i m e s t a m p ()

r e t u r n S i n c e r i t y . JSON . t o (d a t a)

}

f u n c t i o n g e t D a t a (c o n v e r s a t i o n) {

v a r d a t a = c o n v e r s a t i o n . l o c a l s . g e t (' d a t a ')

i f (! S i n c e r i t y . O b j e c t s . e x i s t s (d a t a)) {

v a r i d = c o n v e r s a t i o n . l o c a l s . g e t (' i d ')

d a t a = f e t c h D a t a F r o m D a t a b a s e (i d)

}

r e t u r n d a t a

}

f u n c t i o n f e t c h D a t a F r o m D a t a b a s e (i d) {

. . .

}

As you can see, we're storing the fetched data in a conversation.lo cal, so that if handleGet is called after

handleGetInfo, we would not have to access the database twice.

What have we accomplished in this example? Not that much: all we've done is avoided JSON serialization for

those conditional requests that stop at handleGetInfo. A worthwhile little optimization, to b e sure, but not one

with very dramatic e�ects. It might b e more e�ective in cases in which we had other heavy pro cessing in handleGet

that could b e avoided.

The handleGetInfo trick really shines when you have a shortcut to accessing the modi�cation date or the tag .

Consider as a common example the a way a �lesystem works: you can fetch the �le mo di�cation date with one

system API call, without actually op ening the �le for reading its contents, which would of course b e a much costlier

op eration. Using handleGetInfo with that API would b e able to a�ect a crucial (even necessary!) optimization.

Indeed, that's how static resources (page 46) work internally.

But how would you implement this with a database server? Most database servers don't allow for such shortcuts:

sure, you could only fetch the mo di�cation date column from a row for handleGetInfo, but it would b e ine�cient if

so on after you would also need to fetch the rest of the columns. It would b e more e�cient to just fetch the entire

row at once, and so you're back to our non-dramatic optimization from b efore.

What you could do, however, is cache only the mo di�cation dates separately in a sp ecialized backend that is

much lighter and faster than the database server, for example Hazelcast or memcached. Here's how it might lo ok:

f u n c t i o n h a n d l e G e t I n f o (c o n v e r s a t i o n) {

v a r i d = c o n v e r s a t i o n . l o c a l s . g e t (' i d ')

v a r m o d i f i c a t i o n T i m e s t a m p = f e t c h T i m e s t a m p F r o m C a c h e (i d)

r e t u r n S i n c e r i t y . O b j e c t s . e x i s t s (m o d i f i c a t i o n T i m e s t a m p) ? m o d i f i c a t i o n T i m e s t a m p : n u l l

}

67

http://www.hazelcast.com/
http://memcached.org/

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

v a r d a t a = f e t c h D a t a F r o m D a t a b a s e (c o n v e r s a t i o n)

c o n v e r s a t i o n . m o d i f i c a t i o n T i m e s t a m p = d a t a . g e t M o d i f i c a t i o n T i m e s t a m p ()

s t o r e T i m e s t a m p I n C a c h e (i d , d a t a . g e t M o d i f i c a t i o n T i m e s t a m p ())

r e t u r n S i n c e r i t y . JSON . t o (d a t a)

}

f u n c t i o n f e t c h D a t a F r o m D a t a b a s e (i d) {

. . .

}

f u n c t i o n f e t c h T i m e s t a m p F r o m C a c h e (i d) {

r e t u r n c o n v e r s a t i o n . d i s t r i b u t e d G l o b a l s . g e t (' t i m e s t a m p : ' + i d)

}

f u n c t i o n s t o r e T i m e s t a m p I n C a c h e (i d , t i m e s t a m p) {

c o n v e r s a t i o n . d i s t r i b u t e d G l o b a l s . p u t (' t i m e s t a m p : ' + i d , t i m e s t a m p)

}

As you can see, the optimization won't b e e�ective unless the cache is warm. Thus, to make it truly e�ective,

you would need a sp ecial subsystem to warm up the cache in the background. . .

Welcome to the world of high-volume web! The solutions for massive scalability are rarely trivial. While

Prudence can't provide you with automation for every scenario, at least it provides you with the to ols on which

you can build comprehensive solutions. With careful planning, you can go very far indeed.

In summary, b efore you go ahead and provide a handleGetInfo entry p oint for every resource you create, consider:

1. It could b e that you don't need this optimization. Make sure, �rst, that you've actually identi�ed a problem

with p erformance or scalability, and that you've traced it to handleGet on this resource.

2. It could b e that you won't gain anything from this optimization. Caches and other optimizations along the

route b etween your data and your client might already b e doing a great job at keeping handleGet as e�cient

as it could b e. If not, improving them could o�er far greater b ene�ts overall than a complex handleGetInfo

mechanism.

3. It could b e that you'll even hurt your scalability! The reason is that an e�cient handleGetInfo implementation

would need some mechanism in place to track of data mo di�cation, and this mechanism can intro duce overhead

into your system that causes it to scale worse than without your handleGetInfo.

See � Scaling Tips� (page 159) for a thorough discussion of the problem of scalability.

Bypassing the Client-Side Cache

A devilishly useful asp ect of client-side caching is that the cache key is the entire URL, including the query. This

means that by simply adding a query parameter (which you otherwise ignore in your server-side handling), you can

force the client to fetch new data, even when using o�ine mode caching for that resource .

Of course, you can't use this trick unless you can control the URLs which the client uses. Luckily, this is exactly

what you can do in HTTP: see the static resources guide (page 47) for a comprehensive discussion.

Two Client-Side Caching Strategies

The default Prudence application template is con�gured with minimal client-side caching, which is suitable for

development deployments. However, once you are ready to move your application to pro duction or staging, you

will likely want a more robust caching strategy.

We will here present two common strategies, and discuss the pros and cons of each. They are intended as p olar

opp osites, though you may very well cho ose a strategy somewhere in b etween.

Paranoid: Short-Term Caching This is a great strategy if you're not feeling very con�dent ab out managing

caching in your application logic. Perhaps you have to o many di�erent kinds of pages requiring di�erent caching

68

strategies. Perhaps you can't maintain the strict discipline required for more aggressive caching, due to a quickly

changing application structure (�agile�?) or third-party constraints.

If you're in that b oat, short-term caching is recommended over no caching at all, b ecause it would still o�er

b etter p erformance and scalability. Because caching is short-term, any mistakes you make won't last for very long,

and can quickly b e �xed.

How short a term dep ends on two factors: 1) usage patterns for your web site, and 2) the content up date

frequency. For example, if a user tends to sp end ab out an hour browsing your site, then a one-hour caching

duration makes sense: the client would only have a slightly slower page load at the b eginning of the visit.

Our strategy would then b e to:

� Use conditional caching mo de for manual and template resources. (This is the default.) This would guarantee

that we can always push changes to users even when cached.

� Use o�ine caching mo de for static resources commonly used in web pages, for 1 hour. Sure, we won't b e able

to push changes for those resources in that hour, but by the next time the user visits our site, they should b e

OK. Within that hour, they would get excellent p erformance.

Here's an example routing.js:

a p p . r o u t e s = {

' / � ' : [

. . .

' m a n u a l ' , / / c l i e n t C a c h i n g M o d e : c o n d i t i o n a l

' t e m p l a t e s ' , / / c l i e n t C a c h i n g M o d e : c o n d i t i o n a l

{

t y p e : ' c a c h e C o n t r o l ' ,

m e d i a T y p e s : {

' i m a g e / � ' : ' 1 h ' ,

' t e x t / c s s ' : ' 1 h ' ,

' a p p l i c a t i o n / x � j a v a s c r i p t ' : ' 1 h '

} ,

n e x t : {

t y p e : ' l e s s ' ,

n e x t : ' s t a t i c '

}

}

. . .

Con�dent: Long-Term Caching For long-term caching to work, you must have go o d systems in place for

bypassing the cache when necessary:

� For the static resource assets used in your HTML pages, you must b e able to change the URLs when the

resource contents change. See the discussion in the static resources guide (page 47). With such a system in

place, you could cache these resources forever!

� Your HTML template pages can b e cached o�ine, to o, but this means two things:

� You are sure that you won't have to push changes to the client very so on. For example, if you allow your

home page to b e cached o�ine for an hour, the browser won't have to hit your site at all when returning

to the home page! You'd likely still want to set the cache durations for such pages to a short-term time,

though, b ecause you would, of course, eventually want to push changes.

� You can cache HTML o�ine while stil l allowing yourself an opp ortunity to push mo di�cations to the

client, by using JavaScript (or browser plugins, if you must). For example, even while your home page is

cached o�ine, a JavaScript background routine in it might b e pulling data from you and mo difying that

page accordingly.

Our strategy would then b e to:

69

� Enable o�ine caching mo de for template resources. Per resource, we would have to carefully consider what

a reasonable caching duration would b e. It should usually b e the average length of a user visit to our site,

and probably should not exceed 24 hours: at least if the users revisit our page the next day, they'll see our

up dated changes.

� Set o�ine caching for static resources commonly used in web pages to the far future . This means that we

must assume that we can never push changes for a URL, and thus must change the URLs when the content

changes.

Here's an example routing.js:

a p p . r o u t e s = {

' / � ' : [

. . .

' m a n u a l ' , / / c l i e n t C a c h i n g M o d e : c o n d i t i o n a l

{

t y p e : ' t e m p l a t e s ' ,

c l i e n t C a c h i n g M o d e : ' o f f l i n e '

} ,

. . .

{

t y p e : ' c a c h e C o n t r o l ' ,

m e d i a T y p e s : {

' i m a g e / � ' : ' f a r F u t u r e ' ,

' t e x t / c s s ' : ' f a r F u t u r e ' ,

' a p p l i c a t i o n / x � j a v a s c r i p t ' : ' f a r F u t u r e '

} ,

n e x t : {

t y p e : ' l e s s ' ,

n e x t : ' s t a t i c '

}

} ,

. . .

Con�guring Applications

Prudence applications live in their own sub directory under �/comp onent/applications/�. The sub directory name

itself can b e considered a setting, as it is used as a default identi�er for the application in various use cases.

Prudence uses �con�guration-by-script� almost everywhere: con�guration �les are true JavaScript source co de,

meaning that you can do pretty much anything you need during the b o otstrap pro cess, allowing for dynamic

con�gurations that adjust to their deployed environments.

Prudence, as of version 2.0, do es not supp ort live re-con�guring of applications. You must restart

Prudence in order for changed settings to take hold. The one exception is crontab (page 106): changes

there are picked up on-the-�y once p er minute.

Overview

The sub directory contains �ve main con�guration �les:

� settings.js : This required �le, detailed in this chapter, includes settings used by Prudence as well as your

own custom settings (page 75).

� routing.js : This required �le de�nes the application's URI-space (page 20).

� crontab : This optional �le de�nes regularly scheduled background tasks (page 106).

� default.js : This required �le is used to load the other con�guration �les ab ove. You should not normally

need to edit this �le, but feel free to examine it to understand the application b o otstrapping pro cess.

70

settings.js

If you use the default template with the �sincerity prudence create� command, you should get a setting.js �le that

lo oks something like this:

a p p . s e t t i n g s = {

d e s c r i p t i o n : {

n a m e : ' myapp ' ,

d e s c r i p t i o n : ' S k e l e t o n f o r myapp a p p l i c a t i o n ' ,

a u t h o r : ' T h e A u t h o r ' ,

o w n e r : ' T h e P r o j e c t '

} ,

e r r o r s : {

d e b u g : t r u e ,

h o m e U r l : ' h t t p : / / t h r e e c r i c k e t s . com / p r u d e n c e / ' ,

c o n t a c t E m a i l : ' i n f o @ t h r e e c r i c k e t s . com '

} ,

c o d e : {

l i b r a r i e s : [' l i b r a r i e s '] ,

d e f r o s t : t r u e ,

m i n i m u m T i m e B e t w e e n V a l i d i t y C h e c k s : ' 1 s ' ,

d e f a u l t D o c u m e n t N a m e : ' d e f a u l t ' ,

d e f a u l t E x t e n s i o n : ' j s ' ,

d e f a u l t L a n g u a g e T a g : ' j a v a s c r i p t ' ,

s o u r c e V i e w a b l e : t r u e

} ,

t e m p l a t e s : {

d e b u g : t r u e

} ,

c a c h i n g : {

d e b u g : t r u e

} ,

u p l o a d s : {

r o o t : ' u p l o a d s ' ,

s i z e T h r e s h o l d : ' 0 k b '

} ,

m e d i a T y p e s : {

p h p : ' t e x t / h t m l '

} ,

l o g g e r : ' myapp '

}

Numeric Shortcuts

Time durations are in milliseconds and data sizes in bytes. But these can b e sp eci�ed as either numb ers or strings:

� Durations : numerically as milliseconds, or using 'ms', 's', 'm', 'h' or 'd' su�xes for milliseconds, seconds,

minutes, hours or days. Fractions can b e used, and are rounded to the nearest millisecond, for example:

�1.5d�.

� Data sizes : numerically as bytes, or using 'b', 'kb', 'mb', 'gb' or 'tb' su�xes. Magnitude uses the binary

rather than decimal system: 1kb = 1024b. Fractions can b e used, and are rounded to the nearest byte, for

example: �1.5mb�.

You can accomplish the same trick for your own co de using Sincerity.Lo calization.toMilliseconds and

Sincerity.Lo calization.toBytes.

71

http://threecrickets.com/api/javascript/?namespace=Sincerity.Localization&item=Sincerity.Localization.toMilliseconds
http://threecrickets.com/api/javascript/?namespace=Sincerity.Localization&item=Sincerity.Localization.toBytes

app.settings.description

Information here is meant for humans.

� name : if not sp eci�ed, will default to the application's sub directory name

� description : a sentence or a sentence fragment describing the application

� author : the name of company or individual who made the application

� owner : the pro ject to which the application b elongs

This information app ears in the Prudence Administration application, and you may access it yourself using the

application.application.name, application.application.description, etc., APIs.

app.settings.errors

Con�gure Prudence's error handling b ehavior here.

� debug : Bo olean value; when true enables various useful debugging features detailed b elow; should b e set

to false for pro duction deployments

� debugHeader : sets this HTTP header to �error� when the debug page is displayed; defaults to �X-Debug�;

set to null if you don't want the header to b e used; only relevant when �debug� is true

� homeUrl : a web URL, displayed in the default error page template

� contactEmail : an email address, displayed in the default error page template

Note that you can route your own error pages in routing.js (page 30) to replace the default template. If you

wish to use the values you set here in your template, use the application.application.statusService.homeRef and

application.application.statusService.contactEmail APIs.

Uncaught Exception Debugging

Uncaught exceptions in your co de will automatically set the HTTP resp onse status co de to 500 (�internal server

error�), but here you can con�gure the content of that resp onse.

When �debug� is true, Prudence will return a very detailed HTML debug page (page 92). Because this might

reveal your application's internal data, make sure to set �debug� to false for pro duction deployments .

When �debug� is false, the default error template page will b e displayed.

app.settings.co de

Here you can control how Prudence deals with your co de:

� libraries : An array of paths where imp ortable libraries will b e found. If relative, they will b e based on the

application's ro ot sub directory.

� defrost : When true will attempt to �defrost� manual and template resources under the �/resources/� sub di-

rectory. Defrosting means pre-parsing and sometimes pre-compiling the co de: this allows for faster startup

times on �rst hits to these resources. Note that defrosting is not pre-heating: the former only pre-compiles,

the latter actually do es a �GET� on your resources, which would ensure that services used by your resources

are also warmed up. See app.preheat (page 33). The default value for this setting is true.

� minimumTimeBetweenValidityChecks : Scripturian makes sure to reload (and thus re-compile) co de if

the source �les are changed, for which it compares the �le's mo di�cation dates to the cached values. For high-

volume deployments, this might involve constantly checking the �lesystem, p otentially resulting in p erformance

problems on some op erating systems. This value allows you to enforce a delay b etween these checks. It's a

go o d idea to set it to anything greater than zero. The default value for this setting is 1 second.

� defaultDo cumentName : When a do cument name sp eci�es to a directory, Scripturian will internally change

the sp eci�cation to a do cument with this name in the sub directory (excluding the extension). For example, if

the value is �default� and you are calling �do cument.require('/mylibrary/')� and �/libraries/mylibrary/� is a

directory, the it would sp ecify �/libraries/mylibrary/default.*�. The default value for this setting is �default�.

72

http://threecrickets.com/api/javascript/?namespace=application&item=application.application
http://threecrickets.com/api/javascript/?namespace=application&item=application.application

� defaultExtension : If more than one �le in a directory has the same name but di�erent extensions, then

this extension will b e preferred. For example, if the value is �js� and a directory has b oth �mylibrary.js� and

�mylibrary.py�, then the former �le will b e preferred. The default value for this setting is �js�.

� defaultLanguageTag : If a scriptlet tag do es not sp ecify a language, then this value will b e the default. The

default value for this setting is �javascript�.

app.settings.templates

Con�gure templates resources (page 39) here.

� debug : Bo olean value; when true, under your container's �/cache/scripturian/� directory you will see the

generated source co de for each scriptlet resource. The �lenames will include the timestamp for their creation,

so you can see all versions of co de that were created.

� parser : The parser name; allows you to change the default scriptlets parser to your own custom Scripturian

parser; defaults to �scriptlets�

� plugins : Con�gure scriptlet plugins (page 44) here

app.settings.caching

Con�gure caching (page 61) here.

� debug : Bo olean value; when true, sp ecial HTTP resp onse headers will b e added for cached resources:

� X-Cache : the caching event; either �hit�, �hit;enco de� or �miss�

� X-Cache-Expiration : a timestamp in standard HTTP format

� X-Cache-Key : the cache key (see also the caching.key API)

� X-Cache-Tags : comma-separated list of cache tags

� defaultKeyTemplate : Allows you to set the default caching.keyTemplate (page 63) for all resources. If not

sp eci�ed, will b e � {ri}|{dn}�.

� keyTemplatePlugins : A dict mapping cache key template variable names to plugin library names. Allows

you to install key template plugins for all resources in the application. See the caching.keyTemplatePlugins

API (page 64) for more information.

app.settings.compression

Global settings for resource compression. Note that compression can b e turned on or o� p er individual resource

typ e.

� sizeThreshold : Resp onses smaller than this will not b e compressed. Defaults to 1024.

� exclude : An array of MIME typ es that will b e additional ly excluded from compression. Note that several

common typ es are automatically excluded, sp eci�cally compressed archive and media formats.

app.settings.uploads

Con�gure �le upload b ehavior (page 57) here.

� ro ot : This is where uploaded �les are stored. If relative, it will b e based on the application's ro ot sub directory.

� sizeThreshold : The �le upload mechanism can optimize by caching small �les in memory instead of saving

them to disk. Only if �les are greater in size will b e they b e stored. Set to zero to save all �les to disk.

73

http://threecrickets.com/api/javascript/?namespace=caching&item=caching.key

app.settings.mediaTyp es

This dict maps �lename extensions to MIME typ es.

Prudence recognizes many common �le typ es by default: for example, �png� is mapp ed to �image/png�. However,

using this setting you can de�ne additional mappings or change the default ones. Note that each �lename extension

can b e mapp ed to one and only one MIME typ e.

This setting is used mostly for textual (page 39) and static resources (page 46). For example, a template resource

named �p erson.t.html� will have the default �text/html� MIME typ e (which you can change in scriptlet co de via

the conversation.mediaTyp e APIs), and a static resource named �logo.png� will have the �image/png� MIME typ e.

For manual resources, you de�ne their supp orted MIME typ es manually in handleInit (page 36). There, you

can refer to MIME typ es directly via the conversation.addMediaTyp eByName API, or you can lo ok them up from

this setting using the conversation.addMediaTyp eByExtension API.

An example:

a p p . s e t t i n g s = {

. . .

m e d i a T y p e s : {

webm : ' v i d e o / webm ' ,

msh : ' m o d e l / m e s h '

}

}

Note for PHP : You may notice that the �default� template's settings.js sets the �text/html� MIME

typ e for the �php� extension. The reason for this is that �.php� �les you put in resources are usually

exp ected to output HTML. You may change if you require a di�erent b ehavior.

app.settings.distributed

Con�gure clusters (page 137) here. These settings are for the usage of Hazelcast.

� applicationInstance : The name of the Hazelcast �application� instance. De-

faults to �com.threecrickets.prudence.application�. Can b e accessed at runtime via the

application.hazelcastApplicationInstance API .

� globals : The name of the Hazelcast map used for the application.distributedGlobals API (page 83). De-

faults to �com.threecrickets.prudence.distributedGlobals.[name]�, where �name� is the application's sub direc-

tory name.

� sharedGlobals : The name of the Hazelcast map used for the application.distributedSharedGlobals API

(page 83). Defaults to �com.threecrickets.prudence.distributedSharedGlobals�.

� taskInstanceSharedGlobal : The name of the application.sharedGlobal (page 82) in which the Hazelcast

�task� instance is stored. If there is nothing in that shared global, then the �task� instance will b e identical to

the �application� instance. Defaults to �com.threecrickets.prudence.hazelcast.taskInstance�. Can b e accessed

at runtime via the application.hazelcastTaskInstance API .

� executorService : The name of the Hazelcast executor service used for the distributed task APIs (page 105) .

Defaults to �default�. Can b e accessed at runtime via the application.hazelcastExecutorService API .

To learn how to con�gure general Hazelcast settings, see the con�guration guide (page 117).

app.settings.routing

Though routing is con�gured in routing.js, here we can con�gure how routing is handled.

� useForwardedHeaders : Whether to apply the �X-Forwarded-Proto�, �X-Forwarded-Host�, and �X-

Forwarded-Port� HTTP headers to requests. Defaults to false. You should only set this to true if you

are b ehind a proxy, otherwise clients could use this to manipulate the information. See �forwarded headers�

(page 145). When true, installs the ForwardedFilter b efore your application on all non-internal hosts.

74

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.mediaType
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.addMediaTypeByName
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.addMediaTypeByExtension
http://www.hazelcast.com/
http://threecrickets.com/api/javascript/?namespace=application&item=application.hazelcastApplicationInstance
http://threecrickets.com/api/javascript/?namespace=application&item=application.hazelcastTaskInstance
http://threecrickets.com/api/javascript/?namespace=application&item=application.hazelcastExecutorService
http://threecrickets.com/api/java/prudence/index.html?com/threecrickets/prudence/util/ForwardedFilter.html

app.settings.logger

Set this string to override the default logger name. If not set, it will b e the name of the application's sub directory.

The actual logger name will b e this value pre�xed with �prudence.�.

See the logging chapter (page 88) for a complete discussion.

app.globals

Use this for custom settings for your application: values here will b ecome application.globals (page 82) when your

application is running. Note that Prudence also supp orts lo calized settings via inversion of control (page 111).

This dict is ��attened� using dot separators. For example, the following:

a p p . g l o b a l s = {

d a t a b a s e : {

d r i v e r : ' m y s q l ' ,

t a b l e : {

d b : ' myapp ' ,

n a m e : ' u s e r s '

}

}

}

. . . would b e interpreted as if it were:

a p p . g l o b a l s = {

' d a t a b a s e . d r i v e r ' : ' m y s q l ' ,

' d a t a b a s e . t a b l e . d b ' : ' myapp ' ,

' d a t a b a s e . t a b l e . n a m e ' : ' u s e r s '

}

In your co de, you would access these values using the application.globals API :

v a r d r i v e r = a p p l i c a t i o n . g l o b a l s . g e t (' d a t a b a s e . d r i v e r ')

To set application.sharedGlobals (page 82) you can use a custom service (page 123).

Lazy Initialization

Lazy initialization allows you to defer the initialization of an application.global to its actual use within your appli-

cation. This feature can b e used to solve three di�erent problems:

� You wish to set up an application.global with resources that would only b e available during runtime, not

during the b o otstrap pro cess.

� You wish to set up a heavy resource, but instead of slowing down the b o otstrap pro cess by initializing it up

front, you'd rather initialize it on-demand when actually used for the �rst time by the running application.

� You wish to simplify the con�guration of complex ob jects: the mechanism allows you to use a simple DSL

(Domain-Sp eci�c Language), which b ehind the scenes calls an arbitrary constructor.

The mechanism relies on evaluation of JavaScript co de, and thus is only available for other JavaScript

co de in your applications. However, similar principles can b e used for other languages that supp ort eval.

Study the library's co de to see how it's done!

Double Dot Lazy globals can b e de�ned using a double-dot key. Here's an example for settings.js:

a p p . g l o b a l s = {

s e r v i c e s : {

e m a i l : {

' . . ' : {

d e p e n d e n c i e s : ' / s e r v i c e s / e m a i l / ' ,

n a m e : ' E m a i l S e r v i c e ' ,

75

http://threecrickets.com/api/javascript/?namespace=application&item=application.globals

c o n f i g : {

s m t p : ' l o c a l h o s t ' ,

o r i g i n : ' s e r v i c e @ m y a p p . o r g '

}

}

}

}

}

The lazy con�guration has three settings, which are used when the ob ject is initialized:

� dep endencies : These are called with do cument.require

� name : This is the constructor to call

� con�g : This is an optional argument sent to the constructor; note that it must b e JSON-serializable

For this example, here's how our �/libraries/services/email.js� �le could lo ok:

f u n c t i o n E m a i l S e r v i c e (c o n f i g) {

t h i s . s m t p = c o n f i g . s m t p

t h i s . o r i g i n = c o n f i g . o r i g i n

t h i s . s e n d = f u n c t i o n (d e s t i n a t i o n , m e s s a g e) {

a p p l i c a t i o n . l o g g e r . i n f o (' S e n d i n g a n e m a i l f r o m ' + c o n f i g . o r i g i n + ' t o ' + d e s t i n a t i o n)

. . .

}

}

To actually access the ob ject in the application, while possibly triggering lazy initialization (if it was not initial-

ized already), we need the Prudence.Lazy library:

d o c u m e n t . r e q u i r e (' / p r u d e n c e / l a z y / ')

v a r e m a i l S e r v i c e = P r u d e n c e . L a z y . g e t G l o b a l E n t r y (

' s e r v i c e s . e m a i l ' ,

n u l l ,

f u n c t i o n (c) { r e t u r n e v a l (c) () })

e m a i l S e r v i c e . s e n d (' t e s t @ m y a p p . o r g ' , ' H e l l o , t h i s i s a t e s t m e s s a g e ! ')

That third argument requires some explanation: it is a closure (anonymous function) that accepts the constructor

source co de and evaluates it lo cally. It will b e called only if the global has not yet b een initialized. Thus, in all

calls except the �rst, this would b e a very fast application.global lo okup.

Triple Dot The lazy initialization mechanism can optimize for dicts and arrays of lazy entries using the triple-dot

key:

a p p . g l o b a l s = {

e m a i l S e r v i c e s : {

' . . . ' : {

m o d e r a t o r : {

d e p e n d e n c i e s : ' / s e r v i c e s / e m a i l / ' , n a m e : ' E m a i l S e r v i c e ' ,

c o n f i g : { s m t p : ' l o c a l h o s t ' , o r i g i n : ' m o d e r a t o r @ m y a p p . o r g ' }

} ,

a d m i n : {

d e p e n d e n c i e s : ' / s e r v i c e s / e m a i l / ' , n a m e : ' E m a i l S e r v i c e ' ,

c o n f i g : { s m t p : ' l o c a l h o s t ' , o r i g i n : ' a d m i n @ m y a p p . o r g ' }

}

}

} ,

76

http://threecrickets.com/api/javascript/?namespace=document&item=document.require
http://threecrickets.com/api/javascript/?namespace=Prudence.Lazy

n o d e s : {

' . . . ' : [{

d e p e n d e n c i e s : ' / s e r v i c e s / n o d e s ' , n a m e : ' N o d e ' ,

c o n f i g : { a d d r e s s : ' n o d e 1 . myapp . o r g ' }

} , {

d e p e n d e n c i e s : ' / s e r v i c e s / n o d e s ' , n a m e : ' N o d e ' ,

c o n f i g : { a d d r e s s : ' n o d e 2 . myapp . o r g ' }

}]

}

}

To use them:

d o c u m e n t . r e q u i r e (' / p r u d e n c e / l a z y / ')

v a r e m a i l S e r v i c e s = P r u d e n c e . L a z y . g e t G l o b a l M a p (

' e m a i l S e r v i c e s ' ,

n u l l ,

f u n c t i o n (c) { r e t u r n e v a l (c) () })

e m a i l S e r v i c e s . m o d e r a t o r . s e n d (' t e s t @ m y a p p . o r g ' , ' H e l l o , t h i s i s a t e s t m e s s a g e ! ')

v a r n o d e s = P r u d e n c e . L a z y . g e t G l o b a l L i s t (

' n o d e s ' ,

n u l l ,

f u n c t i o n (c) { r e t u r n e v a l (c) () })

Note that for this optimization the entire dict or array will b e created at once and stored in a single applica-

tion.global.

Forcing Re-Initialization If you edit the source �le for the lazy-initialized ob ject�say, our �email.js��you

would not see your changes. The reason is that the ob ject has already b een initialized and stored in memory: the

recompiled functions would not b e ho oked to the already-existing ob ject (really just a dict in JavaScript).

You can, however, force re-initialization using the API:

P r u d e n c e . L a z y . g e t G l o b a l E n t r y (' s e r v i c e s . e m a i l ') . r e s e t ()

This works on dicts and arrays, to o:

P r u d e n c e . L a z y . g e t G l o b a l M a p (' e m a i l S e r v i c e s ') . r e s e t ()

To do this live, you can use the live execution mechanism (page 87).

Concurrency Note The lazy mechanism is thread-safe: if you call getGlobalEntry concurrently, it will make

sure to store only the �rst initialized ob ject. You can thus b e sure that you will always get the same instance of

the lazy-initialized ob ject in your application.

However, take note: it is p ossible that under high-concurrency situations the ob ject would b e created more than

once, even if subsequent ob jects after the �rst are discarded. This might b e a problem if your ob ject creation is

very heavy. Unfortunately, there is no easy way around this: allowing for multiple ob ject creation is key to making

the lazy mechanism p erform well (it do es no lo cking). If this is a problem for you, you will have to �nd your own

way to avoid simultaneous initialization: p ossibly lo cking internally within your ob ject constructor, and checking

to make sure that the constructor is not b eing simultaneously called by another thread.

Programming

Prudence, and the underlying Sincerity b o otstrapping to ol, allow you to use your choice among several di�erent

programming languages on top of the JVM, and moreover they provide you with context-sp eci�c, well-do cumented

APIs p er relevant execution environment.

Your current programming skills should transfer readily enough, however some principles might b e new to you:

77

� The main execution environments you will b e working with in Prudence are inherently multi-threaded, meaning

that you must have some basic knowledge of concurrent programming. The API do es its b est to help you,

but it's still crucial that you understand it.

� If you've never used the programming language on the JVM b efore, you'll might �nd some pitfalls in terms

of interaction with the Prudence and JVM APIs, and these vary p er programming language engine. Usually,

this has to do with di�erences in typ es: strings, numb ers, arrays/lists, etc. Additionally, some JVM imple-

mentations di�er in small but imp ortant ways from the reference implementations. Usually, things will work

as exp ected: if not, you should refer to the do cumentation for the sp eci�c language engine.

Powered by Scripturian Scripturian is the magical library that enables much of Prudence and Sincerity: it

abstracts away the sp eci�cs of the programming language you're using, thus allowing you to transparently switch

b etween programming languages and engines. It compiles your changes on the �y, caches the byteco de, parses

templates into co de, provides access to the environment's APIs, and do es it all while optimizing for high-p erformance

concurrency.

You don't have to understand how Scripturian works to use Prudence, however it's useful to rememb er that

usually Prudence is ignorant as to what programming language you're using: that's all handles by Scripturian.

APIs

Prudence provides you with an esp ecially rich set of APIs. They come in three categories:

� The Prudence Core APIs are multilingual: they are implemented via standard JVM classes that can b e

called from all supp orted programming languages: JavaScript, Python, Ruby, PHP, Lua, Gro ovy and Clo jure.

Indeed, the entire JVM standard APIs can b e access in this manner, in addition to any JVM library installed

in your container (under �/libraries/jars/�).

� Prudence JavaScript APIs : these JavaScript wrapp ers over the Prudence Core APIs make using them a

bit easier with JavaScript. Future versions of Prudence may provide similar friendly wrapp ers for the other

supp orted languages (please contribute!). Until then, non-JavaScript programmers shouldn't b e to o jealous:

there's nothing that these wrapp ers can do that you can't do with the core APIs, and it's easy to lo ok into

the source co de in case you want to duplicate the same functionality in your language of choice.

� Sincerity JavaScript APIs : most of the supp orted programming languages have rich standard libraries as

well as an ecology of external libraries. JavaScript, however, stands out for having a very meager standard

library. To �ll in this gap, Sincerity comes with a useful set of JavaScript libraries. Some of these are written

pure JavaScript, o�ering new and useful functionality, while others provide JavaScript-friendly wrapp ers over

standard JVM libraries.

For the sake of coherence and convenience all these APIs are do cumented together online, with direct links to

the source co de. The entire do cumentation uses the JavaScript calling convention, even for the multlingual APIs,

however it should b e trivial to use the calling convention (page 80) of your language of choice.

You may b e further interested in lo oking up Prudence's low-level API, which is also fully do cumented online.

Also, sometimes the b est do cumentation is the source co de itself.

The development team sp ends a lot of time meticulously do cumenting the APIs. Please send us a

bug rep ort if you �nd a mistake, or think that the do cumentation can b e improved!

Prudence Core APIs

These core APIs can b e used by any supp orted programming language. See calling conventions (page 80) for

instructions on how to use these APIs from your language of choice.

The APIs consist of four namespaces (ob jects) that are de�ned as global variables:

� application: general application services, such as global state, logging and background tasks

� conversation: services related to the current request-and-resp onse; available for manual and template re-

sources, and also for �lters

� do cument: actually incorp orates two kinds of services:

78

http://threecrickets.com/scripturian/
http://threecrickets.com/api/javascript/
http://threecrickets.com/api/java/prudence/
https://github.com/tliron/prudence
https://github.com/tliron/prudence/issues
http://threecrickets.com/api/javascript/?namespace=application
http://threecrickets.com/api/javascript/?namespace=conversation
http://threecrickets.com/api/javascript/?namespace=document

� access to other do cuments, such as executing or requesting them

� low-level access to the current do cument

� executable: rarely used, low-level access to Scripturian

JavaScript Libraries

The APIs are only available for JavaScript.

To use them, you must �do cument.require� them according to their URI, and then via their namespaces. For

example:

d o c u m e n t . r e q u i r e (

' / s i n c e r i t y / j s o n / ' ,

' / p r u d e n c e / t a s k s /)

p r i n t l n (S i n c e r i t y . JSON . t o ({ h e l l o : ' w o r l d ' }))

You can �nd their source co de in the �/libraries/scripturian/� directory of your container.

Sincerity JavaScript Library These libraries are intended to �ll in for the lack of a rich standard library for

the JavaScript language. They are general-purp ose and not sp eci�c to Prudence. If you've installed Prudence using

Sincerity, then you will �nd them in your Sincerity installation rather than in your Prudence container (under the

�/libraries/scripturian/� directory).

� /sincerity/calendar/: useful help ers for JavaScript Date ob jects

� /sincerity/classes/: a rich and p owerful ob ject-oriented programming (OOP) facility, supp orting inheritance,

private data and metho ds, and automatic constructors

� /sincerity/cryptography/: JavaScript-friendly wrapp ers over the JVM's strong cryptographic libraries, allow-

ing for digests/hashing, encryption/decryption, and cryptographically-strong random numb er generation

� /sincerity/�les/: high-p erformance reading/writing of �les, as well as �lesystem op erations

� /sincerity/iterators/: standardized access to streaming data structures, with plenty of utility classes for stream

manipulation

� /sincerity/json/: high-p erformance, extensible JSON/JavaScript conversion

� /sincerity/jvm/: conversions b etween JavaScript and JVM data typ es

� /sincerity/lo calization/: unit conversions and human-readable formatting of dates and times

� /sincerity/lucene/: JavaScript-friendly wrapp ers over the Lucene search engine

� /sincerity/mail/: send emails using JavaScript-friendly wrapp ers over JavaMail with supp ort for message

templates

� /sincerity/ob jects/: many imp ortant enhancements to and utilities for working with standard JavaScript

ob jects, such as dicts, arrays and strings

� /sincerity/platform/: utilities sp eci�c to the underlying JavaScript engine (Nashorn or Rhino)

� /sincerity/templates/: straightforward and p owerful string interp olation

� /sincerity/xml/: parsing and generation of XML

Prudence JavaScript Library These are JavaScript-friendly wrapp ers over the Prudence Core APIs, as well

as other sp ecial uses for JavaScript.

� /prudence/logging/: adds automatic supp ort for string interp olation, exception logging, conditional logging,

and other convenient utilities; see logging (page 88) for more details

� /prudence/resources/: a rich set of utilities for generated and parsing web data (page 51)

� /prudence/tasks/: JavaScript-friendly spawning and scheduling of background tasks (page 102)

79

http://threecrickets.com/api/javascript/?namespace=executable
http://threecrickets.com/api/javascript/?namespace=Sincerity.Calendar
http://threecrickets.com/api/javascript/?namespace=Sincerity.Classes
http://threecrickets.com/api/javascript/?namespace=Sincerity.Cryptography
http://threecrickets.com/api/javascript/?namespace=Sincerity.Files
http://threecrickets.com/api/javascript/?namespace=Sincerity.Iterators
http://threecrickets.com/api/javascript/?namespace=Sincerity.JSON
http://threecrickets.com/api/javascript/?namespace=Sincerity.JVM
http://threecrickets.com/api/javascript/?namespace=Sincerity.Localization
http://threecrickets.com/api/javascript/?namespace=Sincerity.Lucene
http://lucene.apache.org/
http://threecrickets.com/api/javascript/?namespace=Sincerity.Mail
http://www.oracle.com/technetwork/java/javamail/
http://threecrickets.com/api/javascript/?namespace=Sincerity.Objects
http://threecrickets.com/api/javascript/?namespace=Sincerity.Platform
http://threecrickets.com/api/javascript/?namespace=Sincerity.Templates
http://threecrickets.com/api/javascript/?namespace=Sincerity.XML
http://threecrickets.com/api/javascript/?namespace=Prudence.Logging
http://threecrickets.com/api/javascript/?namespace=Prudence.Resources
http://threecrickets.com/api/javascript/?namespace=Prudence.Tasks

Libraries for Bo otstrap and Con�guration We're listing these libraries separately, b ecause they are sp eci�-

cally meant to b e used for application con�guration.

� /sincerity/annotations/: allows you to easily gather sp ecially marked annotations in text �les, which can

include your source co de and templates; sp ecially designed to integrate well with scriptlet comments

� /sincerity/container/: access to the Sincerity container into which Prudence has b een installed

� /prudence/lazy/: see lazy initialization (page 75) for more details

� /prudence/setup/: handles the parsing of routing.js (page 20) and settings.js (page 117)

Calling Conventions by Language

c o n v e r s a t i o n . r e d i r e c t S e e O t h e r (' h t t p : / / n e w s i t e . o r g / ')

c a c h i n g . o n l y G e t = t r u e

a p p l i c a t i o n . g l o b a l s . p u t (' n a m e ' , ' e x a m p l e ') / / N a s h o r n : a p p l i c a t i o n . g l o b a l s [' n a m e '] = ' e x a m p l e '

If you're using JVM 8, with Nashorn as your JavaScript engine, then you can treat JVM maps as dictionaries:

�application.globals['myapp.data.name']�. However, for JVM 7 and Rhino you must use the get- and put- notation:

�application.globals.get('myapp.data.name')�. In order to supp ort b oth engines prop erly, we recommend using the

more cumb ersome format used by Rhino.

c o n v e r s a t i o n . r e d i r e c t S e e O t h e r (' h t t p : / / n e w s i t e . o r g / ')

c a c h i n g . o n l y G e t = T r u e / / J e p p : c a c h i n g . s e t O n l y G e t (T r u e)

a p p l i c a t i o n . g l o b a l s [' n a m e '] = ' e x a m p l e ' / / J e p p : a p p l i c a t i o n . g e t G l o b a l s () . p u t (' n a m e ' , ' e x a m p l e ')

If you're using the Jepp engine, rather than the default Jython engine, you will need to use get- and set- notation

to access attributes. For example, use �application.getArguments()� to access �application.arguments� in Jepp.

$ c o n v e r s a t i o n . r e d i r e c t _ s e e _ o t h e r ' h t t p : / / n e w s i t e . o r g / '

$ c a c h i n g . o n l y _ g e t = t r u e

$ a p p l i c a t i o n . g l o b a l s [' n a m e '] = ' e x a m p l e '

Prudence's Ruby engine, JRuby, conveniently lets you use the Ruby naming style for API calls. For example,

you can use � $application.get_global� instead of � $application.getGlobal�.

$ c o n v e r s a t i o n � > r e d i r e c t S e e O t h e r (' h t t p : / / n e w s i t e . o r g / ') ;

$ c a h i n g � >o n l y G e t = TRUE ;

$ a p p l i c a t i o n � > g l o b a l s [' n a m e '] = ' e x a m p l e ' ;

c o n v e r s a t i o n : r e d i r e c t S e e O t h e r (' h t t p : / / n e w s i t e . o r g / ')

c a c h i n g : s e t O n l y G e t (t r u e)

a p p l i c a t i o n : g e t G l o b a l s () : p u t (' n a m e ' , ' e x a m p l e ')

You will need to use the get- and set- notation to access attributes. For example, you must use �conversa-

tion:getEntity()� to access �conversation.entity�.

c o n v e r s a t i o n . r e d i r e c t S e e O t h e r (' h t t p : / / n e w s i t e . o r g / ')

c a c h i n g . o n l y G e t = t r u e

a p p l i c a t i o n . g l o b a l s [' n a m e '] = ' e x a m p l e '

80

http://threecrickets.com/api/javascript/?namespace=Sincerity.Annotations
http://threecrickets.com/api/javascript/?namespace=Sincerity.Containter
http://threecrickets.com/api/javascript/?namespace=Prudence.Lazy
http://threecrickets.com/api/javascript/?namespace=Prudence.Setup

(. . c o n v e r s a t i o n r e d i r e c t S e e O t h e r " h t t p : / / n e w s i t e . o r g / ")

(. s e t O n l y G e t c a c h i n g t r u e)

(. . a p p l i c a t i o n g e t G l o b a l s (p u t " n a m e " " e x a m p l e "))

You will need to use get- and set- notation to access attributes. For example, use �(.getArguments application)�

to access �application.arguments�. You can also use Clo jure's b ean form, for example �(b ean application)�, to create

a read-only representation of Prudence's API services.

Entry Points

Prudence sometimes treats your co de as its API: for this, it requires you to implement sp eci�c �entry p oints� in

your co de. What these are, exactly, di�ers p er programming language, as detailed b elow.

JavaScript Uses global functions, with the camel-case naming convention:

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

r e t u r n ' H e l l o , w o r l d ! '

}

Python Uses global functions, with the lowercase-with-underscores naming convention:

d e f h a n d l e _ g e t (c o n v e r s a t i o n) :

r e t u r n ' H e l l o , w o r l d ! '

Ruby Uses global metho ds, with the lowercase-with-underscores naming convention:

d e f h a n d l e _ g e t c o n v e r s a t i o n

r e t u r n ' H e l l o , w o r l d ! '

e n d

PHP Uses global functions, with the lowercase-with-underscores naming convention:

f u n c t i o n h a n d l e _ g e t ($ c o n v e r s a t i o n) {

r e t u r n ' H e l l o , w o r l d ! ' ;

}

Lua Uses global functions, with the lowercase-with-underscores naming convention:

f u n c t i o n h a n d l e _ g e t (c o n v e r s a t i o n)

r e t u r n ' H e l l o , w o r l d ! '

e n d

Gro ovy Uses closures tied to global variables (there are no global metho ds in Gro ovy), with the camel-case

naming convention:

h a n d l e G e t = { c o n v e r s a t i o n � >

r e t u r n ' H e l l o , w o r l d ! '

}

Clo jure Uses functions in the current namespace, with the lowercase-with-dashes naming convention:

(d e f n h a n d l e � g e t [c o n v e r s a t i o n]

" H e l l o , w o r l d ! ")

81

State and Scop e

Prudence is designed to allow for high concurrency and scalability, while at the same time shielding you from the

gorier details. However, it's critical that you understand how to access and manage state and scop e with Prudence.

application.globals

The application.globals and application.getGlobal APIs are essential for sharing state across the application: al l

application co de can access it using the same API, whether it's a manual resource (page 36), a template resource

(page 39), a �lter (page 108) or a background task (page 102). Because this means that application.globals may b e

accessed simultaneous by multiple threads, it's imp ortant that you understand how to use them concurrently (page

84).

For Con�guration Another imp ortant use for application.globals is con�guration: you can sp ecify con�guration

settings as app.globals (page 75) in your settings.js, and then easily access them as application.globals one the

application is running.

application.globals vs. Global Variables Be very careful with global variables in Prudence: their scop e is

more limited and more temp orary than you might think.

Their b ehavior is actually a very di�erent dep ending on the execution environment of your co de:

� Manual resources (page 36) and �lters (page 108): Your global values will p ersist as long as the code is not

recompiled . Anything that will trigger recompilation of your co de will also involve recreating a new global

context for it, discarding all previously used globals. In b etween these recompilations, your globals will p ersist,

but it's imp ortant to rememb er that they will b e shared b etween all threads, and as thus should b e accessed

with concurrency techniques (page 84).

� Template resources (page 39): These are made of programs executed from b eginning to end, and as such

every execution uses its own global context . This means that globals are really �lo cal� to the request, like

conversation.lo cals (page 83). But it also means that you don't have to worry ab out concurrency when using

them.

A go o d rule of thumb is to assume that global variables never persist beyond a request , and to use application.globals

whenever p ersistence is required.

Note for Clo jure : Clo jure do esn't have true global variables: instead all Vars are b ound to a particular

namespace. On the other hand, all namespaces are global to JVM: there are no thread-limited scop es.

In order to allow for threads to have separate global scop es, Scripturian creates on-the-�y namespaces

when necessary (this is very lightweight), each with a unique name. Thus, Vars in Clo jure end up

b ehaving exactly the same as those in other programming languages.

application.sharedGlobals

The application.sharedGlobals and application.getSharedGlobal APIs have the same scop e as application.globals

(page 82), except they are shared b etween all running applications.

Generally, it's not such a go o d idea to create interdep endencies b etween applications, however there are cases

where it is useful:

� If all running applications are connecting to the same database (or another external resource), it can b e a

go o d idea to have them share the same connection p o ol. This allows you to centrally manage the connections

on the JVM.

� You can use shared globals to pass messages b etween running applications: the shared value can b e a

LinkedBlo ckingQueue or other thread-safe message-passing mechanism.

� Shared globals can b e used for system-wide con�guration settings. A go o d way to set shared globals is via a

custom service (page 118).

82

http://threecrickets.com/api/javascript/?namespace=application&item=application.globals
http://threecrickets.com/api/javascript/?namespace=application&item=application.getGlobal
http://threecrickets.com/api/javascript/?namespace=application&item=application.sharedGlobals
http://threecrickets.com/api/javascript/?namespace=application&item=application.getSharedGlobal
http://docs.oracle.com/javase/6/docs/api/index.html?java/util/concurrent/LinkedBlockingQueue.html

If you �nd yourself using application.sharedGlobals a lot, ask yourself if your co de would b e b etter o� encapsulated

as a single application: rememb er that Prudence has p owerful URI routing, supp ort for virtual hosting (page 118),

etc., letting you easily have one application work in several sites simultaneously. In short, there might b e a b etter

architecture for what you're trying to do.

Note for Clo jure : Actually, Clo jure namespaces are identical in scop e to application.sharedGlobals

(all Prudence applications running in the same JVM share the same Clo jure namespaces), so you might

prefer to use them b ecause they are more idiomatic. Still, application.sharedGlobals can b e useful if

you want to share globals with other programming languages.

application.distributedGlobals and application.distributedSharedGlobals

The application.distributedGlobals, application.getDistributedGlobal, application.distributedSharedGlobals

and application.getDistributedSharedGlobal APIs work similarly to application.globals (page 82) and

application.sharedGlobals (page 82), except that they are shared b etween all memb ers of a cluster.

See the clusters (page 137) chapter for more information.

executable.globals

The executable.globals and executable.getGlobal APIs have a similar scop e to application.sharedGlobals (page 82),

except that they can b e accessed by any co de running on the JVM using Scripturian's GlobalScop e API . They're

useful if you need to share state with non-Prudence co de.

conversation.lo cals

The conversation.lo cals are not �lo cal� in the same way that co de scop e lo cals are. The term �lo cal� here should b e

read as �lo cal to the conversation.� They are indeed �global� in the sense that they can b e accessed by any function

in your co de, but are �lo cal� in the sense that they p ersist only for the duration of the user request. (Compare with

thread lo cals, which are also �lo cal� in a sp eci�c sense.)

Their primary use is for sharing state among co de along the route : for example, b oth your resource co de and

�lters (page 108) will have access to the same conversation.lo cals p er request. It's this essential feature that leads

them to b eing used in many ways throughout Prudence:

� URI template variables are captured (page 21) into conversation.lo cals.

� They can b e interp olated (page 115) into target URIs

� They are used for inversion of control (page 29)

� They are used to inject custom values into cache keys (page 64)

� Template blo cks (page 42) are captured into conversation.lo cals

conversation.lo cals vs. Global Variables Sometimes, your language's global variables function identically to

conversation.lo cals. Consider this template resource (page 39):

<h t m l ><b o d y>

<% v a r n a m e = ' Rambo ' ; %>

<%& ' / h e l l o / %>

</ b o d y ></h t m l >

Our �/libraries/includes/hello.t.html� can lo ok like this:

<p> H e l l o , <%= n a m e %>!</p>

As you can see, the global variable �name� is indeed shared b etween these two fragments, and there's no advantage

to using conversation.lo cals instead.

But you might have to use conversation.lo cals if:

� . . . you need to share state with a �lter (page 108)

� . . . you are mixing scriptlets written in di�erent languages (page 43)

83

http://threecrickets.com/api/javascript/?namespace=application&item=application.distributedGlobals
http://threecrickets.com/api/javascript/?namespace=application&item=application.getDistributedGlobal
http://threecrickets.com/api/javascript/?namespace=application&item=application.distributedSharedGlobals
http://threecrickets.com/api/javascript/?namespace=application&item=application.getDistributedSharedGlobal
http://threecrickets.com/api/javascript/?namespace=executable&item=executable.globals
http://threecrickets.com/api/javascript/?namespace=executable&item=executable.getGlobal
http://threecrickets.com/api/java/scripturian/index.html?com/threecrickets/scripturian/GlobalScope.html
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.locals
http://docs.oracle.com/javase/6/docs/api/index.html?java/lang/ThreadLocal.html

Synchronization

Sometimes e�cient techniques for handling concurrency (page 84), detailed b elow, can't b e implemented, and the

only solution is to ensure single-thread access via synchronization.

Synchronization is very bad for scalability : it works against many of the advantages of using multiple

threads, pro cesses and no des. However, in some situations it may b e preferable to the alternatives. Use

it resp onsibly. Esp ecially, you want to avoid using it in request threads: it makes a bit more sense for

background task threads (page 102).

Prudence makes synchronization easy via the application.getLo ck, application.getSharedLo ck and

application.getDistributedSharedLo ck family of APIs. Here's an example of how to use them:

v a r l o c k = a p p l i c a t i o n . g e t L o c k (' s e r v i c e s . r e m o t e ')

l o c k . l o c k ()

t r y {

d o S o m e t h i n g A t o m i c a l l y W i t h R e m o t e S e r v i c e ()

}

f i n a l l y {

l o c k . u n l o c k ()

}

Note our use of try/�nally: it's in order to guarantee that the lo ck is released, even if an exception is thrown

from our co de. Unreleased lo cks will cause your threads to hang.

Also note that lo cks will stay in memory, unless they are distributed . They take very little memory, but if

for some reason you are generating many lo cks over time, you may want to cull them via the application.lo cks or

application.sharedLo cks APIs.

Concurrency

Though application.globals (page 82), application.sharedGlobals (page 82), application.distributedGlobals (page

83) and executable.globals (page 83) are all thread safe, it's imp ortant to understand how to use them prop erly.

Note for Clo jure : Though Clo jure go es a long way towards simplifying concurrent programming, it

do es not solve the problem of concurrent access to application.globals. You still need to read this section!

The Problem This co de might seem OK to you, but it's subtly broken:

f u n c t i o n g e t C o n n e c t i o n () {

v a r c o n n e c t i o n P o o l = a p p l i c a t i o n . g l o b a l s . g e t (' d a t a b a s e . p o o l ')

i f (! S i n c e r i t y . O b j e c t s . e x i s t s (c o n n e c t i o n P o o l)) {

c o n n e c t i o n P o o l = c r e a t e P o o l ()

a p p l i c a t i o n . g l o b a l s . p u t (' d a t a b a s e . p o o l ' , c o n n e c t i o n P o o l)

}

r e t u r n c o n n e c t i o n P o o l . g e t C o n n e c t i o n ()

}

The problem is that in the short interval b etween comparing the value in the �if � statement and setting the

global value in the �then� statement, another thread may have already set the value. Thus, the �connectionPo ol�

instance you are referring to in the current thread would b e di�erent from the �database.p o ol� application.global

used by other threads. The valye is thus not truly shared! In some cases, this would only result in a few extra,

unnecessary connection p o ols b eing created. But in some cases, when you rely on the uniqueness of the global, this

can lead to subtle bugs that will app ear only under high concurrency.

Newcomers to concurrent programming tend to think that these kinds of bugs are very rare: another

thread would have to set the value exactly b etween our �if � and our �then.� This is wrong: if your

application has many concurrent users, and your machine has many CPU cores, it can actually happ en

quite frequently. And, even if rare, your application has a chance of breaking if just two users use it at

the same time . This is not a problem you can gloss over, even for simple applications.

84

http://threecrickets.com/api/javascript/?namespace=application&item=application.getLock
http://threecrickets.com/api/javascript/?namespace=application&item=application.getSharedLock
http://threecrickets.com/api/javascript/?namespace=application&item=application.getDistributedSharedLock
http://threecrickets.com/api/javascript/?namespace=application&item=application.locks
http://threecrickets.com/api/javascript/?namespace=application&item=application.sharedLocks

A Solution Here's a �xed, concurrently safe version of the ab ove co de:

f u n c t i o n g e t C o n n e c t i o n () {

r e t u r n a p p l i c a t i o n . g e t G l o b a l (' d a t a b a s e . p o o l ' , c r e a t e P o o l ()) . g e t C o n n e c t i o n ()

}

The application.getGlobal call is an atomic compare-and-set operation , which guarantees that the returned value

is a unique instance.

There are two things worth noting:

� The �xed co de is much shorter than the broken co de! This is due to the application.getGlobal API , which

internally actually do es several op erations for you.

� You can see that createPo ol is always called, even if the internal compare-and-set of application.getGlobal

fails. This means that in some cases we will b e creating a database connection p o ol and then immediately

discarding it. This is a waste, but it's also a security issue: under very high concurrency, we might b e creating

a lot of these unnecessary connection p o ols, which could in fact lead to an overload on our database server.

We thus might b e vulnerable to denial of service (DoS) attacks.

A Better Solution We can signi�cantly reduce the numb er of times createPo ol is called by checking to see if

the application.global is already set:

f u n c t i o n g e t C o n n e c t i o n () {

v a r c o n n e c t i o n P o o l = a p p l i c a t i o n . g l o b a l s . g e t (' d a t a b a s e . p o o l ')

i f (! S i n c e r i t y . O b j e c t s . e x i s t s (c o n n e c t i o n P o o l)) {

c o n n e c t i o n P o o l = a p p l i c a t i o n . g e t G l o b a l (' d a t a b a s e . p o o l ' , c r e a t e P o o l

())

}

r e t u r n c o n n e c t i o n P o o l . g e t C o n n e c t i o n ()

}

With this co de, we might still have createPo ol called multiple times if the function is called concurrently while

the application.global is still unset. The problem will disapp ear as so on as the application.global is set, but until

then we still have a window of vulnerability.

Yet Another Solution The only way to guarantee that createPo ol is not called more than once is make the

entire op eration atomic by synchronizing it (page 84):

f u n c t i o n g e t C o n n e c t i o n () {

v a r l o c k = a p p l i c a t i o n . g e t L o c k (' d a t a b a s e . p o o l ')

l o c k . l o c k ()

t r y {

v a r c o n n e c t i o n P o o l = a p p l i c a t i o n . g l o b a l s . g e t (' d a t a b a s e . p o o l ')

i f (! S i n c e r i t y . O b j e c t s . e x i s t s (c o n n e c t i o n P o o l)) {

c o n n e c t i o n P o o l = a p p l i c a t i o n . g e t G l o b a l (' d a t a b a s e . p o o l ' ,

c r e a t e P o o l ())

}

r e t u r n c o n n e c t i o n P o o l . g e t C o n n e c t i o n ()

}

f i n a l l y {

l o c k . u n l o c k ()

}

}

Not only is the co de ab ove complicated, but synchronization intro duces p erformance p enalties. It's de�nitely

not a go o d idea to blindly apply this solution.

Concurrent programming is non-trivial and always involves weighing the pros and cons of various solutions for

sp eci�c situations. So, hybrid approaches are sometimes the b est: cho ose the right solution according to the context.

Finally, then, here's a version of the ab ove co de that will allow us to select if we want to use the lo ck or not:

85

http://threecrickets.com/api/javascript/?namespace=application&item=application.getGlobal
http://threecrickets.com/api/javascript/?namespace=application&item=application.getGlobal
http://threecrickets.com/api/javascript/?namespace=application&item=application.getGlobal

f u n c t i o n g e t C o n n e c t i o n (s a f e) {

i f (s a f e) {

v a r l o c k = a p p l i c a t i o n . g e t L o c k (' d a t a b a s e . p o o l ')

l o c k . l o c k ()

}

t r y {

v a r c o n n e c t i o n P o o l = a p p l i c a t i o n . g l o b a l s . g e t (' d a t a b a s e . p o o l ')

i f (! S i n c e r i t y . O b j e c t s . e x i s t s (c o n n e c t i o n P o o l)) {

c o n n e c t i o n P o o l = a p p l i c a t i o n . g e t G l o b a l (' d a t a b a s e . p o o l ' ,

c r e a t e P o o l ())

}

r e t u r n c o n n e c t i o n P o o l . g e t C o n n e c t i o n ()

}

f i n a l l y {

i f (s a f e) {

l o c k . u n l o c k ()

}

}

}

Execution Environments

This section serves as a summary for advanced programmers who are curious ab out the di�erences b etween the

many Scripturian-based execution environments available in Prudence.

Programs vs. Entry Points

These two typ es of execution environment are very di�erent in terms of programming, scop es and threads.

Programming Program co de is executed from b eginning to end, like a script. The programmer has the choice

of de�ning functions, classes, etc., but do es not have to. Programs can b e merely a sequence of statements.

Entry p oint co de is also executed once from b eginning to end, however its intended use is within the de�ned

entry p oints (page 81). So, while you can include statements, just like in a program, it would b e problematic if

they had any side e�ects other than setting up the entry p oints. To understand why, see b elow.

Scop es and Threads Programs get they own unique global scop e every time they are executed, which is discarded

when the program ends. In the case of con�guration scripts, this is rather trivial: those scripts are all run in a single

thread, once, and thus always use a single global scop e. However, in a threaded environment� template resources

(page 39)�you may have many of these global scop es existing at the same for your the same co de. To share state

b etween the threads, you would thus need to use application.globals (page 82) or similar mechanisms.

Entry p oint co de works very di�erently: the co de always uses a single global scop e shared by al l threads, and

indeed the co de is executed from b eginning to end only when initialized. However, if a recompilation is triggered

(say, if the source co de has b een mo di�ed), then a new global scop e will b e created, and the co de will b e executed

from b eginning to end again . The implications of this are discussed ab ove in application.globals vs. global variables

(page 82).

Performance Considerations As you may conclude from the ab ove, in threaded environments entry p oint

co de is executed from b eginning to end much less frequently than program co de. This means that if p erformance

is crucial, you should prefer to use entry p oints over programs. However, there are usually a lot of other factors

involved, and indeed the di�erences b etween these two execution environment typ es may not b e the imp ortant once.

For example, even though manual resources are implemented as entry p oints, there will likely b e no p erformance

advantage in using them instead of template resources, even though the latter involves a new global scop e p er each

request. Creating a global scop es is very lightweight for most programming language engines: the di�erences in

p erformance dep end more strongly on what kind of co de you chose to execute in the program.

The only Prudence feature that o�ers a clear choice b etween these two typ es is background tasks spawned via

API (page 103). There, you can decide as to whether you want to use a program or an entry p oint.

86

Comparison Table

Feature Typ e

Con�guration scripts (page 117) programs

Manual resources (page 36) entry p oints

Template resources (page 39) programs

Background tasks (page 102) programs or entry p oints

Filters (page 108) entry p oints

Cache key template plugins (page 64) entry p oints

Scriptlet plugins (page 44) entry p oints

Debugging

Let's start by admitting that the debugging facilities for dynamic languages on the JVM are lacking: breakp oints

are not supp orted and there are no language-sp eci�c runtime insp ection to ols. However, there are enough other

options for debugging in Prudence that you should b e able to �nd all your bugs. Squashing them is up to you!

Live Execution

This immensely p owerful (and p otentially dangerous) to ol (page 50) allows you to execute arbitrary co de in live

running applications. There are, of course, endless ways in which you can use this feature for debugging. Below are

a few common examples.

Dumping Values

Anything you print to standard output will b e returned to you:

c u r l �� d a t a '<% p r i n t l n (a p p l i c a t i o n . g l o b a l s . g e t (" d b . c o n n e c t i o n ")) %>' h t t p : / / l o c a l h o s t : 8 0 8 0 / myapp / e x e c u t e /

You can also dump values to the log (page 88):

c u r l �� d a t a '<% a p p l i c a t i o n . l o g g e r . i n f o (a p p l i c a t i o n . g l o b a l s . g e t (" d b . c o n n e c t i o n ")) %>' h t t p : / / l o c a l h o s t : 8 0 8 0 / myapp / e x e c u t e /

Scheduling Background Tasks

Here's an example of dumping a value to the log every 5 seconds using a background task (page 102). First let's

create �program.js�:

<%

d o c u m e n t . r e q u i r e (' / p r u d e n c e / t a s k s / ')

P r u d e n c e . T a s k s . t a s k ({

f n : f u n c t i o n () {

a p p l i c a t i o n . l o g g e r . i n f o (a p p l i c a t i o n . g l o b a l s . g e t (' d b . c o n n e c t i o n '))

} ,

r e p e a t E v e r y : ' 5 s '

})

%>

Then execute it:

c u r l �� d a t a � b i n a r y @ p r o g r a m . j s h t t p : / / l o c a l h o s t : 8 0 8 0 / myapp / e x e c u t e /

Debug Page

The debug page (page 92) contains a lot of useful debugging information. It's easy to get it just by causing an

exception on purp ose:

c u r l �� d a t a '<% t h r o w n u l l %>' h t t p : / / l o c a l h o s t : 8 0 8 0 / myapp / e x e c u t e /

87

Logging

Logging is by far the most useful weap on in your debugging arsenal. Learn how to use it and use it well.

Some programming languages�Python and Ruby�have their own standard logging mechanisms, which you are

welcome to use if you prefer. However, consider using Prudence's (actually Sincerity's) logging system instead: it

is esp ecially p owerful and �exible, and moreover is shared by all programming languages running in Prudence.

The default logging con�guration (page 90) is pro duction-ready: it will use the following rolling log �les under

your container's �/logs/� directory:

� �common.log�: The rolling log �le shared by all applications and libraries. If they don't sp ecify their own, it

will default to this (it's con�gured as attached to the ro ot logger.)

� �application-[name].log�: A rolling log �le p er Prudence application, where � [name]� is the application's sub-

directory name.

� �web.log�: A rolling log �le of all incoming HTTP requests in NCSA-style.

� �service-prudence.log�: This will b e available if you're running Prudence as a service (page 148). Note that it

is con�gured separately, and do es not in fact use JVM logging.

Intro duction

It's imp ortant to understand that there's a clear separation of concerns b etween what to log and how to log it.

Programming should b e concerned only with the what : the use of the API during runtime and the content of

messages. Administration should b e concerned only with the how : con�guration of the logging system, which

o ccurs during b o otstrap.

From a programming p ersp ective, you only care ab out �loggers,� the entities through which you send log mes-

sages. The programmer do esn't actually know where the log messages are going. (While it is p ossible to change

the logging con�guration via API during runtime, it is not a common practice.)

�App enders� are the mechanisms that actually write/store/send the messages somewhere, whether it's to a �le,

to a database, or over the network. The API is entirely ignorant as to what appenders are attached to which loggers :

app enders are purely a matter of con�guration.

API

Loggers are identi�ed by a unique name in your container, and are con�gured globally.

The logger names are hierarchical, whereby the hierarchy is sp eci�ed using �.�. For example,

�myApp.system.mail� is a child logger of �myApp.system�. A child logger inherits its parent's con�guration, which

it can then override. Parents inherit from their parents, etc., up to what is called the �ro ot logger,� which is the

logger with an empty string name.

Every log message you send has a �log level.� The lower the level, the more sp eci�c the message. Loggers are

con�gured with a minimum level: they will log only messages equal to or above it. So, the lower the minimum log

level con�gured for the logger, the more chatter you should get. The following levels are supp orted:

� severe (1000): These are very important messages, usually ab out errors or other problems. You'd likely want

all loggers to include this level. You should use this level sparingly.

� warning (900): These are imp ortant, but not crucial. Usually used for temp orary errors or for problems that

do not cause failure.

� con�g (800): These express change of state (con�guration), and as such probably don't happ en that of-

ten. They most likely app ear during the initial b o otstrapping, but can happ en while the application runs if

something causes a subsystem to restart or recon�gure itself.

� info (700): These informational messages are used for keeping track of the application's runtime health: they

don't sp ecify a problem or a change, only rep ort normal activity. This is the most commonly used message.

� �ne (500): This and the following two levels should b e reserved for debugging: you normally won't go b eyond

�info� unless you're sp eci�cally trying to debug a problem, as this would cause a lot of chatter in your logs.

� �ner (400): More minute debugging.

� �nest (300): Most minute debugging.

88

http://en.wikipedia.org/wiki/Common_Log_Format

application.logger and application.getSubLogger application.logger gives you access to a unique Logger for

the application, with the �prudence.� pre�x. The name of the logger can b e con�gured in settings.js (page 75), and

defaults to the name of the application's sub directory.

The easiest way to use this API is via the metho ds named after the log levels:

a p p l i c a t i o n . l o g g e r . i n f o (' An i n f o � l e v e l m e s s a g e ')

a p p l i c a t i o n . l o g g e r . w a r n i n g (' S o m e t h i n g b a d h a p p e n e d ! ')

application.getSubLogger can b e used to easily access child loggers of the application.logger:

a p p l i c a t i o n . g e t S u b L o g g e r (' e m a i l ') . i n f o (' An i n f o � l e v e l m e s s a g e ')

If your application logger name is �cms�, then the ab ove logger name would b e �prudence.cms.email�.

Other Loggers Instead of using application.logger and application.getSubLogger, you can access the logging API

directly to retrieve a logger with any name:

i m p o r t C l a s s (j a v a . u t i l . l o g g i n g . L o g g e r)

v a r l o g g e r = L o g g e r . g e t L o g g e r (' myApp . s y s t e m . m a i l ')

l o g g e r . i n f o (' My l o g g e r ! ')

/prudence/logging/ If you're using JavaScript, it's recommend that you use this friendly wrapp er, which adds

many convenient additions over the raw logging API.

Here are examples of simple logging, where you can refer to the log levels using simple strings, or use dedicated

metho ds named after the log levels:

d o c u m e n t . r e q u i r e (' / p r u d e n c e / l o g g i n g / ')

v a r l o g g e r = n e w P r u d e n c e . L o g g i n g . L o g g e r ()

l o g g e r . l o g (' i n f o ' , ' An i n f o r m a t i o n a l m e s s a g e ')

l o g g e r . f i n e (' A f i n e m e s s a g e ')

l o g g e r . w a r n i n g (' A w a r n i n g ')

n e w P r u d e n c e . L o g g i n g . L o g g e r (' e m a i l ') . i n f o (' H e l l o f r o m t h e E m a i l s u b s y s t e m ')

String interp olation is supp orted for all metho ds, using /sincerity/templates/:

l o g g e r . s e v e r e (' H i , { 0 } a n d { 1 } ! ' , ' mom ' , ' d a d ')

l o g g e r . i n f o (' H i , { n a m e } ! ' , { n a m e : ' mom ' })

l o g g e r . f i n e s t (' H i , { n a m e } ! ' , f u n c t i o n (o r i g i n a l , k e y) {

i f (k e y == ' n a m e ') {

r e t u r n ' mom'

}

r e t u r n n u l l

})

Quick JSON dump, in short form (single line, condensed) or long form (multi-line, indented):

v a r x = { t e s t : ' h e l l o ' , m o r e : [1 , 2 , 3] }

l o g g e r . d u m p S h o r t (x , ' O u r o b j e c t i n s h o r t f o r m ')

l o g g e r . d u m p L o n g (x , ' O u r o b j e c t i n l o n g f o r m ')

l o g g e r . dump (x , ' T h i s i s a n a l i a s f o r d u m p S h o r t ')

Log exceptions using full or partial stack trace (supp orts b oth JavaScript and JVM exceptions):

t r y {

n o t h i n g ()

}

c a t c h (e) {

l o g g e r . e x c e p t i o n (e)

}

Also very useful is automatic timing of sections of co de, which will emit a message when the function starts,

when it ends with the execution duration (either due to successful completion or due to a uncaught exception):

89

http://threecrickets.com/api/javascript/?namespace=application&item=application.logger
http://docs.oracle.com/javase/6/docs/api/index.html?java/util/logging/Logger.html
http://threecrickets.com/api/javascript/?namespace=application&item=application.getSubLogger
http://threecrickets.com/api/javascript/?namespace=Prudence.Logging
http://threecrickets.com/api/javascript/?namespace=Sincerity.Templates

l o g g e r . t i m e (' T h e l o o p ' , f u n c t i o n () {

v a r x = 1

f o r (v a r i = 0 ; i < 1 0 0 0 0 0 ; i ++) {

x /= 2

}

})

Performance Considerations Log messages will not b e written if they are con�gured to b e �ltered out. How-

ever, your co de is still constructing the message and sending it to the logging system, which may involve a p erfor-

mance hit.

The easiest way to optimize is to check for the log level b efore constructing the message:

i f (l o g g e r . i s L o g g a b l e (j a v a . u t i l . l o g g i n g . L e v e l . FINE)) {

v a r d a t a = h e a v y F e t c h F r o m D a t a b a s e ()

r e t u r n ' T h i s f u n c t i o n w a s c a l l e d b e c a u s e t h e " f i n e " l o g l e v e l i s p e r m i t t e d '

}

If you're using the /prudence/logging/ library, as a shortcut you can send an anonymous function:

l o g g e r . f i n e (f u n c t i o n () {

v a r d a t a = h e a v y F e t c h F r o m D a t a b a s e ()

r e t u r n ' T h i s f u n c t i o n w a s c a l l e d b e c a u s e t h e " f i n e " l o g l e v e l i s p e r m i t t e d '

})

Obviously, this is cumb ersome to always follow this format, so it's b est used only if constructing the message

indeed involves heavy lifting.

Con�guration

You con�gure all your loggers and app enders under your container's �/con�guration/logging/� directory, which is

handled by Sincerity's logging plugin, so it's recommended you read the do cumentation there. The plugin has useful

add-ons for centralizing logging, for example to a dedicated Log4j server, or directly to MongoDB.

The b est way to learn how to con�gure logging is to go through the default logging con�guration. As usual,

Prudence and Sincerity use �con�guration by script,� so in fact you'll b e using the /sincerity/log4j/ library.

Con�guration Log Levels In order to maintain conformity, the API used throughout Prudence is the standard

JVM logging API (often called JULI: �java.util.logging Interface�). However , the logging system used by default in

Prudence is Sincerity's logging plugin funnels several di�erent logging APIs into Apache Log4j.

Unfortunately, until the JVM �nally included a logging standard, there were already other p opular

logging APIs. Also unfortunately, the intro duced standard is simply not as p owerful as Log4j, and we

did not want to compromise on p ower. Fortunately, the SLF4J library allows Sincerity to mimic all

these various APIs while implementing them in Log4j, so you get the b est of all worlds as well as a

uniform system.

The outcome of this is slightly annoying: the log level names used in the con�guration �les (Log4j) are di�erent

from those used in the API (JULI), and indeed the con�guration is coarser than the API. Here's how they match

up:

Con�guration Log Level API Log Level

fatal

error severe

warn warning

con�g

info info

debug �ne

�ner

trace �nest

So, con�guring a logger's level to �info� will mean that it will log the following API levels: �info,� �con�g,� �info,�

�warning� and �severe.�

90

http://threecrickets.com/sincerity/ecosystem/feature-plugins/#logging-plugin
http://threecrickets.com/api/javascript/?namespace=Sincerity.Log4j.Configuration
http://logging.apache.org/log4j/
http://www.slf4j.org/

web.log To learn how to con�gure the message format for this sp ecial logger, see the log service (page 123).

Other Loggers Various subsystems within Prudence use their own loggers. The default con�guration �les set

these to reasonable defaults, which you can mo dify:

� Restlet logs its internal application events to �org.restlet.Application.[name]�. You can access this logger in

your co de using the application.application.logger API. By default, it is attached to the application's app ender

and set to level �warn�.

� Jetty and Hazelcast b oth feature robust event logging.

Quick-and-Dirty Logging to the Console

Sometimes, in the midst of intensive debugging, setting up prop er logging is just to o time consuming. It would also

b e wasteful, b ecause you know you will quickly delete the logging message once you �nd the bug.

In such situations the most straightforward solution is to output your message to the console. Since often

Prudence captures standard output (for example, in template resources), you may need to override any captures

and go straight to the console:

j a v a . l a n g . S y s t e m . o u t . p r i n t l n (' D e s p e r a t e t i m e s c a l l f o r d e s p e r a t e m e a s u r e s ! ')

Note that there is no console if you're running Prudence as a service/daemon (page 148) (it is captured to the

wrapp er log). In those cases you either want to switch to running Prudence from the console, or use the logging

API instead.

JVM Logging

If you prefer, you can use the JVM's built-in logging instead of the Sincerity plugin. It is less �exible and much

less scalable, but may b e preferable in some cases. To con�gure it, create a con�guration �le, for example �log-

ging.prop erties�, and de�ne the prop erties of the handlers and loggers:

h a n d l e r s = j a v a . u t i l . l o g g i n g . F i l e H a n d l e r , j a v a . u t i l . l o g g i n g . C o n s o l e H a n d l e r

j a v a . u t i l . l o g g i n g . F i l e H a n d l e r . p a t t e r n = l o g . % u . % g . t x t

j a v a . u t i l . l o g g i n g . F i l e H a n d l e r . f o r m a t t e r = j a v a . u t i l . l o g g i n g . S i m p l e F o r m a t t e r

j a v a . u t i l . l o g g i n g . S i m p l e F o r m a t t e r . f o r m a t =%1$ t b %1 $ t d , %1$ t Y %1 $ t l : % 1 $tM : % 1 $ t S %1$Tp %2 $ s %4 $ s : %5 $ s%n

j a v a . u t i l . l o g g i n g . C o n s o l e H a n d l e r . l e v e l = ALL

com . t h r e e c r i c k e t s . p r u d e n c e . c a c h e . l e v e l = ALL

. l e v e l = INFO

Then, start Prudence using a switch to p oint at that con�guration:

JVM_SWITCHES= � D j a v a . u t i l . l o g g i n g . c o n f i g . f i l e = l o g g i n g . p r o p e r t i e s s i n c e r i t y u s e m y c o n t a i n e r : s t a r t p r u d e n c e

For more information, see the JVM do cumentation.

Best Practices

There are many di�erent styles of logging, but here are some go o d rules of thumb:

� Rememb er that people read the logs! This can mean other develop ers in your team, but it can also b e you

in the future, at a time when you may forget why you added a particular log message. Because of this, you

always want every log message to be clear in and of itself . For example, if you're dumping the contents of a

variable, pre�x it with the name of the variable, as well as the name of the function or �le from which it is

logged. Otherwise, it would b e imp ossible for others to �nd out where the dump is coming from and how to

disable it.

� Use log levels wisely: if you're adding a logging message purely for debugging, don't set it to �info�, otherwise

it will remain as distracting chatter during normal op erations. Use ��ne� instead.

� Some log messages are very sp eci�c, and added during debugging, but would b e distracting once the bug is

solved. In that case make sure to disable the message when you're dong debugging by either switching it to

the ��nest� level, commenting out the co de, or just deleting it. Make sure not to commit code that outputs

distracting log messages.

� A go o d, clear log is an invaluable debugging to ol. A confusing, messy log is worthless!

91

http://threecrickets.com/api/javascript/?namespace=application&item=application.application
http://docs.oracle.com/javase/6/docs/api/index.html?java/lang/System.html
http://docs.oracle.com/javase/6/docs/technotes/guides/logging/overview.html#1.8

Debug Page

Uncaught exceptions will cause Prudence to generate a 500 �internal error� HTTP status. When debug mo de (page

72) is enabled, this will come with a generated HTML page full of useful debugging information:

� Error stack trace, with links to the source co de

� HTTP request warnings

� HTTP request information, including all headers parsed and organized:

� URIs

� Query params

� Media preferences for content negotiation

� Conditions for content negotiation

� Caching directives

� Client identi�cation

� Co okies

� Payload

� conversations.lo cals (page 83)

� HTTP resp onse attributes

� Application information:

� application.globals (page 82)

� application.sharedGlobals (page 82)

� executable.globals (page 83)

� Scripturian:

� Executable attributes

� Execution context attributes

� Low-level JVM stack trace

Obviously, this information may include private data, so you'll want to turn this debug page o� for pro duction

deployments.

Monitoring

One of the advantages of having Prudence running on the JVM is its p owerful built-in monitoring capabilities

based on JMX technology. Using the VisualVM to ol, you can get a comprehensive view of the JVM's memory use

over time, examine garbage collection, threading b ehavior and p erformance, and p erform basic pro�ling. It's an

invaluable to ol for debugging memory leaks and p erformance b ottlenecks.

Threads

Here are a few common thread groups you will see for the Prudence's subsystems:

� qtp: Jetty server's selectors and acceptors

� HttpClient: Jetty client

� cron4j: cron4j

� hz: Hazelcast

� Wrapp er: The Sincerity service plugin wrapp er

� JXM and RMI: These are used by JMX itself

The �thread dump� button is very useful for getting a picture of what all threads are doing at a particular moment.

92

http://docs.oracle.com/javase/tutorial/jmx/
http://visualvm.java.net/
http://threecrickets.com/sincerity/ecosystem/feature-plugins/#service-plugin

Management Beans

If you install the MBeans plugin, you will gain access to useful information and functionality exp osed by Prudence's

subsystems:

� java.lang: General JVM to ols, such as op erating system information as well as class loader, memory, com-

pilation and threading statistics; use the �gc� op eration in the �Memory� typ e to cause immediate garbage

collection

� java.nio: Some useful I/O statistics

� java.util.logging: Allows you to query the JULI API

� org.apache.logging.log4j2: Available when you are using the Sincerity logging plugin; access to the log-

ging implementation; note that you can also install a dedicated GUI using the JConsole plugin: see the

Log4j management do cumentation for more information

� org.tanukisoftware.wrapp er: Available when you are using the Sincerity service plugin; op erations allows you

to stop/restart the service

Remote JMX

Connecting to a running Prudence JVM over TCP/IP is not so trivial. See the �extras� section in the

Sincerity service plugin do cumentation for a guide.

Memory Leaks

These are sometimes di�cult to debug: by the time you get an OutOfMemoryError, it might b e imp ossible to

connect over JMX.

jmap and jhat You should familiarize yourself with these two p owerful heap analysis to ols.

Use jmap to get a live dump from a running JVM:

j m a p � dump : l i v e , f o r m a t =b , f i l e =/ f u l l / p a t h / t o / d u m p s / p r u d e n c e . b i n < p i d >

If you're getting connection errors, try the following:

� In Linux, you might need to enable inter-pro cess access for ptrace:

e c h o 0 | s u d o t e e / p r o c / s y s / k e r n e l / y a m a / p t r a c e _ s c o p e

� Try using ro ot access to run jmap

� Try adding the �-F� switch (though it will likely only create a partial dump)

When op ening the dump using jhat, you might get an OutOfMememoryError (again!) if the �le is very large.

Increase available memory like so:

j h a t � J � mx2000m p r u d e n c e . b i n

Point your web browser to http://lo calhost:7000/ to see jhat's analysis.

More Logging You can enforce a heap dump to �le up on OutOfMemoryError using the following JVM command

line switches:

JVM_SWITCHES=\

� XX: + H e a p D u m p O n O u t O f M e m o r y E r r o r \

� XX : H e a p D u m p P a t h=/ f u l l / p a t h / t o / l o g s / \

s i n c e r i t y s t a r t p r u d e n c e

Likewise, it's a go o d idea to turn on the garbage collector log:

93

http://visualvm.java.net/mbeans_tab.html
http://threecrickets.com/sincerity/ecosystem/feature-plugins/#logging-plugin
http://visualvm.java.net/jconsole_plugin_wrapper_tab.html
http://logging.apache.org/log4j/2.x/manual/jmx.html
http://threecrickets.com/sincerity/ecosystem/feature-plugins/#service-plugin
http://threecrickets.com/sincerity/ecosystem/feature-plugins/#service-plugin
http://docs.oracle.com/javase/7/docs/technotes/tools/share/jmap.html
http://docs.oracle.com/javase/7/docs/technotes/tools/share/jhat.html
http://localhost:7000/

JVM_SWITCHES=\

� X l o g g c : / f u l l / p a t h / t o / l o g s / g c . l o g \

� XX: + P r i n t G C D e t a i l s \

� XX: + P r i n t T e n u r i n g D i s t r i b u t i o n \

s i n c e r i t y s t a r t p r u d e n c e

If you're using the Sincerity service plugin, you can enable b oth of these features by creating a

�/con�guration/service/jvm/memory-monitoring.conf � �le:

O u t � o f � m e m o r y h e a p d u m p s

� XX: + H e a p D u m p O n O u t O f M e m o r y E r r o r

� XX : H e a p D u m p P a t h={ s i n c e r i t y . c o n t a i n e r . r o o t } / l o g s /

G a r b a g e c o l l e c t i o n l o g

� X l o g g c : { s i n c e r i t y . c o n t a i n e r . r o o t } / l o g s / g c . l o g

� XX: + P r i n t G C D e t a i l s

� XX: + P r i n t T e n u r i n g D i s t r i b u t i o n

Describing APIs

An imp ortant asp ect of managing a RESTful API is do cumenting it. As with any API do cumentation, it is useful

for humans, b oth users and develop ers. But it's also useful for consumption by clients, which can use a prop erly-

formatted description to automatically generate calling interfaces for your APIs.

Prudence allows you to annotate your co de with sp ecial comments from which a description data can b e gener-

ated. RESTful description blo cks in Prudence must b e delimited with �/***� and � */� (triple-asterix comments).

This allows the blo ck to b e ignored by the programming language, as a regular comment, while di�erentiating it

from co de do cumentation, which is usually delimited using �/**� and � */� (double-asterix comments, for example

see Sincerity's JsDo c plugin). Within these comments, Prudence will lo ok for sp ecial annotation tags b eginning

with �@�, similarly to how the JavaDo c sp eci�cation works. Annotation values can extend across multiple comment

lines, and some require sp ecial formats, as detailed b elow.

Even if you don't intend to supp ort a description technology, adhering to such annotation standards is very

useful for do cumenting your URI-space for humans, and course will allow you to easily supp ort such technologies

in the future.

Generating Description Data

The �prudence� Sincerity command has a �describ e� sub-command that will automatically gather annotations, parse

them, and generate description data:

s i n c e r i t y p r u d e n c e d e s c r i b e myapp

Syntax errors will b e rep orted if discovered.

By default, description �les will b e written to the application's �description� sub directory, but you can also

sp ecify a di�erent sub directory name:

s i n c e r i t y p r u d e n c e d e s c r i b e myapp a p i � d o c s

Swagger

Prudence supp orts Swagger (a trademark of Reverb Technologies, Inc.), an emerging standard for RESTful API

description with a broad ecosystem of to ols and wrapp ers.

At the very least, you will need a �@swagger� annotation sp ecifying the typ e for the description blo ck. The

do cuments generated by the �describ e� to ol (page 94) are fully-compliant JSON, indented for human readability,

with a �.json� extension.

Most annotations match the �elds in the Swagger sp eci�cation, version 1.2, and are explained there. However,

Prudence automates many values, and additionally provides sensible defaults.

94

http://threecrickets.com/sincerity/ecosystem/feature-plugins/#service-plugin
http://threecrickets.com/sincerity/ecosystem/feature-plugins/#jsdoc-plugin
https://helloreverb.com/developers/swagger
https://github.com/wordnik/swagger-spec/blob/master/versions/1.2.md

@swagger info

Provides general information ab out your API.

You can have multiple �@swagger info� blo cks in your application, though the parser will merge them all together.

It's go o d practice to place these blo cks in your settings.js, routing.js, or b oth.

/ � � �
� R E S T f u l API f o r My A p p l i c a t i o n .

�
� @ s w a g g e r i n f o

� @ a p i V e r s i o n 1 . 0

� @ b a s e P a t h h t t p : / / myapp . o r g / a p i

� @ t i t l e My A p p l i c a t i o n

� @ d e s c r i p t i o n T h i s API p r o v i d e s a c c e s s t o

� My A p p l i c a t i o n ' s r e s o u r c e s

� @ l i c e n s e GNU L e s s e r G e n e r a l P u b l i c L i c e n s e 3 . 0

� @ l i c e n s e U r l h t t p : / / www . g n u . o r g / l i c e n s e s / l g p l . h t m l

� @ c o n t a c t i n f o @ t h r e e c r i c k e t s . com

� /

�@swaggerVersion�, �@apiVersion� and �@basePath� are used as defaults for the �@swagger api� sections, which

you may override there.

Additional annotations will get default values, which you may override:

� @swaggerVersion: 1.2

@swagger api

Represents a group of APIs, often intended to mean a single RESTful resource, though it may b e useful to group

several resources together in some cases. In Swagger, all APIs within a group are describ ed in a single JSON

do cument.

It's go o d practice to place these blo cks at the top of the source co de �le for a resource.

/ � � �
� T h i s r e s o u r c e r e p r e s e n t s a p e r s o n i n t h e d a t a b a s e . P e r s o n s h a v e u n i q u e

� I D s d e f i n e d b y i n t e g e r s .

�
� @ s w a g g e r a p i

� @ d e s c r i p t i o n A p e r s o n

� @ p r o d u c e s a p p l i c a t i o n / j s o n t e x t / p l a i n

� @ c o n s u m e s a p p l i c a t i o n / j s o n t e x t / p l a i n

� /

Values for �@pro duces� and �@consumes� may b e sp eci�ed in one annotation, or in several:

@ p r o d u c e s a p p l i c a t i o n / j s o n

@ p r o d u c e s t e x t / p l a i n

Additional annotations will get default values, which you may override:

� @resourcePath: if not sp eci�ed, will b e automatically generated according to the �lename in which this

description blo ck app ears; Prudence will generate the JSON �le according to its value:

� If it ends with a �/�, will b e considered a directory name, and Prudence will put a �index.json� �le in it.

� Otherwise, a �.json� extension will b e added to the value to create the �lename

� @swaggerVersion: from the �@swagger info� blo ck

� @apiVersion: from the �@swagger info� blo ck

� @basePath: from the �@swagger info� blo ck

95

@swagger op eration

Represents a single API call, a RESTful verb on a URL. An op eration must b e asso ciated with a �@swagger

api� blo ck, though if one do es not exist it will b e inferred and generated for you (though without �@description�,

�@pro duces�, �@consumes�, etc.).

It's go o d practice to place these blo cks right b efore the appropriate handler co de.

/ � � �
� R e t r i e v e a p e r s o n ' s d a t a a c c o r d i n g t o i t s I D .

�
� @ s w a g g e r o p e r a t i o n

� @summary R e t r i e v e s a p e r s o n

� @ n o t e s A c c e s s e s t h e MongoDB d a t a b a s e

� @ p a t h / p e r s o n / { p e r s o n I d } /

� @ m e t h o d GET

� @ n i c k n a m e g e t P e r s o n

� @ p a r a m e t e r p a t h p e r s o n I d s t r i n g T h e p e r s o n ' s I D

� @ t y p e P e r s o n

� @ r e s p o n s e M e s s a g e 4 0 0 E r r o r I n v a l i d d a t a

� @ r e s p o n s e M e s s a g e 4 0 4 n u l l N o t f o u n d

� /

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

. . .

}

The link b etween a �@swagger op eration� and its �@swagger api� is via the �@resourcePath� annotation.

The �@typ e� annotation matches a �@swagger mo del� (see b elow).

You may include none or several �@parameter� annotations, with the following attributes:

1. The parameter typ e: �path�, �query�, �b o dy�, �header� or �form�

2. Name

3. Typ e

4. Optional: description

You may include none or several �@resp onseMessage� annotations, with the following attributes:

1. HTTP status co de (an integer)

2. Typ e: a �@swagger mo del�, or �null� to sp ecify no content

3. Optional: description

Additional annotations will get default values, which you may override:

� @resourcePath: if not sp eci�ed, will use the value for the previous �@swagger api� blo ck; if there is not such

blo ck, it will b e automatically generated according to the �lename in which this description blo ck app ears

@swagger mo del

Represents a data mo del. As with �@swagger op eration�, it is asso ciated with a �@swagger api� blo ck.

/ � � �
� P e r s o n m o d e l .

�
� @ s w a g g e r m o d e l

� @ i d P e r s o n

� @ p r o p e r t y n a m e s t r i n g

� @ p r o p e r t y l a s t n a m e s t r i n g

� /

96

You may include none or several �@parameter� annotations, with the following attributes:

1. Name

2. Typ e

Serving Swagger

You can serve your Swagger description statically (page 46) via routing.js:

a p p . r o u t e s = {

. . .

' / a p i � d o c s / � ' : {

t y p e : ' s t a t i c ' ,

r o o t : ' d e s c r i p t i o n '

}

}

However, most Swagger clients will require Cross-Origin Resource Sharing (CORS), which you can supp ort using

Prudence's CORS �lter (page 112):

a p p . r o u t e s = {

. . .

' / a p i � d o c s / � ' : {

t y p e : ' c o r s ' ,

a l l o w O r i g i n : ' � ' ,

n e x t : {

t y p e : ' s t a t i c ' ,

r o o t : ' d e s c r i p t i o n '

}

}

}

You can test your Swagger description using the Swagger UI application. A demo is available here.

Working with Swagger Clients

Most Swagger clients will require your API to use Cross-Origin Resource Sharing (CORS), which you can supp ort

using Prudence's CORS �lter (page 112). For example, if you're implementing your API as manual resources (page

36), you can just wrap your entire �manual� route typ e with the �lter:

a p p . r o u t e s = {

. . .

' / � ' : [

{

t y p e : ' c o r s ' ,

a l l o w O r i g i n : ' � ' ,

a l l o w M e t h o d s : [' GET' , ' POST ' , ' PUT ' , ' DELETE '] ,

a l l o w H e a d e r s : ' C o n t e n t � T y p e ' ,

n e x t : ' m a n u a l '

} ,

' t e m p l a t e s ' ,

' s t a t i c '

]

}

An additional requirement for CORS is that your resources supp ort the HTTP �OPTIONS� verb. This can b e

easily done with an empty handler:

f u n c t i o n h a n d l e O p t i o n s (c o n v e r s a t i o n) {

r e t u r n n u l l

}

97

http://www.w3.org/TR/cors/
https://github.com/wordnik/swagger-ui
http://petstore.swagger.wordnik.com/
http://www.w3.org/TR/cors/

Of course, instead of using the CORS �lter, your handlers can actually set the appropriate CORS headers as is

appropriate. See custom headers (page 55) for more information:

f u n c t i o n h a n d l e O p t i o n s (c o n v e r s a t i o n) {

c o n v e r s a t i o n . r e s p o n s e H e a d e r s . s e t (' A c c e s s � C o n t r o l � A l l o w � O r i g i n ' , ' � ')

c o n v e r s a t i o n . r e s p o n s e H e a d e r s . s e t (' A c c e s s � C o n t r o l � A l l o w � M e t h o d s ' , ' GET , POST , PUT , DELETE ')

c o n v e r s a t i o n . r e s p o n s e H e a d e r s . s e t (' A c c e s s � C o n t r o l � A l l o w � H e a d e r s ' , ' C o n t e n t � T y p e ')

}

FAQ

Please also refer to the FAQs for Sincerity and Scripturian.

Technology

How is Prudence di�erent from No de.js?

Both are server-side platforms for creating network servers using JavaScript. Both have evolved to supp ort package

managers: Sincerity for Prudence, npm for No de.js.

But that's pretty much where the similarities end.

Purp ose and Architecture Prudence is a comprehensive platform for REST services, such as web pages and

RESTful APIs. No de.js is a minimalist platform for asynchronous services, such as streaming video and audio

servers. These are very di�erent use cases.

First, note that both use non-blo cking servers at the low level. So they're both asynchronous in that particular

resp ect.

On top of the multi-threaded server Prudence builds a RESTful application environment, using Restlet to

handle the many intricacies of HTTP. Why multi-threaded? Because generating HTML is logically a single-event

pro cedure: at the moment you get the client's request, you generate the HTML content and send it immediately.

Thus, via a managed, con�gurable thread-p o ol, Prudence can leverage multi-core CPUs as well as highly-concurrent

database backends to serve several several user requests simultaneously.

No de.js could not b e more di�erent: it is by design single -threaded and event- driven : requests are never handed

simultaneously, and only a single CPU core would ever b e used by the HTTP server itself.

Seems o dd? Actually, this �raw� architecture makes a lot of sense for streaming applications: as opp osed to

HTML pages, streams are always multi -event pro cedures, each event generating a �chunk� of the stream that

saturates the so cket with data. There is no advantage to using more than one thread if a single thread is already

taking up all the bandwidth. In fact, thread synchronization could intro duce overhead that would slow the server

down. Really, your only variable in terms of scalability is the size of the chunks: you'll want them smaller under

high load in order to degrade p erformance fairly among clients. That said, other libraries you might use from

No de.js can and do use threads: this is useful for CPU-b ound workloads such as video enco ding.

No de.js is great for its intended use case. It's vastly easier to write event handlers in JavaScript than in C/C++,

and JavaScript also makes it easy to b o otstrap the server. If you're writing a streaming asynchronous server, we

highly recommend No de.js.

If you like No de.js but JavaScript is not your favorite dynamic language, similarly excellent event-

driven platforms are available for other languages: check out Tornado and Twisted for Python, and

EventMachine for Ruby.

You're Doing It Wrong That said, it's very o dd that No de.js has b ecome a p opular platform for the non -

streaming, data-driven web: the Express framework, for example, provides some minimal RESTful functionality on

top of No de.js. But event-driven servers are not designed for REST, and are in fact quite a bad �t: consider that in a

single-threaded runtime, if a single event handler hangs, the whole server will hang. No de.js deals with the problem

by in e�ect o�oading the thread p o ols to external libraries, written in C++. For example, No de.js's database

drivers handle queries in their own connection thread p o ols, and push events to No de.js when data is available.

Still, in your No de.js JavaScript event handlers, you have to take extra care not to do any time-consuming work: a

delay you cause would a�ect al l op erations waiting their turn on the single-threaded event lo op. Thus, to create a

prop erly scalable No de.js application, you must have event handlers with no risky �side e�ects�: that heavy lifting

98

http://threecrickets.com/sincerity/manual/faq/
http://threecrickets.com/scripturian/manual/faq/
http://restlet.org/
http://www.tornadoweb.org/
http://twistedmatrix.com/
http://rubyeventmachine.com/
http://expressjs.com/

is left to the C++ libraries. The b ottom line is that you have an illusion of single-threadedness: you've merely

shifted the workload to the drivers.

And even if you did a go o d job in JavaScript, your implementation will not in any way b e more scalable for this

use case than by using a thread p o ol: users still need to wait for their requests to complete, and databases still have

to return results b efore you can complete those requests. There's nothing in an event-driven mo del that changes

these essential facts. (It's worth rep eating again: b oth Prudence and No de.js use non-blo cking I/O servers; No de.js

having an event-driven programming mo del do es not allow it to magically handle more concurrent connections than

other platforms can.)

You can add some parallelism by running multiple No de.js pro cesses b ehind a load balancer, but the problems

quickly multiply: each pro cess loads its own version of those C++-written drivers, with its own connection thread

p o ol, which can't b e shared with the other No de.js pro cesses. In Prudence, by contrast, the same p o ol is trivially

shared by all requests. (Prudence's threads can also share an in-pro cess memory-based cache backend for the b est

p ossible caching p erformance at the 1st tier.)

It should b e clear that No de.js is simply the wrong to ol for the job. So, why is No de.js so misused? One reason

is that its raw architecture is attractively simple: multi-threaded programming is hard to get right, single-threaded

easy. JavaScript, to o, is attractive as a language that many programmers already know. So, despite b eing a

problematic web platform, it's one in which you can build web services quickly and with little fuss, and sometimes

that's more imp ortant than scalability or even robustness (esp ecially if the goal is to create in-house services). But

another reason for No de.js' p opularity is more worrying: ignorance. People who should know b etter heard that

No de.js is �fast� b ecause it's �asynchronous� and think that would lead to faster page load-times for web browsers

and the ability to handle more page hits. That's a very wrong conclusion. You can do great REST in No de.js, but

would have to work against the platform's limitations for the scenario.

We b elieve that Prudence is a much more sensible choice for the RESTful web. Beyond the basic multi-threaded

mo del, also consider Prudence's many features aimed sp eci�cally at RESTful scalability, such as integrated caching

(page 61), full control of conditional HTTP (page 39), and clusters (page 137) for scaling horizontally in the �cloud.�

Check out our Scaling Tips article, to o, which is useful even if you don't cho ose Prudence.

Technology and Ecosystem Prudence was designed sp eci�cally for the JVM, to provide you with access to its

rich and high-quality ecosystem, to leverage its excellent concurrency libraries and monitoring/pro�ling capabilities,

and to b e p ortable and integrative. The JVM platform is very mature and reliable, as are many of the libraries

that Prudence uses, such as Jetty, Restlet and Hazelcast. It's easier to connect C/C++ libraries to No de.js, but on

the other hand it's easier to write and deploy extensions in Java/Scala/Gro ovy/Clo jure for Prudence.

And Prudence is not just JavaScript: it supp orts many dynamic languages running on top of the JVM�Python,

Ruby, PHP, Lua, Gro ovy and Clo jure�as well as their resp ective ecosystems. That said, it do es give sp ecial love to

JavaScript: Sincerity comes with a rich foundation library, o�ering essentials such as OOP and string interp olation,

as well as friendly wrapp ers for p owerful JVM services, such as concurrent collections and cryptography.

No de.js is JavaScript-centric, and though it has a much younger and narrower ecosystem, it is

vibrant and quickly growing.

No Benchmarks for You In terms of sheer computational p erformance, No de.js has done well to leverage the

�browser wars,� which have resulted in very p erformative JavaScript interpreters and JIT compilers. However,

it's worth rememb ering that these engines have b een optimized for web browser environments, not servers, and

thus have very limited supp ort for threading. By contrast, Prudence can run JavaScript on your choice of either

Nashorn or Rhino, which can b oth use the JVM's excellent concurrency management. Nashorn promises excellent

p erformance, on par with Java co de in some cases. Rhino is not as fast, but still p erforms well and is very mature.

But a comparative b enchmark would make little sense. No de.js' single-threaded mo del real ly needs blazing-

fast language p erformance, as it directly a�ects its scalability. Prudence's multi-threaded mo del and RESTful

exp ectations mean that it's rarely CPU-b ound: for example, you sp end orders of magnitude more time waiting for

database backends to resp ond than for functions to b e called. For the web page use case, smart architecture�and

smart caching�are far more imp ortant for scalability than language engine p erformance.

Note, to o, that all the p erformance-critical parts of Prudence are written in Java, just as they are written in

C++ for No de.js. There should b e no noticeable p erformance di�erences in the basic request handling p erformance.

And it's imp ortant to rememb er�and rep eat to yourself as mantra�that performance does not equal scalability .

Prudence's default HTTP engine is Jetty, which is designed from the ground-up for scalable web services, and it

b ehaves smartly under high volumes, even if it might not seem so under trivial and misleading lo calized b enchmarks.

It's also easy to replace Jetty with other servers (page 100).

99

http://threecrickets.com/prudence/scaling/
http://www.hazelcast.com/
http://threecrickets.com/sincerity/manual/programming/#sincerity-javascript-library
https://npmjs.org/
http://openjdk.java.net/projects/nashorn/
https://developer.mozilla.org/en-US/docs/Rhino
http://www.eclipse.org/jetty/
http://webtide.intalio.com/2010/06/lies-damned-lies-and-benchmarks-2/

Conclusion Cho ose the right to ol for the job! No de.js is a great choice for streaming and streaming-like services,

and Prudence�we hop e you'll agree�is a great choice for web services and RESTful APIs.

How is REST b etter than RPC?

Well, it's not necessarily b etter. One imp ortant advantage is that it works inside the already-existing, already-

deployed infrastructure of the World Wide Web, meaning that you can immediately b ene�t from a wide range of

optimized functionality. We discuss this in greater detail in The Case for REST (page 152).

But we don't advo cate REST for every pro ject. See this discussion (page 157) for one reason why RPC may b e

more appropriate. Cho ose the right to ol for the job!

Why do es Prudence supp ort LESS instead of SASS?

Prudence implements LESS using the Less4j library. Unfortunately, there is no SASS implementation that would

directly work on the JVM: we could p otentially run it using JRuby, but that is simply to o big a dep endency for a

single feature.

However, nothing is stopping you from running SASS from the command line to create your CSS.

An alternative to LESS is ZUSS: smaller, but not quite as comprehensive. Co de to supp ort it is included in

Prudence, though you must install the ZUSS Jar yourself.

How do I use other HTTP servers instead of Jetty?

We recommend Jetty and install it by default, but in some cases it may b e worth using alternatives: for example,

you may want to exp eriment with di�erent p erformance characteristics for certain deployments or make comparative

b enchmarks.

Fortunately, Restlet decouples its API from the server library, and comes with extensions to connect to several

server libraries in addition to Jetty. You can install these easily with Sincerity, though note that you would need

to exclude the Jetty extension if you do so: Restlet do es not currently run if several server extensions are in the

classpath at the same time.

For example, let's use the Simple Framework instead of Jetty:

s i n c e r i t y a d d p r u d e n c e . e x a m p l e :

a d d r e s t l e t . s i m p l e :

e x c l u d e o r g . r e s t l e t . j s e o r g . r e s t l e t . e x t . j e t t y 9 :

e x c l u d e o r g . e c l i p s e . j e t t y j e t t y � s e r v e r :

i n s t a l l :

s t a r t p r u d e n c e

If Restlet do es not �nd any server extension in the classpath, it will default to its own �internal� server, which

is adequate to simple deployments and for testing:

s i n c e r i t y a d d p r u d e n c e . e x a m p l e :

e x c l u d e o r g . r e s t l e t . j s e o r g . r e s t l e t . e x t . j e t t y 9 :

e x c l u d e o r g . e c l i p s e . j e t t y j e t t y � s e r v e r :

i n s t a l l :

s t a r t p r u d e n c e

Performance and Scalability

How well do es Prudence p erform? How well do es it scale?

First, recognize that there are two common uses for the term �scale.� REST is often referred to as an inherently

scalable architecture, but that has more to do with pro ject management than technical e�ectiveness. This di�erence

is addressed in the �The Case for REST� (page 152).

From the p ersp ective of the ability to resp ond to user requests, there are three asp ects to consider:

1. Serving HTTP Prudence comes with Jetty, an HTTP server based on the JVM's non-blo cking I/O API.

Jetty handles concurrent HTTP requests very well, and serves static �les at scales comparable to p opular HTTP

servers.

100

http://lesscss.org/
https://github.com/SomMeri/less4j
http://sass-lang.com/
https://github.com/tomyeh/ZUSS
http://www.simpleframework.org/
http://www.eclipse.org/jetty/

2. Generating HTML Prudence implements what might b e the most sophisticated caching system (page 61)

of any web development framework. Caching is truly the key to scalable software. See �Scaling Tips� (page 159)

for a comprehensive discussion of the role of caching.

3. Running co de There may b e a delay when starting up a sp eci�c language engine in Prudence for the �rst

time in an application, as it loads and initializes itself. Then, there may b e a delay when accessing a dynamic web

page or resource for the �rst time, or after it has b een changed, as it might require compilation. Once it's up and

running, though, your co de p erforms and scale very well�as well as you've written it. You need to understand

concurrency and make sure you make go o d choices to handle co ordination b etween threads accessing the same data.

If all is go o d, your co de will actually p erform b etter throughout the life of the application. The JVM learns and

adapts as it runs, and p erformance can improve the more the application is used.

All language engines supp orted of Prudence are generally very fast. In some cases, the JVM language imple-

mentations are faster than their �native� equivalents. This is demonstrable for Python, Ruby and PHP. The reason

is that the JVM, so on reaching version 8, is a very mature virtual machine, and incorp orates decades-worth of

optimizations for live pro duction environments.

If you are p erforming CPU-intensive or time-sensitive tasks, then it's b est to pro�le these co de segments precisely.

Exact p erformance characteristics dep end on the language and engine used. The Bechmarks Game can give you

some comparisons of di�erent language engines running high-computation programs. In any case, if you have a

piece of intensive co de that really needs to p erform well, it's probably b est to write it in Java and access it from

the your language. You can even write it in C or assembly, and have it linked to Java via JNI.

If you're not doing intensive computation, then don't worry to o much ab out your language b eing �slow.� It's

b een shown that for the vast ma jority of web applications, the p erformance of the web programming language is

rarely the b ottleneck. The deciding factors are the usually p erformance of the backend data-driving technologies

and architectures.

I heard REST is very scalable. Is this true? Do es this mean Prudence is �web scale�?

Yes, if you know what you're doing. See �The Case for REST� (page 152) and �Scaling Tips� (page 159) for in-depth

discussions.

The b ottom line is that it's very easy to make your application scale p o orly, whatever technology or architecture

you use, and that Prudence, in embracing REST and the JVM, can more easily allow for b est-practice scalable

architectures than most other web platforms.

That might not b e very reassuring, but it's a fact of software and hardware architecture right now. Achieving

massive scale is challenging.

Errors

How to avoid the �Adapter not available for language: xml� parsing exception for XML �les?

The problem is that the XML header confuses Scripturian, Prudence's language parser, which considers the �<?� a

p ossible scriptlet delimiter:

<? x m l v e r s i o n = ' 1 . 0 ' e n c o d i n g = 'UTF � 8 ' ? >

The simple solution is to force Scripturian to use the �<%� for the page via an empty scriptlet, ignoring all �<?�:

<% %><?x m l v e r s i o n = ' 1 . 0 ' e n c o d i n g = 'UTF � 8 ' ? >

Licensing

The author is not a lawyer. This is not legal advice, but a p ersonal, and p ossibly wrong interpretation.

The wording of the license itself sup ersedes anything written here.

Do es the LGPL mean I can't use Prudence unless my pro duct is op en sourced?

The GPL family of licenses restrict your ability to redistribute software, not to use it. You are free to use Prudence

as you please within your organization, even if you're using it to serve public web sites�though with no warranty

nor an implicit guarantee of supp ort from the copyright holder, Three Crickets LLC.

101

http://shootout.alioth.debian.org/

The GPL would thus only b e an issue if you're selling, or even giving away, a pro duct that would include

Prudence.

And note that Prudence uses the Lesser GPL, which has even fewer restrictions on redistribution than the regular

GPL. Essentially, as long as you do not alter Prudence in any way, you can include Prudence in any pro duct, even

if it is not free . With one exception: Prudence uses version 3 of the Lesser GPL, which requires your pro duct to

not restrict users' ownership of data via schemes such as DRM if Prudence is to b e included in its distribution.

Even if your pro duct do es not qualify for including Prudence in it, you always have the option of distributing

your pro duct without Prudence, and instructing your customers to download and install Prudence on their own.

We understand that in some cases op en sourcing your pro duct is imp ossible, and passing the burden to the users

is cumb ersome. As a last resort, we o�er you a commercial license as an alternative to the GPL. Please contact

Three Crickets for details.

Three Crickets, the original develop ers of Prudence, are not trying to force you to purchase it. That is not our

business mo del, and we furthermore �nd such trickery bad for building trusting relationships. Instead, we hop e to

encourage you to 1) pay Three Crickets for consultation, supp ort and development services for Prudence, and to 2)

consider releasing your own pro duct as free software, thereby truly sharing your innovation with all of so ciety.

Why the LGPL and not the GPL?

The Lesser GPL used to b e called the �Library GPL,� and was originally drafted for glib c. It is meant for sp ecial

cases in which the full GPL could limit the adoption of a pro duct, which would b e self-defeating. The assumption

is that there are many alternatives with fewer restrictions on distribution.

In the case of the Linux pro ject, the full GPL has done a wonderful job at convincing vendors to op en source

their co de in order to ship their pro ducts with Linux inside. However, it do esn't seem likely that they would do the

same for Prudence. There are so many great web development platforms out there with fewer restrictions.

Note that the LGPL version 3 has a clause allowing you to �upgrade� Prudence to the full GPL for inclusion in

your GPL-ed pro duct. This is a terri�c feature, and another reason to love this excellent license.

Part I I

Advanced Manual

Background Tasks

The primary workload of a web platform is in handling user requests, and in Prudence these are handled in a

con�gurable thread p o ol managed by the web server (usually Jetty). However, �primary� do es not mean �only�

or even �most�: your application may b e doing lots of other work b oth to serve users and to keep itself running

prop erly. In Prudence, we call these �background tasks.� They are run in a separate thread p o ol, and can even b e

�farmed out� in the cluster (page 137).

The common use cases are:

� Doing work in connection to user requests that can happ en outside of requests: sending email noti�cations,

up dating a statistics database, etc. Even if this happ ens a bit later than the user request, the user exp erience

would not su�er. By p erforming this work in the background, you can ensure that the request thread is freed

as quickly as p ossible, which can go a long way towards improving your scalability.

� Doing work for users that cannot or should not b e done within a request thread: enco ding videos, interacting

with 3rd-party services, p erforming long searches, etc. All of these could hang the request thread for far to o

long, which could severely limit your scalability. In these cases you would need to �nd some way to let the user

know that the work they needed is done. Often, results are stored in a database. (Diligence's Progress Service

is a generic to ol for handling these scenarios.)

� Maintenance tasks unrelated to user requests: cleaning up idle sessions, pruning caches and unused results,

sending out digest emails, etc. These tasks are often scheduled to b e run on a regular basis: daily, every 5

minutes, etc.

In order to supp ort these diverse use cases, Prudence allows for several ways to schedule and spawn background

tasks.

102

http://www.gnu.org/software/libc/
http://threecrickets.com/diligence/manual/service/progress/

Implementing Tasks

Prudence supp orts two ways to implement tasks. Note that in b oth cases, you may implement the task in any

supp orted programming language: it do esn't matter which language calls the API and which language implements

the task.

As Programs These tasks are executed from b eginning to end. They can, of course, include libraries, de�ne

functions and classes, etc. You may optionally send the task an arbitrary �context,� which will b e accessible via the

do cument.context API.

A simple example:

v a r c o u n t = d o c u m e n t . c o n t e x t

f o r (v a r i = 0 ; i < c o u n t ; i ++) {

a p p l i c a t i o n . l o g g e r . i n f o (' # ' + i)

}

As Entry Points in Programs These tasks are loaded into memory once: Prudence will call a sp eci�ed entry

p oint every time the task is spawned. The �context� will b e provided as an entry p oint argument. Additionally,

entry p oints allow you to return a value to the caller.

A simple example:

f u n c t i o n m y E n t r y P o i n t (c o n t e x t) {

v a r c o u n t = d o c u m e n t . c o n t e x t

f o r (v a r i = 0 ; i < c o u n t ; i ++) {

a p p l i c a t i o n . l o g g e r . i n f o (' # ' + i)

}

r e t u r n ' f i n i s h e d '

}

Performance Considerations Generally, tasks implemented as entry p oints will b e spawned faster (page 86).

So, the rule of thumb should b e:

� Implement your task as a program if it is supp osed to run only once in a while.

� Implement your task as an entry p oint if it is frequently used.

APIs for Spawning and Scheduling

We'll discuss the higher-level API b elow (page 105). However, it's useful to start with the lower-level API, so you

can b etter understand the many options.

Libraries

To spawn and/or schedule co de in your application's �/libraries/� sub directory, use the application.executeTask API .

As a �rst example, let's spawn a program task:

a p p l i c a t i o n . e x e c u t e T a s k (

' c m s ' , ' / t a s k s / h e l l o / ' , n u l l ,

{ n a m e : ' M i c h a e l ' } ,

0 , 0 , f a l s e)

Our program would b e in �/libraries/tasks/hello.js�:

a p p l i c a t i o n . l o g g e r . i n f o (' H e l l o , ' + d o c u m e n t . c o n t e x t . n a m e)

The �rst argument to executeTask is the application's name on the internal host (page 31). If you leave it as

null, it would default to the current application. The second is the library URI. The third is the entry p oint name

(not used in this example), and the fourth is the optional context.

The �nal three arguments are for scheduling:

103

http://threecrickets.com/api/javascript/?namespace=document&item=document.context
http://threecrickets.com/api/javascript/?namespace=application&item=application.executeTask

� delay : Milliseconds b efore starting the task; zero means ASAP

� rep eatEvery : Milliseconds after which the task will b e rep eated; zero means no rep etitions

� �xedRep eat : Bo olean; not used when �rep eatEvery� is zero; if true, �rep eatEvery� will b e �xed according

to the clo ck; if false, �rep eatEvery� will b e counted from when each task �nishes executing

For our second example, let's use an entry p oint:

a p p l i c a t i o n . e x e c u t e T a s k (

n u l l , ' / t a s k s / h e l l o / ' , ' s a y H e l l o ' ,

{ n a m e : ' M i c h a e l ' } ,

0 , 0 , f a l s e)

Our program with its entry p oint:

f u n c t i o n s a y H e l l o (c o n t e x t) {

a p p l i c a t i o n . l o g g e r . i n f o (' H e l l o , ' + c o n t e x t . n a m e)

}

Literal Scriptlet Co de

To spawn and/or schedule literal scriptlet source co de as a task, use the application.co deTask API . Note that the

source co de must provided as scriptlets, identical to the format of template resources (page 39):

a p p l i c a t i o n . c o d e T a s k (

n u l l , "<% a p p l i c a t i o n . l o g g e r . i n f o (' H e l l o , ' + d o c u m e n t . c o n t e x t . n a m e) %>",

{ n a m e : ' M i c h a e l ' } ,

0 , 0 , f a l s e)

The arguments are similar to executeTask, except that literal source co de is provided instead of a library name,

and there is no entry p oint name.

This API is useful for generating the task's source co de on demand.

The scriptlet format makes it p ossible to run tasks in any supp orted programming language:

a p p l i c a t i o n . c o d e T a s k (

n u l l , "<%p y t h o n a p p l i c a t i o n . l o g g e r . i n f o (' H e l l o f r o m P y t h o n , ' + d o c u m e n t . c o n t e x t) %>",

' M i c h a e l ' ,

0 , 0 , f a l s e)

Canceling Tasks

All the APIs return a JVM Future instance, which you can use to cancel the task:

v a r f u t u r e = a p p l i c a t i o n . c o d e T a s k (. . .)

f u t u r e . c a n c e l (t r u e)

Return Values

As mentioned ab ove, entry p oints can return values to the caller. This is also handled via the Future:

v a r f u t u r e = a p p l i c a t i o n . c o d e T a s k (. . .)

v a r r = f u t u r e . g e t (5 0 0 , j a v a . u t i l . c o n c u r r e n t . T i m e U n i t . MILLISECONDS)

Generally, it's not a very go o d idea to use the returned Future. The advantage of background tasks

is in allowing you to release the current thread, but if you blo ck waiting for a task to complete, then

you will b e doing the opp osite. A b etter way to return values from background tasks store them in a

database and attempt to fetch them later, as in the Diligence's Progress Service. However, if you keep

the blo ck times very short, the Future has its uses: for example, it provides an easy way to call co de in

one programming language from another.

104

http://threecrickets.com/api/javascript/?namespace=application&item=application.codeTask
http://docs.oracle.com/javase/6/docs/api/index.html?java/util/concurrent/Future.html
http://threecrickets.com/diligence/manual/service/progress/

Distributed Task APIs

When working with a Prudence clusters (page 137), you can spawn tasks on other no des in the cluster. This feature

enables you to easily create sp ecialized task farms (page 139) for �exible, scalable deployments.

The task APIs have distributed versions: application.distributedExecuteTask and

application.distributedCo deTask. The di�erence is that the distributed versions don't have the three scheduling

arguments: you can't delay or rep eat distributed tasks. On the other hand, you have two extra arguments for

optionally hinting where in the cluster you would want them executed:

� where : If this is a string, it is interpreted as a comma-separated list of no de tags (page 139). When �multi�

is false, it will select the �rst no de that matches any of the required tags. When �multi� is true, it will select

al l no des that match any of the tags. A null value here means to let Hazelcast decide: when �multi� is true,

this would mean al l no des.

� multi : Bo olean; when false, will spawn on only one memb er in the cluster; when true, will spawn on al l

memb ers sp eci�ed; note that when �multi� is true, the return value is a map of Hazelcast Memb er instances

to their appropriate Future instances

In this example, we don't care when in the cluster the task will b e executed once:

a p p l i c a t i o n . d i s t r i b u t e d C o d e T a s k (

n u l l , "<% a p p l i c a t i o n . l o g g e r . i n f o (' H e l l o , ' + d o c u m e n t . c o n t e x t . n a m e) %>",

{ n a m e : ' M i c h a e l ' } ,

n u l l , f a l s e)

In this example, we'll spawn a maintenance task on all no des:

a p p l i c a t i o n . d i s t r i b u t e d E x e c u t e T a s k (

' m a i n t e n a n c e ' , ' / t a s k s / c l e a n u p / ' , n u l l ,

' now ' ,

n u l l , t r u e)

Note that, of course, the application �maintenance� as well as the library �/tasks/cleanup/� have to b e present

on all no des in the cluster.

Serialization For distributed tasks, your sent contexts as well as your returned values must b e serializable in

order for them to b e transferred over the network. If you're using JavaScript, this likely means sticking to primitive

typ es: strings and numb ers. However, you can serialize the data yourself: say, into JSON when spawning the task,

and then from JSON in the task implementation. (The high-level API do es this for you.)

High-Level API

If you're using JavaScript, you can use the Prudence.Tasks.task as a shortcut to all the APIs mentioned ab ove. An

example:

d o c u m e n t . r e q u i r e (' / p r u d e n c e / t a s k s / ')

P r u d e n c e . T a s k s . t a s k ({

u r i : ' / t a s k s / c l e a n u p ' ,

a p p l i c a t i o n : ' m a i n t e n a n c e '

})

It comes with some sweet JavaScript sugar. For example, you can directly spawn functions:

f u n c t i o n c l e a n u p (c o n t e x t) {

a p p l i c a t i o n . l o g g e r . i n f o (' C l e a n i n g u p : ' + c o n t e x t . t i m e)

}

P r u d e n c e . T a s k s . t a s k ({

f n : c l e a n u p ,

c o n t e x t : { t i m e : ' now ' } ,

j s o n : t r u e ,

d i s t r i b u t e d : t r u e

})

105

http://threecrickets.com/api/javascript/?namespace=application&item=application.distributedExecuteTask
http://threecrickets.com/api/javascript/?namespace=application&item=application.distributedCodeTask
http://www.hazelcast.com/javadoc/index.html?com/hazelcast/core/Member.html
http://docs.oracle.com/javase/6/docs/api/index.html?java/util/concurrent/Future.html
http://threecrickets.com/api/javascript/?namespace=Prudence.Tasks&item=Prudence.Tasks.task

Behind the scenes, the ab ove actually serializes the function source co de, and calls

application.distributedCo deTask (so JavaScript stack closure won't work). The �json: true� param adds

some useful magic: it will serialize the context, and then wrap co de to deserialize the context around task co de.

So, the ab ove will work just �ne as a distributed task.

(While convenient, it's generally more e�cient to invoke an entry p oint in a library than to serialize function

co de like so.)

Here's an example of blo cking until we get a result:

v a r f u t u r e = P r u d e n c e . T a s k s . t a s k ({

u r i : ' / t a s k s / m a t h / ' ,

e n t r y P o i n t : ' m u l t i p l y ' ,

c o n t e x t : [5 , 6 , 8] ,

p u r e : t r u e ,

b l o c k : ' 1 s '

})

p r i n t (f u t u r e . g e t ())

Note the �pure: true� param that forces the API to send the context as is: otherwise it will send it as a string

to ensure supp ort for serialization. (JavaScript data structures are not, unfortunately, serializable.)

In case you're curious, he's the task for that example:

f u n c t i o n m u l t i p l y (e l e m e n t s) {

v a r r = 1

f o r (v a r e i n e l e m e n t s) {

r � = e l e m e n t s [e]

}

r e t u r n r

}

An Even Lower-Level API

If you have some knowledge of Java programming, you may access the task executor directly via the

application.executor API .

Application crontab

Prudence supp orts crontab �les that mimic the format used by that ubiquitous scheduling program.

This facility lets you schedule tasks to run at sp eci�c (Gregorian) calendrical times. It works similarly to calling

application.co deTask (page 104) with the rep etition params, but allows for more succinct, calendrical rep etition

patterns. Also, the facility is always on, as long as your Prudence container is running: you do not have to call an

API to enable it.

To use this facility, place a �le with the name �crontab� in your application's base sub directory. Each line of the

�le starts with scheduling pattern and ends with the task name. Empty lines and comments b eginning with �#�

are ignored. Example:

� � � � � / t a s k s / e v e r y � m i n u t e /

5 9 2 3 � � t u e , f r i <% a p p l i c a t i o n . g e t S u b L o g g e r (' s c h e d u l e d ') . i n f o (' I t i s T u e o r F r i , 1 1 : 5 9PM') %>

Notes:

� The crontab �les will b e checked for changes and parsed once p er minute. This means that you can edit this

�le and have your task scheduling change on the �y without restarting Prudence.

� The scheduler do es not check to see if a task �nished running b efore spawning a new instance of it, so that

even if a task is not done yet, but it's time for it to b e spawned again, you'll have multiple instances of the

task running at the same time. If this is problematic, consider using the task APIs (page 103) instead, with

the ��xedRep eat� param set to false.

106

http://threecrickets.com/api/javascript/?namespace=application&item=application.distributedCodeTask
http://threecrickets.com/api/javascript/?namespace=application&item=application.executor
http://en.wikipedia.org/wiki/Cron

Sending a Context

Optionally, you may add more text after the task name and whitespace: anything there is grabb ed as a single string

and sent as the context to the task, which can b e accessed there using the do cument.context API . Because crontab

is a text �le, only textual contexts may b e sent, but you can use JSON, XML or other enco dings to create complex

contexts.

For example:

� � � � � / t a s k s / e v e r y � m i n u t e / { " m e s s a g e " : " T h i s i s a JSON c o n t e x t " }

Scheduling Patterns

The scheduling pattern is a series of �ve settings separated by whitespace:

1. Minutes of the hour, 0-59

2. Hour of the day, 0-23

3. Day of the month , 1-31; the sp ecial setting �L� signi�es the last day of the month, which varies p er month

and year

4. Month of the year, 1-12; three-letter English month names may b e used instead of numb ers: �jan�, �feb�,

�mar�, etc.

5. Day of the week , 0-6; three-letter English day names may b e used instead of numb ers: �sun�, �mon�, �tue�,

etc.

The following rules apply:

� Any of these settings can b e � *�, signifying that every value would match: every minute, every hour, every

day, etc.

� Use a slash to match only numb ers that divide equally by the numb er after the slash (can also b e used on � *�)

� Ranges (inclusive) are p ossible, separated by hyphens

� Multiple values p er setting are p ossible, separated by commas

� Multiple whole patterns are p ossible, separated by pip es (�|�: a logical �or�)

Note that you can schedule the same task on multiple lines, which is not equivalent to using the pip e: multiple lines

means that multiple task instances might b e spawned simultaneously if matched on more than one line. Contrarily,

using the pip e counts as a single match.

Example Patterns Every minute:

� � � � �

11:59pm every Tuesday and Friday:

5 9 2 3 � � t u e , f r i

Every 5 minutes in the morning, b etween 5 to 8am, otherwise every 30 minutes:

� / 5 5 � 7 � � � | � / 3 0 0 � 4 , 8 � 2 3 � � �

The same as ab ove, but with one added to all minutes of the hour:

1 , 6 , 1 1 , 1 6 , 2 1 , 2 6 , 3 1 , 3 6 , 4 1 , 4 6 , 5 1 , 5 6 5 � 7 � � � | 1 , 3 1 0 � 4 , 8 � 2 3 � � �

107

http://threecrickets.com/api/javascript/?namespace=document&item=document.context

System crontab

You can also set up a sp ecial crontab to run arbitrary Java static metho ds and non-JVM system pro cesses, just like

with the system cron, by creating a �/comp onent/crontab� �le.

Here's an example:

0 5 � � � s o l . e x e

0 , 3 0 � � � � OUT : C : \ p i n g . t x t p i n g 1 0 . 9 . 4 3 . 5 5

0 , 3 0 4 � � � "OUT : C : \ D o c u m e n t s a n d S e t t i n g s \ C a r l o \ p i n g . t x t " p i n g 1 0 . 9 . 4 3 . 5 5

0 3 � � � ENV : JAVA_HOME=C : \ j d k s \ 1 . 4 . 2 _15 DIR : C : \ m y p r o j e c t OUT : C : \ m y p r o j e c t \ b u i l d .

l o g C : \ m y p r o j e c t \ b u i l d . b a t " N i g h t l y B u i l d "

0 4 � � � j a v a : m y p a c k a g e . M y C l a s s# s t a r t A p p l i c a t i o n m y O p t i o n 1 m y O p t i o n 2

The format is di�erent from the application crontabs: see the cron4j do cumentation for complete details.

Like the application crontabs, it will b e enabled as long as the Prudence container is running, and can b e edited

at runtime.

crontab APIs

For direct access to the crontab, use application.taskCollector for the current application's ApplicationTaskCollector,

and application.scheduler for the comp onent-wide cron4j Scheduler.

These APIs let you mo dify the crontab in memory. However, note that if you edit your crontab, the task table

will b e reset and reloaded, losing the changes you made via the API.

/startup/

It's often useful to schedule a task to b e run as so on as the application starts: to initialize resources, turn on

subsystems, do initial testing, etc.

Up on startup, Prudence will automatically spawn �/startup/� as a background task. So, you can create a

�le called �/libraries/startup.js�, �/libraries/startup.py�, �/libraries/startup/default.js�, etc. For example, here's

�/libraries/startup.js�:

a p p l i c a t i o n . l o g g e r . i n f o (' O u r a p p l i c a t i o n s t a r t e d ! ')

Tweaking

Learn how to con�gure the size of the thread p o ol for task APIs here (page 124).

For crontab con�guration, see here (page 125).

Filters

In Prudence, ��lters� are route typ es (page 23) used to add e�ects to resources. Though you can often co de the

same e�ect directly into a resource, �lters are decoupled from resources, allowing you to reuse an e�ect on many

resources, which is esp ecially useful with mapping route typ es (page 22).

Furthermore, �lters are the only way to add e�ects to static resources (page 46), which cannot themselves b e

programmed.

Because it's easy to enable and disable �lters just by editing routing.js, �lters are often used to add debugging

and testing e�ects.

Tutorial

Filters are implemented similarly to manual resources (page 36): as source co de �les (in any supp orted language)

with either or b oth �lter entry p oints: handleBefore and handleAfter. The former is called b efore all requests reach

the next (downstream) route typ e, and the latter is called on the way back, after the downstream �nishes its work.

Let's start with con�guring our �lter, using the ��lter� route typ e (page 23) in routing.js. We'll put it in front

of all our main mapping resources:

108

http://www.sauronsoftware.it/projects/cron4j/manual.php#p14
http://threecrickets.com/api/javascript/?namespace=application&item=application.taskCollector
http://threecrickets.com/api/java/prudence/index.html?com/threecrickets/prudence/ApplicationTaskCollector.html
http://threecrickets.com/api/javascript/?namespace=application&item=application.scheduler
http://www.sauronsoftware.it/projects/cron4j/api/index.html?it/sauronsoftware/cron4j/Scheduler.html

a p p . r o u t e s = {

. . .

' / � ' : {

t y p e : ' f i l t e r ' ,

l i b r a r y : ' / my � f i l t e r / ' ,

n e x t : [

' m a n u a l ' ,

' t e m p l a t e s ' ,

' s t a t i c '

]

}

}

Now let's create the actual �lter in �/libraries/my-�lter.js�. We'll start with a trivial implementation of the

handleAfter entry p oint (page 81):

f u n c t i o n h a n d l e A f t e r (c o n v e r s a t i o n) {

a p p l i c a t i o n . l o g g e r . i n f o (' We g o t a r e q u e s t f o r a r e s o u r c e a t : ' + c o n v e r s a t i o n . r e f e r e n c e)

}

Our �lter do esn't do much yet, but it's easy to test that the co de is b eing called by lo oking at the log. Of course

you can do many other things here, as detailed in the examples b elow. Most of the conversation APIs are available

to you, including the redirection APIs.

Note that while you need to restart your application for the changes in routing.js to take hold, you are free to

edit my-�lter.js and have the changes picked up on-the-�y.

handleBefore is a bit more sophisticated than handleAfter, in that it also requires a return value:

f u n c t i o n h a n d l e B e f o r e (c o n v e r s a t i o n) {

a p p l i c a t i o n . l o g g e r . i n f o (' We g o t a r e q u e s t f o r a r e s o u r c e a t : ' + c o n v e r s a t i o n . r e f e r e n c e)

r e t u r n ' c o n t i n u e '

}

Three literal return values are supp orted, as either a string or a numb er:

� �continue� or 0 : Continue to the �next� handler

� � skip� or 1 : Skip the �next� route typ e and go immediately to our own handleAfter

� �stop� or 2 : Stop our handling altogether: the same as �skip,� but handleAfter is not called (note that if a

�lter was installed before us, it would still b e called)

Again, you may de�ne b oth a handleBefore and a handleAfter in the same �lter.

Examples

Changing the Request

It may b e useful to change user requests for testing purp oses. Sp eci�cally, we can a�ect content negotiation by

changing the accepted formats declared by the user.

For example, let's say we want to disable compression for all resources, even if clients declare that they are

capable of handling it:

f u n c t i o n h a n d l e B e f o r e (c o n v e r s a t i o n) {

c o n v e r s a t i o n . c l i e n t . a c c e p t e d E n c o d i n g s . c l e a r ()

r e t u r n ' c o n t i n u e '

}

Easy! Note that this would b e much harder to achieve retroactively, by changing the resp onse: we would have

to decompress all compressed resp onses. Some e�ects are much b etter implemented in handleBefore.

109

http://threecrickets.com/api/javascript/?namespace=conversation

Overriding the Resp onse

Filters can b e useful for overriding the resp onse under certain conditions.

The following example always sets the resp onse to a web page displaying �blo cked!�, unless a sp ecial �admin�

co okie (page 54) is used with a magic value. It can b e used to make sure that certain resources are unavailable for

users who are not administrators:

f u n c t i o n h a n d l e A f t e r (c o n v e r s a t i o n) {

i f (! i s A u t h o r i z e d (c o n v e r s a t i o n)) {

v a r c o n t e n t = ' < h t m l ><b o d y > ' + c o n v e r s a t i o n . r e f e r e n c e + ' i s b l o c k e d t o y o u ! < / b o d y ></h t m l > '

c o n v e r s a t i o n . s e t R e s p o n s e T e x t (c o n t e n t , ' t e x t / h t m l ' , ' e n ' , ' UTF � 8 ')

}

}

f u n c t i o n i s A u t h o r i z e d (c o n v e r s a t i o n) {

v a r c o o k i e = c o n v e r s a t i o n . g e t C o o k i e (' a d m i n ')

r e t u r n (n u l l !== c o o k i e) && (c o o k i e . v a l u e == ' m a g i c 1 2 3 ')

}

Another, simpler trick, would b e to redirect the resp onse:

f u n c t i o n h a n d l e A f t e r (c o n v e r s a t i o n) {

i f (! i s A u t h o r i z e d (c o n v e r s a t i o n)) {

c o n v e r s a t i o n . r e d i r e c t S e e O t h e r (c o n v e r s a t i o n . b a s e + ' / b l o c k e d / ')

}

}

Note on changing the resp onse: You might think that �lters could b e useful to a�ect the content

of resp onses, for example to ��lter out� data from HTML pages. Actually, Prudence �lters are not a

go o d way to do this, b ecause there's no guarantee that resp onse payloads returned from downstream

resources are textual, even if the content is text: they could very well b e compressed (gzip) and also

chunked. You would then need to deco de, disassemble, make your changes, and then reassemble such

resp onses, which is neither trivial nor e�cient. Content �ltering should b est b e handled at the level of

the resource co de itself, before the resp onse payload is created.

Side E�ects

Filters don't have to change anything ab out the request or the resp onse. They can b e useful for gathering statistics

or other debugging information.

In this example, we'll gather statistics ab out agent self-identi�cation: sp eci�cally web browser pro duct names

and op erating systems (via the conversation.client API):

d o c u m e n t . r e q u i r e (' / s i n c e r i t y / t e m p l a t e s / ')

i m p o r t C l a s s (

j a v a . u t i l . c o n c u r r e n t . C o n c u r r e n t H a s h M a p ,

j a v a . u t i l . c o n c u r r e n t . a t o m i c . A t o m i c I n t e g e r)

v a r l o g g e r = a p p l i c a t i o n . g e t S u b L o g g e r (' s t a t i s t i c s ')

f u n c t i o n h a n d l e B e f o r e (c o n v e r s a t i o n) {

v a r a g e n t = c o n v e r s a t i o n . c l i e n t . a g e n t N a m e

v a r o s = c o n v e r s a t i o n . c l i e n t . a g e n t A t t r i b u t e s . g e t (' o s D a t a ')

g e t C o u n t e r (' a g e n t ' , a g e n t) . i n c r e m e n t A n d G e t ()

g e t C o u n t e r (' o s ' , o s) . i n c r e m e n t A n d G e t ()

l o g g e r . i n f o (' A g e n t s t a t s : ' + a p p l i c a t i o n . g l o b a l s . g e t (' c o u n t e r s . a g e n t '))

l o g g e r . i n f o (' OS s t a t s : ' + a p p l i c a t i o n . g l o b a l s . g e t (' c o u n t e r s . o s '))

110

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.client

r e t u r n ' c o n t i n u e '

}

f u n c t i o n g e t C o u n t e r (s e c t i o n , n a m e) {

v a r c o u n t e r s = a p p l i c a t i o n . g e t G l o b a l (' c o u n t e r s . ' + s e c t i o n , n e w C o n c u r r e n t H a s h M a p ())

v a r c o u n t e r = c o u n t e r s . g e t (n a m e)

i f (n u l l === c o u n t e r) {

c o u n t e r = n e w A t o m i c I n t e g e r ()

v a r e x i s t i n g = c o u n t e r s . p u t I f A b s e n t (n a m e , c o u n t e r)

i f (n u l l !== e x i s t i n g) {

c o u n t e r = e x i s t i n g

}

}

r e t u r n c o u n t e r

}

Here we're storing statistics in memory and sending them to the log, but for your uses you might prefer to store

them in a database using atomic op erations.

Built-in Filters

Prudence comes with a few built-in �lters, each with its own route typ e (page 23) . Many of them are useful

sp eci�cally with static resources (page 46), and are discussed in that chapter. A few others are more generally

useful, and are discussed here.

Inversion of Control (IoC) via Injection

You already know that you can con�gure parts of your application via application.global presets (page 75). Globals,

of course, a�ect the entire application. However, you may sometimes need local con�gurations: the ability to a

sp eci�c instance of a resources di�erently from others. That's where the �injector� route typ e (page 23) comes in.

Note that b ecause IoC is most often used together with capturing and dispatching, there is a shortcut notation

to apply to the �capture� and �dispatch� route typ es (page 29). However, you can also use injection indep endently.

An example for routing.js:

a p p . r o u t e s = {

. . .

' / u s e r / { n a m e } / ' : {

t y p e : ' i n j e c t o r ' ,

l o c a l s : {

d e p l o y m e n t : ' p r o d u c t i o n '

} ,

n e x t : ' @ u s e r '

}

}

To access the injected value in your resource co de, simply use the conversation.lo cals API :

v a r d e p l o y m e n t = c o n v e r s a t i o n . l o c a l s . g e t (' d e p l o y m e n t ')

i f (d e p l o y m e n t == ' p r o d u c t i o n ') {

. . .

}

You can inject any kind of ob ject using an injector, though keep in mind that the native typ es of

JavaScript may not b e easily accessible in other programming languages. For example, if you're injecting

a dict or an array, it would not b e automatically converted to, say, a Python dict or vector. However,

primitive typ es such as strings and numb ers would b e OK for all supp orted languages.

111

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.locals

Templates Note that injectors sp ecially recognize Template instances and casts them b efore injecting. This

allows you to interp olate conversation attributes (page 113) into strings:

a p p . r o u t e s = {

. . .

' / u s e r / { n a m e } / ' : {

t y p e : ' i n j e c t o r ' ,

l o c a l s : {

p r o t o c o l : n e w o r g . r e s t l e t . r o u t i n g . T e m p l a t e (' { p } ') ,

d e p l o y m e n t : ' p r o d u c t i o n '

} ,

n e x t : ' @ u s e r '

}

}

(The ab ove example is not that useful: you can just as easily access the proto col using

conversation.request.proto col.name.)

HTTP Authentication

You can implement simple HTTP authentication using the �basicHttpAuthenticator� route typ e (page 24):

a p p . r o u t e s = {

. . .

' / � ' : {

t y p e : ' b a s i c H t t p A u t h e n t i c a t o r ' ,

r e a l m : ' A u t h o r i z e d u s e r s o n l y ! ' ,

c r e d e n t i a l s : {

m o d e r a t o r : ' m o d e r a t o r p a s s w o r d ' ,

a d m i n : ' a d m i n p a s s w o r d '

} ,

n e x t : [

' m a n u a l ' ,

' t e m p l a t e s '

]

}

}

Note that the implementation relies on basic authentication (BA) , which is unencrypted. It is thus strongly

recommended that you use it only with HTTPS (page 120).

Cross-Origin Resource Sharing (CORS)

You can add Cross-Origin Resource Sharing (CORS) headers using the �cors� route typ e (page 24):

a p p . r o u t e s = {

. . .

' / � ' : {

t y p e : ' c o r s ' ,

a l l o w O r i g i n : ' � ' ,

a l l o w M e t h o d s : [' GET' , ' POST '] ,

a l l o w H e a d e r s : [' C o n t e n t � T y p e ' , ' L a s t � M o d i f i e d ' , ' E x p i r e s '] ,

m a x A g e : ' f a r F u t u r e ' ,

n e x t : [

' m a n u a l ' ,

' t e m p l a t e s '

]

}

}

112

http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/api/index.html?org/restlet/routing/Template.html
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.request
http://en.wikipedia.org/wiki/Basic_access_authentication
http://www.w3.org/TR/cors/

Note that �magAge� is in seconds, and must b e greater than zero. You can sp ecify it as as either a numb er or

a string (page 71), or use �farFuture� as a shortcut for 10 years.

String Interp olation

Template variables, delimited by curly brackets, can b e used to interp olate strings for three use cases:

� Captured URI targets, via the �capture� route typ e (page 23)

� Redirection URI targets, via the �redirect� route typ e (page 23)

� Cache key templates (page 63)

Prudence supp orts many built-in interp olation variables, extracted from the conversation attributes and summarized

b elow. See also the related Restlet API do cumentation.

Note that for cache key templates, it's p ossible to create your own interp olation variables using plugins (page

64).

Request URIs

These variables are comp osed of a pre�x and a su�x. The pre�x sp eci�es which URI you are referring to, while

the su�x sp eci�es the part of that URI. For example, the pre�x � {r-}� can b e combined with the su�x � {-i}� for

� {ri}�, to sp ecify the complete request URI.

Pre�xes

� {r-}: actual URI (reference)

� {h-}: virtual host URI

� {o-}: the application's r oot URI on the current virtual host

� {f-}: the re ferring URI (sent by some clients: usually means that the client clicked a hyp erlink or was redirected

here from elsewhere)

Su�xes

� {-i}: the complete URI (identi�er)

� {-h}: the host identi�er (proto col + authority)

� {-a}: the authority (for URLs, this is the host or IP address)

� {-p}: the path (everything after the authority)

� {-w}: the wildcard (remaining part of the path after the base URI, not including the query)

� {-r}: the remaining part of the path after the base URI, including the query

� {-e}: a r elative path from the URI to the application's base URI (note that this is a constructed value, not

merely a string extracted from the URI)

� {-q}: the query (everything after the �?�)

� {-f}: the fragment (the tag after the �#�; note that web browsers handle fragments internally and never

send them to the server, however fragments may exist in URIs sent from the server: see the � {R-}� variable

mentioned b elow)

113

http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/api/index.html?org/restlet/util/Resolver.html

Base URIs

Every URI also has a �base� version of it: in the case of wildcard URI templates, it is the URI b efore the wildcard

b egins. Otherwise it is usually the application's ro ot URI on the virtual host. It is used in the � {-r}� and � {-e}�

su�xes ab ove.

To refer to the base URI directly, use the sp ecial � {-b-}� in�x, to which you would still need to add one of the

ab ove su�xes. For example, � {rbi}� refers to the complete base URI of the actual URI.

Relative URIs

For cache key templates only, you can also use the � {cb}� variable. It is equivalent to calling the

conversation.base API.

Interp olating the Wildcard

This is a common use case for redirection, so even though it's included in the do cumentation ab ove, it's worth

emphasizing. According to the rules, the � *� would b e the � {rw}� variable. For example:

a p p . r o u t e s = {

. . .

' / a s s e t s / � ' : ' / f i l e s / m e d i a / { r w } '

}

The ab ove would capture a URI such as �/assets/images/logo.png� to �/�les/media/images/logo.png�.

The wildcard can also b e accessed via API (page 52).

Request Attributes

� {p}: the proto col (�http,� �https,� �ftp,� etc.)

� {m}: the metho d (in HTTP, it would b e �GET,� �POST,� �PUT,� �DELETE,� etc.)

� {d}: date (in the RFC1123 format used by HTTP)

Client Attributes

� {cia}: cl ient IP address

� {ciua}: cl ient upstream IP address (if the request reached us through an upstream load balancer)

� {cig}: cl ient a gent name (for example, and identi�er for the browser)

Payload Attributes

All these refer to the payload (�entity�) sent by the client.

� {es}: entity size (in bytes)

� {emt}: entity media (MIME) typ e

� {ecs}: entity character set

� {el}: entity language

� {ee}: entity enco ding

� {et}: entity tag (HTTP ETag)

� {eed}: entity expiration date

� {emd}: entity mo di�cation date

114

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.base
http://www.ietf.org/rfc/rfc1123.txt

Negotiated Attributes

These are the result of content negotiation, and are used sp eci�cally for cache key templates.

� {nmt}: negotiated media (MIME) typ e

� {nl}: negotiated language

� {ne}: negotiated enco ding

Implementation Attributes

These are used sp eci�cally for cache key templates.

� {dn}: do cument name

� {an}: application name

Resp onse Attributes

These attributes are not normally used in Prudence�they are not used in routing nor in cache key templates�but

are mentioned here for completion. They are all in upp ercase to di�erentiate them from the request variables:

� {S}: the HTTP status co de

� {SIA}: server IP address

� {SIP}: server p ort numb er

� {SIG}: server agent name

� {R-}: the redirection URI (see �Request URIs� ab ove for a list of su�xes, which must also b e in upp ercase)

Additionally, all the entity attributes can b e used in upp ercase to corresp ond to the resp onse entity. For example,

� {ES}� for the resp onse entity size, � {EMT}� for the resp onse media typ e, etc.

conversation.lo cals

As we've seen in the app.routes guide (page 21), URI templates delimited by curly brackets can b e used to parse

incoming request URIs and extract the values into conversation.lo cals (page 83). For example, a �/p erson/{id}/�

URI template will match the �/p erson/linus/� URI and extract �linus� into the �id� conversation.lo cal.

But you can also do the opp osite: interp olate the values that were extracted from the matched URI template.

An example of redirection (page 55) that b oth extracts and interp olates:

a p p . r o u t e s = {

. . .

" / p e r s o n / { i d } / " : "> h t t p : / / n e w s i t e . o r g / p r o f i l e / ? i d ={ i d } "

}

The Internal URI-space

Who says that you need HTTP, or any kind of networking, for REST? The principles are themselves applicable

and suitable to in-memory communication, and represent an attractive architectural paradigm for APIs: attractive

esp ecially b ecause it can work both lo cally and over the wire. This useful feature gives you considerable deployment

�exibility: you can easily exp ort a whole API layer to another running instance in the cluster (page 137). For an

example of this, see the MVC chapter (page 136).

115

The RIAP Pseudo-Proto col

In Prudence, internal REST is straightforwardly supp orted by sp ecifying the �RIAP� pseudo-proto col in URIs.

RIAP stands for �Restlet Internal Access Proto col�. There are two common formats for RIAP URIs:

� �riap://application/*�: This will route to the current application.

� �riap://comp onent/{application}/*�: This will use the comp onent's internal router, to which applications

attach by default using their sub directory name, allowing you to send requests to any application. You

change the default name by con�guring the �internal� host in app.hosts (page 31).

In b oth cases the wildcard will exactly match the URI templates you've mapp ed in app.routes (page 21).

Internal Requests

You can use RIAP URIs everywhere a full URI is used in Prudence, for example, when using the

Prudence.Resources.request and do cument.external APIs. See the section on external requests (page 60) for exam-

ples.

However, the APIs can also implicitly create these RIAP URIs for you. For example:

d o c u m e n t . r e q u i r e (' / p r u d e n c e / r e s o u r c e s / ')

v a r w e a t h e r = P r u d e n c e . R e s o u r c e s . r e q u e s t ({

u r i : ' / w e a t h e r / ' ,

m e d i a T y p e : ' a p p l i c a t i o n / j s o n '

})

Prudence.Resources.request will automatically assume that URIs b eginning with �/� are internal, and thus set

the �internal� param to true. The URI used would in fact b e an RIAP URI: �riap://application/weather/�.

To access a di�erent application:

v a r w e a t h e r = P r u d e n c e . R e s o u r c e s . r e q u e s t ({

u r i : ' / w e a t h e r / ' ,

i n t e r n a l : ' w e a t h e r a p p '

m e d i a T y p e : ' a p p l i c a t i o n / j s o n '

})

The actual URI would b e �riap://comp onent/weatherapp/weather/�.

Low Level For non-JavaScript you can use the lower-level do cument.internal and do cument.internalOther APIs:

d o c u m e n t . r e q u i r e (' / s i n c e r i t y / j s o n ')

v a r r e s o u r c e = d o c u m e n t . i n t e r n a l (' / w e a t h e r / ' , ' a p p l i c a t i o n / j s o n ')

r e s u l t = r e s o u r c e . g e t ()

i f (n u l l !== r e s u l t) {

w e a t h e r = S i n c e r i t y . JSON . f r o m (r e s u l t . t e x t)

}

To access a di�erent application:

r e s o u r c e = d o c u m e n t . i n t e r n a l O t h e r (' w e a t h e r a p p ' , ' / w e a t h e r / ' , ' a p p l i c a t i o n / j s o n ')

Private URI-space

Internal requests bypass the hiding mechanism in routing.js (page 22). Thus, if you want some URIs to only b e

usable internally, simply hide them from the public URI-space.

Avoiding Serialization for Internal Requests

The web data chapter covers the creation of resp onse payloads (page 57). There is, however, a p ossible optimization

for internal requests. If your textual and binary representations are serialized versions of data structures, it would b e

unnecessary and wasteful to go through serialization/deserialization for an internal request. A simple optimization

would b e to pass the data �as is,� which is actually very similar to a return value for a mundane function call.

116

http://threecrickets.com/api/javascript/?namespace=Prudence.Resources&item=Prudence.Resources.request
http://threecrickets.com/api/javascript/?namespace=conversation&item=document.external
http://threecrickets.com/api/javascript/?namespace=conversation&item=document.internal
http://threecrickets.com/api/javascript/?namespace=conversation&item=document.internalOther

This works using the sp ecial �application/internal� MIME typ e. If selected�whether negotiated for or explicitly

overridden (page 59)�then return values are indeed sent �as is.� For example:

f u n c t i o n h a n d l e I n i t (c o n v e r s a t i o n) {

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' a p p l i c a t i o n / j s o n ')

i f (c o n v e r s a t i o n . i n t e r n a l) {

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' a p p l i c a t i o n / i n t e r n a l ')

}

}

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

v a r d a t a = . . .

r e t u r n c o n v e r s a t i o n . m e d i a T y p e N a m e == ' a p p l i c a t i o n / i n t e r n a l ' ?

d a t a : S i n c e r i t y . JSON . t o (d a t a)

}

Note that we've added supp ort for �application/internal� only to internal requests, veri�ed using the

conversation.internal API. The reason is that we don't want to allow �application/internal� representations over

HTTP. (Actually, that could work if the ob ject is itself JVM-serializable, but that's a more advanced use case we

won't deal with here.)

Con�guration

Your Prudence container's �/comp onent/� directory has various sub directories in which you can con�gure it.

Prudence uses �con�guration-by-script� almost everywhere: con�guration �les are true JavaScript source co de,

meaning that you can do pretty much anything you need during the b o otstrap pro cess, allowing for dynamic

con�gurations that adjust to their deployed environments.

Prudence, as of version 2.0, do es not supp ort live re-con�guration. You must restart Prudence in order

for changed settings to take hold. The one exception is the system crontab (page 108): changes there

are picked up on-the-�y once p er minute.

/con�guration/logging/

Used by the Sincerity logging plugin. Con�gure system-wide logging here, using Apache log4j.

/con�guration/sincerity/

Used by Sincerity to manage installation of packages in your Prudence container. You usually won't b e editing this

�les directly, instead using �sincerity� commands to manipulate it. However, take sp ecial note of artifacts.conf if

you are committing your container to a VCS.

/con�guration/hazelcast/

Con�gure Hazelcast here, if you are running in a cluster (page 137). Note that the con�guration is actually loaded

by the distributed service (page 125).

You have two options for con�guration:

� By script, at �/con�guration/hazelcast/�. This is the default metho d, and is recommended.

� By standard XML �le, at �/con�guration/hazelcast.conf �. This metho d is provided for compatibility, and it's

generally preferable to use the by-script con�guration. An example �le is provided for you at �/con�gura-

tion/hazelcast.alt.conf �. If you rename this �le to �hazelcast.conf �, then it will b e used instead of the by-script

con�guration.

For your convenience, the entire com.hazelcast.con�g package is already imp orted for con�guration-by-script. See

the Hazelcast con�guration guide for a general overview.

The default con�guration creates a single Hazelcast instance b elonging to an �application� cluster, and the default

con�guration of applications p oints them to use this instance, though each application gets its own Hazelcast map

117

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.internal
http://threecrickets.com/sincerity/ecosystem/feature-plugins/#logging-plugin
http://logging.apache.org/log4j/
http://threecrickets.com/sincerity/manual/tutorial/#components_container
http://threecrickets.com/sincerity/ecosystem/core-plugins/
http://threecrickets.com/sincerity/manual/tutorial/#working-with-a-vcs_strategy-2-commit-only-your-work
http://www.hazelcast.com/
http://www.hazelcast.com/docs/3.1/javadoc/index.html?com/hazelcast/config/package-summary.html
http://hazelcast.com/docs/latest/manual/multi_html/ch14.html

to handles it application.distributedGlobals API (page 83). However, you can con�gure applications to use any

Hazelcast instance, as well as change which shared ob jects to use, in their settings.js (page 74). This allows each

application to b elong to a di�erent Hazelcast cluster.

Likewise, if you are using Hazelcast as a cache backend (page 123), it will default to use the Hazelcast �applica-

tion� instance. However, you can set the cache backend to use its own Hazelcast instance in its constructor.

There are go o d reasons why you might want a more complex con�guration: for example, if you're doing task

farming (page 139), you might want the �task� no des to b e separate from the �application� no des. A commented-out

suggested con�guration for this is included�see the clusters chapter for a detailed explanation.

/comp onent/

The Prudence comp onent is b o otstrapp ed here. If you wish to understand exactly how it works, take a lo ok at

�/comp onent/default.js�.

sharedGlobals

In all the �/comp onent/� con�guration �les, you have access to a global �sharedGlobals� JavaScript dict. Values you

set here will b ecome application.sharedGlobals (page 82) once the comp onent is started. This dict works similarly

to app.globals in settings.js (page 75); it is likewise ��attened.�

For an example, here we set a database connection p o ol as a shared global, using a custom service (page 123)

de�ned in �/comp onent/services/database/default.js�:

s h a r e d G l o b a l s . d a t a b a s e = s h a r e d G l o b a l s . d a t a b a s e | | { }

s h a r e d G l o b a l s . d a t a b a s e . p o o l = c r e a t e P o o l ()

Initializers

In all the �/comp onent/� con�guration �les, you have access to a global �initializers� JavaScript array. Any function

you add to this array will b e executed after the comp onent is started, in the order in which they were added. Here's

a trivial usage example:

i n i t i a l i z e r s . p u s h (f u n c t i o n () {

p r i n t l n (' T h i s i s my t r i v i a l i n i t i a l i z e r ! ')

})

/comp onent/hosts/

Restlet has excellent virtual host supp ort. There is a many-to-many relationship routing b etween servers, hosts

and applications, allowing you considerable �exibility in binding your URI-spaces. For example, you can easily

have a single Prudence container (running in a single JVM instance) managing several sites at once, with several

applications, on several domains, on several servers.

De�ne your virtual hosts as �.js� �les under �/comp onent/hosts/�. A minimal host de�nition would like this:

v a r h o s t = n e w o r g . r e s t l e t . r o u t i n g . V i r t u a l H o s t (c o m p o n e n t . c o n t e x t)

h o s t . n a m e = ' p r i v a t e h o s t '

c o m p o n e n t . h o s t s . a d d (h o s t)

The �host.name� param exactly matches the string used in app.hosts (page 31) p er each application.

A virtual host can route according to domain name, and incoming server IP address and p ort assignment:

h o s t . r e s o u r c e S c h e m e = [s t r i n g]

h o s t . r e s o u r c e D o m a i n = [s t r i n g]

h o s t . r e s o u r c e P o r t = [s t r i n g]

h o s t . s e r v e r A d d r e s s = [s t r i n g]

h o s t . s e r v e r P o r t = [s t r i n g]

h o s t . h o s t S c h e m e = [s t r i n g]

h o s t . h o s t D o m a i n = [s t r i n g]

h o s t . h o s t P o r t = [s t r i n g]

An example of a virtual host for a sp eci�c domain name:

118

v a r h o s t = n e w o r g . r e s t l e t . r o u t i n g . V i r t u a l H o s t (c o m p o n e n t . c o n t e x t)

h o s t . n a m e = ' o t h e r '

h o s t . r e s o u r c e D o m a i n = ' o t h e r d o m a i n . o r g '

c o m p o n e n t . h o s t s . a d d (h o s t)

If you do this, you will likely want to set �resourceDomain� for the default host to a sp eci�c domain, to o.

Some notes:

� � *� wildcards are supp orted for all of these prop erties. If you do not explicitly set a prop erty value, it will

default to � *�.

� �resourceScheme�, �resourceDomain� and �resourcePort� refer to the actual incoming URI. Thus �resourcePort�

would b e meaningful only if URIs explicitly include a p ort numb er, a rather rare situation. To match a host

to a sp eci�c server you would likely want to use �serverPort�.

� �hostScheme�, �hostDomain� and �hostPort� are for matching the �Host� HTTP header used by load balancers

and other proxies (page 145).

The Hungry Host

The �default� host that comes with the Prudence skeleton do esn't con�gure any routing limitations, meaning that

al l incoming requests are routed (equivalent to setting all prop erties at � *�). We call such a host �hungry,� b ecause

it will �eat� any request coming its way, denying any other virtual hosts the opp ortunity to route them. Thus, if

you want to use more than one host, you have two options:

1. Don't use a hungry host: delete the �default.js� �le or comment out the �comp onent.hosts.add� call in it.

2. Make sure that the hungry host is the last one, so that it acts as a fallback when other hosts don't match

incoming requests. Because host �les are executed in alphab etical order, a go o d way to ensure that the hungry

host is last is to numb er your host �lenames. For example:

� �1-public.js�

� �2-private.js�

� �3-default.js� (this is the hungry host)

Deploying Multiple Sites

Using the virtual hosts and application mo del, Prudence can let you manage several sites using a single Prudence

installation (a �container�). But is this always a go o d idea?

Advantages of Using a Single Container

1. Possibly simpler deployment: you are using a single base directory for the entire pro ject, which might b e

easier for you. Because all con�guration is done by JavaScript inside the container, it is very �exible.

2. Less memory use than running multiple JVMs.

3. Shared memory: you can use application.sharedGlobals (page 82) to share state b etween applications.

Advantages of Using Multiple Containers

1. Possibly simpler deployment: several base directories can mean separate co de/distribution rep ositories, which

might b e easier for you. You'll con�gure routing b etween them at your load balancer (page 142).

2. Robustness: crashes/deadlo cks/memory leaks in one VM won't a�ect others. With this in mind, it may even

b e worth having each single application running in its own JVM/container.

3. Run-time �exibility: you can restart the JVM for one container without a�ecting others that are running.

There is no p erformance advantage in either scenario. Everything in Prudence is designed around high-concurrency

and threading, and generally threads are managed by the OS globally.

119

Well, there are caveats to that statement: Linux can group threads p er running pro cess for purp oses

of prioritization, but this is mostly used for desktop applications. The feature could p ossibly b e useful

when running several Prudence containers, if you want to guarantee high thread priority to one of the

containers over the others. This kind of tweaking would only e�ect very high concurrency and highly

CPU-b ound deployments.

/comp onent/servers/

De�ne your servers as �.js� �les under �/comp onent/servers/�. At the minimum, you must sp ecify a proto col and a

p ort. Here's an example de�nition for an HTTP server, �http.js�:

v a r s e r v e r = n e w S e r v e r (P r o t o c o l . HTTP , 8 0 8 0)

s e r v e r . n a m e = ' m y s e r v e r '

c o m p o n e n t . s e r v e r s . a d d (s e r v e r)

The server name is optional, and used for debugging.

An imp ortant con�guration is to bind a server to a sp eci�c IP address, in case your machine has more than one

IP address:

s e r v e r . a d d r e s s = [s t r i n g]

There are many con�guration parameters for Jetty, the HTTP engine, which you can set as parameters in the

server's context. Here we'll increase the size of the thread p o ol and lower the idle timeout:

s e r v e r . c o n t e x t . p a r a m e t e r s . s e t (' t h r e a d P o o l . m i n T h r e a d s ' , ' 5 0 ')

s e r v e r . c o n t e x t . p a r a m e t e r s . s e t (' t h r e a d P o o l . m a x T h r e a d s ' , ' 3 0 0 ')

s e r v e r . c o n t e x t . p a r a m e t e r s . s e t (' c o n n e c t o r . i d l e T i m e o u t ' , ' 1 0 0 0 0 ')

For a complete list of available con�guration parameters, see JettyHttpServerHelp er. Make sure to check the

documentation for al l the parent classes , b ecause they are inherited. Note that parameters are always set as strings,

even if they are interpreted as other typ es.

Load Balancing Are your servers running b ehind a load balancer? See the explanation here (page 146) as to

why you would want to add this:

s e r v e r . c o n t e x t . p a r a m e t e r s . s e t (' u s e F o r w a r d e d F o r H e a d e r ' , ' t r u e ')

Secure Servers (HTTPS)

If you are using a load balancer (page 142), it may make sense to handle secure connections there. But Prudence can

also handle secure (HTTPS) connections itself. Here's an example con�guration for �/comp onent/servers/https.js�:

v a r s e r v e r = n e w S e r v e r (P r o t o c o l . HTTPS , 8 0 8 2)

s e r v e r . n a m e = ' s e c u r e '

c o m p o n e n t . s e r v e r s . a d d (s e r v e r)

/ / C o n f i g u r e i t t o u s e o u r s e c u r i t y k e y s

s e r v e r . c o n t e x t . p a r a m e t e r s . s e t (' k e y s t o r e P a t h ' , ' / p a t h / p r u d e n c e . j k s ')

s e r v e r . c o n t e x t . p a r a m e t e r s . s e t (' k e y s t o r e P a s s w o r d ' , ' m y k e y s t o r e p a s s w o r d ')

/ / s e r v e r . c o n t e x t . p a r a m e t e r s . s e t (' k e y P a s s w o r d ' , ' m y k e y p a s s w o r d ')

See DefaultSslContextFactory for all security con�guration parameters.

Security Keys The ab ove con�guration assumes the you have a Java KeyStore (JKS) �le at �/path/prudence.jks�

containing your security key. You can create a key using the �keyto ol� utility that is bundled with most JDKs. For

example:

k e y t o o l � k e y s t o r e / p a t h / p r u d e n c e . j k s � a l i a s m y k e y � g e n k e y � k e y a l g RSA

When creating the keystore, you will b e asked provide a password for it, and you may optionally provide a

password for your key, to o, in which case you need to comment out the relevant line in the example ab ove. (The

key alias and key password would b e transferred together with the key if you move it to a di�erent keystore.)

120

http://threecrickets.com/api/java/restlet-jetty9/index.html?org/restlet/ext/jetty9/JettyHttpServerHelper.html
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/ext/index.html?org/restlet/ext/ssl/DefaultSslContextFactory.html
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html

Note that if you want to make client requests to a server that uses such a self-created key, you will need your

client to recognize that key. If this is done from the JVM, this means setting the �javax.net.ssl.trustStore� JVM

prop erty. For example, if you're using Prudence's request API (page 60), you will need to start Prudence like so:

JVM_SWITCHES= � D j a v a x . n e t . s s l . t r u s t S t o r e =/ p a t h / p r u d e n c e . j k s s i n c e r i t y s t a r t p r u d e n c e

Such self-created keys are useful for controlled intranet environments, in which you can provide clients with the

public key, but for Internet applications you will likely want a key created by one of the �certi�cate authorities�

trusted by most web browsers. Some of these certi�cate authorities may conveniently let you download a key in

JKS format. Otherwise, if they supp ort PKCS12 format, you can use keyto ol (only JVM version 6 and later) to

convert PKCS12 to JKS. For example:

k e y t o o l � i m p o r t k e y s t o r e � s r c s t o r e t y p e PKCS12 � s r c k e y s t o r e / p a t h / p r u d e n c e . p k c s 1 2 �
d e s t k e y s t o r e / p a t h / p r u d e n c e . j k s

If your certi�cate authority won't even let you download PKCS12 �le, you can create one from your �.key� and

�.crt� (or �.p em�) �les using Op enSSL:

o p e n s s l p k c s 1 2 � i n k e y / p a t h / m y k e y . k e y � i n / p a t h / m y k e y . c r t � e x p o r t � o u t / p a t h /

p r u d e n c e . p k c s 1 2

(Note that in this case you must give your new PKCS12 a non-empty password, or else keyto ol will fail with an

unhelpful error message.)

HTTP/2 Jetty adds full HTTP/2 supp ort to your secure servers, bringing an improved user exp erience and a

lighter load on the backend. See the Sincerity do cumentation for details on how to enable it.

API It's sometimes necessary to supp ort HTTPS sp ecially in your implementation. One useful strategy is to

create separate applications for HTTP and HTTPS, and then attach them to di�erent virtual hosts (page 118), one

for each proto col (the �resourceScheme� parameter). However, if the application b ehaves mostly the same for HTTP

and HTTPS, but di�ers only in a few sp eci�c resources, it may b e useful to check for HTTPS programmatically,

via the conversation.reference.schemeProto col API . For example:

i f (c o n v e r s a t i o n . r e f e r e n c e . s c h e m e == ' h t t p s ') {

. . .

}

Other Server Engines

Prudence, by default, uses Jetty 9.3 as its server engine. Jetty is mature, p erformant and eminently scalable, and

we highly recommend it for pro duction environments.

However, it's p ossible to replace Jetty with a di�erent engine should you require. To do this, you must remove the

Jetty Restlet 9 connector from your container, and install a di�erent connector instead, as well as its dep endencies.

To make sure Jetty 9 is excluded from the next installation, you can use the following Sincerity command:

s i n c e r i t y e x c l u d e o r g . r e s t l e t . j s e o r g . r e s t l e t . e x t . r e s t l e t . j e t t y 9 :

e x c l u d e o r g . e c l i p s e . j e t t y j e t t y � s e c u r i t y :

e x c l u d e o r g . e c l i p s e . j e t t y j e t t y � c l i e n t

As of Restlet 2.3, three alternatives are available:

Jetty 9.2 This is the recommended alternative to Jetty 9.3 if you cannot use JVM 8 or ab ove, and are limited to

JVM 7. To install it:

s i n c e r i t y a d d o r g . r e s t l e t . j s e o r g . r e s t l e t . e x t . j e t t y : i n s t a l l

The con�guration parameters are do cumented here.

Simple Simple Framework, which also works on JVM 6, is a lighter alternative to Jetty. Its do cumentation makes

some controversial claims ab out its improved scalability in comparison to Jetty, but we encourage you to verify

them for yourself. To install it:

s i n c e r i t y a d d o r g . r e s t l e t . j s e o r g . r e s t l e t . e x t . s i m p l e : i n s t a l l

The con�guration parameters are do cumented here.

121

http://www.openssl.org/
http://threecrickets.com/sincerity/ecosystem/skeletons/#jetty-web-extras
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.reference
http://www.eclipse.org/jetty/
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/ext/index.html?org/restlet/ext/jetty/HttpServerHelper.html
http://simpleweb.sourceforge.net/
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/ext/index.html?org/restlet/ext/simple/SimpleServerHelper.html

Restlet's Internal Server Engine Will b e used if no other connector is installed. While the internal engine

may b e adequate for testing, we found that it su�ers from stability issues, and do not recommend it for pro duction

environments.

/comp onent/clients/

Client connectors have two main use cases:

� External requests (page 60). Most often you will use �http:� and �https:� connectors, but you might also need

��le:�, �ftp:�, WebDAV extensions and/or others.

� Static resources (page 46) internally require a ��le:� client connector.

To add a client, add a �.js� �le to �/comp onent/clients/�. For example, here's a minimal con�guration for an HTTP

client, �http.js�:

i m p o r t C l a s s (o r g . r e s t l e t . d a t a . P r o t o c o l)

v a r c l i e n t = c o m p o n e n t . c l i e n t s . a d d (P r o t o c o l . HTTP)

Clients are con�gured by setting parameters in their context:

c l i e n t . c o n t e x t . p a r a m e t e r s . s e t (' s o c k e t T i m e o u t ' , ' 1 0 0 0 0 ')

For a complete list of available con�guration parameters, see HttpClientHelp er . Make sure to check the docu-

mentation for al l the parent classes , b ecause they are inherited. Note that parameters are always set as strings,

even if they are interpreted as other typ es.

(That link was for Jetty 9; use this link if you are using Apache HttpClient on JVM 6.)

Other Client Engines

Prudence, by default, uses Jetty 9 as its client engine. Jetty is mature, p erformant and eminently scalable, and we

highly recommend it for pro duction environments.

However, it's p ossible to replace Jetty with a di�erent engine should you require. To do this, you must remove the

Jetty Restlet 9 connector from your container, and install a di�erent connector instead, as well as its dep endencies.

To make sure Jetty 9 is excluded from the next installation, you can use the following Sincerity command:

s i n c e r i t y e x c l u d e o r g . r e s t l e t . j s e r e s t l e t � j e t t y 9 :

e x c l u d e o r g . e c l i p s e . j e t t y j e t t y � s e c u r i t y :

e x c l u d e o r g . e c l i p s e . j e t t y j e t t y � c l i e n t

As of Restlet 2.2, three alternatives are available:

Apache HttpClient Apache HttpClient is the recommended alternative to Jetty 9 if you cannot use JVM 7 or

ab ove, and are limited to JVM 6. To install it:

s i n c e r i t y a d d o r g . r e s t l e t . j s e r e s t l e t � h t t p c l i e n t : i n s t a l l

The con�guration parameters are do cumented here.

URLConnection This engine uses the java.net.URLConnection class included in the JVM. It do es not scale well,

however it do es the job, and even supp orts FTP connections. To install it:

s i n c e r i t y a d d o r g . r e s t l e t . j s e r e s t l e t � n e t : i n s t a l l

The con�guration parameters are do cumented here for HTTP, and here for FTP.

Restlet's Internal Client Engine Will b e used if no other connector is installed. While the internal engine

may b e adequate for testing, we found that it su�ers from stability issues, and do not recommend it for pro duction

environments.

122

http://threecrickets.com/api/java/restlet-jetty9/index.html?org/restlet/ext/jetty9/HttpClientHelper.html
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/ext/index.html?org/restlet/ext/httpclient/HttpClientHelper.html
http://www.eclipse.org/jetty/
http://hc.apache.org/httpcomponents-client-ga/
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/ext/index.html?org/restlet/ext/httpclient/HttpClientHelper.html
http://docs.oracle.com/javase/6/docs/api/index.html?java/net/URLConnection.html
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/ext/index.html?org/restlet/ext/net/HttpClientHelper.html
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/ext/index.html?org/restlet/ext/net/FtpClientHelper.html

/comp onent/services/

Services are run after the comp onent is con�gured but before it is started. Several services are required to supp ort

various Prudence features, but you may freely add your own sub directories here, to supp ort your own features and

subsystems.

Rememb er that your custom services have access to �sharedGlobals� (page 118) and �initializers� (page 118).

/comp onent/services/log

Prudence supp orts NCSA -style logging of all incoming client requests, to all servers. By default, we just con�gure

the logger name here (the default is �web�):

c o m p o n e n t . l o g S e r v i c e . l o g g e r N a m e = ' w e b '

You may also further con�gure the log format using the string interp olation variables (page 113):

c o m p o n e n t . l o g S e r v i c e . r e s p o n s e L o g F o r m a t = ' { d } \ t { c i a } \ t { r i } \ t { S } '

See the Restlet do cumentation for more information.

To learn how con�gure this logger and connect it to an app ender, refer to the do cumentation for Sincerity's

logging plugin. By default, Prudence will use a rolling �le app ender to �/logs/web.log�.

/comp onent/services/prudence/status

Here you may con�gure system-wide custom error pages. Though applications may de�ne their own custom error

pages using app.errors (page 30), you can set them up here, to o. Note that app.errors takes precedence over

de�nitions here: you may thus treat this feature as a fallback option for when applications do not handle errors

themselves.

An example de�nition:

s t a t u s S e r v i c e . c a p t u r e (4 0 4 , ' myapp ' , ' / 4 0 4 / ' , c o m p o n e n t . c o n t e x t)

The capture API uses an application's internal name (page 31), allowing you to implement the error page in

any installed application. Note that this API do es not let you capture-and-hide the target URI, e.g. �/404/!�. If

you wish to hide it, you must do so in the application's app.routes.

/comp onent/services/prudence/caching

Con�gure the caching (page 61) backends here.

In �/services/prudence/caching/default.js�, a ChainCache instance is set up as the main cache implementation.

This allows you to create a tiered cache. Each tier should b e added in order: the �rst tier added to the chain is the

�rst one from which Prudence will fetch, so it usually should b e the fastest backend. When storing entries in the

cache, al l tiers will b e invoked.

Con�gure your tiered backends under �/services/prudence/caching/backends/�, making sure that their �lenames

are in alphab etical order. By default, Prudence calls these �backend.1.js�, �backend.2.js�, etc., though you may your

use your own alphab etic scheme.

In-Pro cess Memory Cache By default, Prudence sets up an InPro cessMemoryCache as the �rst tier. Its

default max size is 1MB, however it's recommended to increase this size according to your machine's available

RAM. Note that if you're limiting the JVM's RAM usage in some way (for example, if you're using the Sincerity

service plugin), then you want to make sure that the JVM has enough ro om for your cache as well as its normal

op erational requirements.

Though the in-pro cess memory cache o�ers the b est p ossible p erformance, it's of course limited in size. For very

large web sites, it might b e to o small to b e e�ective: if cache entries keep b eing discarded to make ro om for others,

it will not b e helping you much as a 1st tier backend. Make sure to monitor your usage carefully to see how often

cache entries are discarded. Otherwise, go o d alternatives for the 1st tier would b e Hazelcast or memcached.

123

http://en.wikipedia.org/wiki/Common_Log_Format
http://restlet.org/learn/javadocs/snapshot/jse/api/index.html?org/restlet/service/LogService.html
http://threecrickets.com/sincerity/ecosystem/feature-plugins/#logging-plugin
http://threecrickets.com/api/java/prudence/com/threecrickets/prudence/DelegatedStatusService.html#capture(int,%20java.lang.String,%20java.lang.String,%20org.restlet.Context)
http://threecrickets.com/api/java/prudence/index.html?com/threecrickets/prudence/cache/ChainCache.html
http://threecrickets.com/api/java/prudence/index.html?com/threecrickets/prudence/cache/InProcessMemoryCache.html
http://threecrickets.com/sincerity/ecosystem/feature-plugins/#service-plugin

Other Cache Backends The following cache backends are all supp orted in Prudence:

� Hazelcast: If you're already running in a cluster (page 137), enabling a Hazelcast-based cache backend is a

great idea, b ecause you've already deployed it. This cache backend is in essence similar to the in-pro cess

memory cache, except that you will b e p o oling together the RAM from all running JVMs in the cluster. Note

that it's p ossible to add lazy p ersistence plugins to Hazelcast, to make sure your data is stored on disk. Note

that it do esn't make much sense to use the in-pro cess memory cache together with Hazelcast: cho ose one or

the other. See the API do cumentation.

� memcached: For very large web sites, even your p o oled RAM in the cluster may not b e enough. In that case,

you may consider creating a separate memcached-based cluster, entirely devoted to caching. An advantage of

memached is that it's very standard and widely supp orted, so you may also b e able to use your cache cluster for

other systems. Note that though memcached is not p ersistent by design, there exist compatible alternatives,

such as Taranto ol, that allow lazy p ersistence of your cached data to disk. See the API do cumentation.

� MongoDB: If you're using MongoDB to store your data, it makes p erfect sense to also use it as a cache, as it

p erforms very well and provides you with instant p ersistence, as well as supp ort for truly enormous caches.

You can also use a capp ed collection for even b etter p erformance, at the exp ense of limiting your cache size.

Also, Prudence can store its cache entries as structured MongoDB do cuments, making it very easy to debug

or otherwise collect statistics directly from the cache collection. See the API do cumentation.

� SQL: This is a great choice if you're using a relational (SQL) database to store your data. Advo cates of

�NoSQL� like to claim that relational databases are �slow,� but that's nonsense: Prudence do esn't use trans-

actions for its implementation, and p erformance should b e excellent, no worse than �NoSQL,� esp ecially with

some careful tuning. It's de�nitely �ne as a 2nd-tier cache. Practically any database can b e supp orted via

JDBC, though we also have a sp ecial implementation for the H2 database, making it easy to test lo cally,

b ecause H2 can run inside Prudence's JVM. See the API do cumentation (also for H2).

Easy Installation We've made it easy to install the dep endencies for all the supp orted cache backends via

Sincerity packages and shortcuts. The packages will also install an example con�guration, as a 2nd-level tier (after

the default in-pro cess memory cache), in the �le �/services/prudence/caching/backends/backend.2.js�. Here's a

table of the shortcuts, as well as the full package identi�ers:

Backend Shortcut Identi�er

Hazelcast prudence.cache.hazelcast com.threecrickets.prudence prudence-cache-hazelcast

memached prudence.cache.memached com.threecrickets.prudence prudence-cache-memcached

MongoDB prudence.cache.mongo db com.threecrickets.prudence prudence-cache-mongo db

H2 prudence.cache.h2 com.threecrickets.prudence prudence-cache-h2

For example, to install the H2 cache backend in the second tier:

s i n c e r i t y a d d p r u d e n c e . c a c h e . h 2 : i n s t a l l

The default con�guration will put the H2 �les under �/cache/prudence/cache/�.

/comp onent/services/prudence/startup

This service provides you with access to a global �startupTasks� JavaScript array. Any ob ject implementing Callable

or Runnable that you add to this array will b e executed after the comp onent con�gured but before is started in a

multi-threaded task p o ol. You can con�gure the thread p o ol here.

This feature is used by the defrost/preheat feature (page 33).

/comp onent/services/prudence/executor

This service con�gures the thread p o ol used for background task execution (page 102). You may change the size

of the thread p o ol here, or otherwise install sp ecialized implementations. By default Prudence uses (numb er of

CPU cores * 2 + 1) for the p o ol size, a formula which o�ers go o d p erformance under high loads for common

network-b ound scenarios, though you may want to decrease this size for heavy CPU-b ound workloads.

See the Executors API for a few other built-in options. Note, however, that your implementation must supp ort

the ScheduledExecutorService interface if you wish to supp ort task scheduling.

The executor can b e accessed via the application.executor API .

124

http://www.hazelcast.com/
http://www.hazelcast.com/docs/3.1/manual/multi_html/ch02.html#MapPersistence
http://threecrickets.com/api/java/prudence/index.html?com/threecrickets/prudence/cache/HazelcastCache.html
http://memcached.org/
http://tarantool.org/
http://threecrickets.com/api/java/prudence/index.html?com/threecrickets/prudence/cache/MemcachedCache.html
http://www.mongodb.org/
http://docs.mongodb.org/manual/core/capped-collections/
http://threecrickets.com/api/java/prudence/index.html?com/threecrickets/prudence/cache/MongoDbCache.html
http://www.oracle.com/technetwork/java/javase/jdbc/
http://www.h2database.com/
http://threecrickets.com/api/java/prudence/index.html?com/threecrickets/prudence/cache/SqlCache.html
http://threecrickets.com/api/java/prudence/index.html?com/threecrickets/prudence/cache/H2Cache.html
http://docs.oracle.com/javase/6/docs/api/index.html?java/util/concurrent/Callable.html
http://docs.oracle.com/javase/6/docs/api/index.html?java/lang/Runnable.html
http://docs.oracle.com/javase/6/docs/api/index.html?java/util/concurrent/Executors.html
http://threecrickets.com/api/javascript/?namespace=application&item=application.executor

/comp onent/services/prudence/scheduler

The scheduler is used to handle the crontab feature (page 106). By default, Prudence here sets up a scheduler for

the comp onent, accessible via the application.scheduler API , and also installs the system-wide crontab (page 108).

You may edit this �le to add other sp ecialized crontabs, or otherwise set up scheduled tasks.

See the cron4j Scheduler do cumentation for more options.

/comp onent/services/prudence/distributed

This service's job is to load the Hazelcast con�guration (page 117).

/comp onent/services/prudence/singleton

Prudence assumes a single Restlet Comp onent instance. If for some reason you have a more complex setup, you

can con�gure Prudence's initialization here.

/comp onent/services/prudence/version

Provides access to Prudence, Restlet and Jetty versions, and prints out the welcoming message. There's not much

to con�gure here, but feel free to examine the co de!

/comp onent/templates/

The �prudence create� Sincerity command copies and adapts the application template under �/comp onent/tem-

plates/default/�. You can create your own templates in that directory, and use their name as a second argument

to the �prudence create� command, e.g.: �sincerity prudence create cms mytemplate�. Likely, you'd want to copy

the default template and mo dify it.

The mechanism interp olates the � ${APPLICATION}� string in any of these �les to b e the application name

argument you supplied as the �rst argument to �prudence create�.

Mo del-View-Controller (MVC)

The source co de for the examples in this chapter is available for download.

Background

The mo del-view-controller (MVC) family of architectural patterns has had great in�uence over user-interface pro-

gramming and even design. At its core is the idea that the �mo del� (the data) and the �view� (the user interface)

should b e decoupled and isolated. This essentially go o d idea allows each layer to b e optimized and tested on its

own. It also allows the secondary b ene�t of easier refactoring in the future, in case one of the layers needs to b e

replaced with a di�erent technology, a not uncommon requirement.

Forms, Forms, Forms The problem is that you need an intermediary: a middle layer. For this reason, �classic�

MVC, based around a thick controller layer, isn't as p opular as it used to b e: the controller do es as much as

possible in order to automate the development of user interfaces for very large applications that require constant

maintenance and tweaking. This kind of MVC thus handles form validation, binding of form �elds to database

columns, and even form �ows.

Forms, forms, as far as the eye can see. MVC was, and still is, the domain of �enterprise� user interfaces. It's

telling that the manipulation of the data mo del is called �business logic�: the use case for MVC is big business

for big businesses. At its b est, MVC makes hundreds of forms easier to maintain in the long run. At its worst,

programmers drown in an o cean of controller con�guration �les, �ghting against opaque layers of APIs that can

only do what they were programmed to do, but not necessarily what is needed for a sensible UI.

Outside of the big business world, UI implementations use more �exible derivatives of MVC, such as

Mo del-View-Presenter (MVP) . The �presenter� is not an opaque layer, but rather is implemented directly by the

programmer in co de, often by inheriting classes that provide the basic functionality while allowing for customiza-

tion. Dep ending on the variation you're using, the �business logic� might even b e in the presenter rather than the

mo del. Still, implementing MVP, like MVC, often comes from the same anxiety ab out mixing mo del and view.

125

http://threecrickets.com/api/javascript/?namespace=application&item=application.scheduler
http://www.sauronsoftware.it/projects/cron4j/api/index.html?it/sauronsoftware/cron4j/Scheduler.html
http://threecrickets.com/prudence/download/distribution/2.0-beta11/manual-examples/
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93presenter

MVC and the Web These two do not seem an obvious match. The web is RESTful, such that the user interface

(the �view�) is no di�erent from data (the �mo del�): b oth are RESTful resources, implemented similarly. In other

words, in REST the model is the view .

Well, that's only really and entirely true for the �classic� web. Using JavaScript and other in-browser plugins,

we get a �rich� web that acts no di�erently from desktop applications. The backend remains RESTful, essentially

the �mo del,� with controllers/presenters as well as views implemented entirely client-side. You can do full-blown,

conventional MVC with the �rich� web.

MVC, however, has found inroads into the classic web: there exist many frameworks that treat web pages as

a pure �view,� an approach they go so far as to enforce by allowing you to emb ed only limited templating co de

into your HTML. Some of these frameworks even allow you to con�gure the form �ow, which they then use to

generate an opaque URI-space for you, and can even sab otage the browser �back� button to enforce that �ow.

(MVC automation at its �nest! Or worst. . .)

The imp etus for these brutally extreme measures is similar to the one with which we started: a desire to decouple

the user interface from everything else. HTML is the realm of web designers, not programmers, and mixing the work

of b oth professions into a single �le presents pro ject management challenges. However, there's a pro ductive distance

b etween cleaning up HTML pages and full-blown MVC, which unfortunately not enough frameworks explore. And

actually, not everything called �MVC� really is MVC.

So what are we left with in Prudence? As you'll see, Prudence supp orts a straightforward MVP architecture

while still adhering to RESTful principles. Read on, and consider if it would b ene�t your pro ject to use it. You do

not have to. Our recommendation is to use what works b est for you and your development team.

Tutorial

Mo dels

You should implement this layer as is appropriate to the database technology and schema you are using. Ob ject-

oriented architecture are common, but of course not necessary. The mo del layer as a whole should live in your

�/libraries/� sub directory. For this example, let's put it under �/libraries/mo dels/�.

Do you want the �business logic� to live in the mo del layer? If so, your classes should b e of a somewhat higher

level of abstraction ab ove the actual data structure. If you prefer the mo dels to more directly represent the data,

then you have the option of putting the �business logic� in your presenters instead.

For our example, let's implement a simple in-memory mo del, as �/libraries/mo dels/user.js�:

v a r M o d e l s = M o d e l s | | { }

/ � �
� R e t r i e v e a p e r s o n m o d e l f r o m t h e d a t a b a s e .

� /

M o d e l s . g e t P e r s o n = f u n c t i o n (n a m e) {

v a r p e r s o n = n e w M o d e l s . P e r s o n ()

p e r s o n . s e t U s e r n a m e (n a m e)

r e t u r n p e r s o n

}

M o d e l s . P e r s o n = f u n c t i o n () {

t h i s . g e t U s e r n a m e = f u n c t i o n () {

r e t u r n t h i s . u s e r n a m e

}

t h i s . s e t U s e r n a m e = f u n c t i o n (u s e r n a m e) {

t h i s . u s e r n a m e = u s e r n a m e

}

t h i s . g e t C o m m e n t s = f u n c t i o n () {

r e t u r n t h i s . c o m m e n t s

}

t h i s . c o m m e n t s = n e w M o d e l s . M e s s a g e s ()

126

}

M o d e l s . M e s s a g e s = f u n c t i o n () {

t h i s . g e t = f u n c t i o n () {

r e t u r n t h i s . m e s s a g e s

}

t h i s . a d d = f u n c t i o n (m e s s a g e) {

t h i s . m e s s a g e s . a p p e n d (m e s s a g e)

}

t h i s . m e s s a g e s = [' T h i s i s a t e s t . ' , ' T h i s i s a l s o a t e s t . ']

}

Views

In Prudence, these are hidden template resources (page 39). For this example, let's put them under �/libraries/in-

cludes/views/�.

If you prefer to use templating languages for your views, Velo city and Succinct are supp orted (page 43). Your

designers may also �nd it useful to use the supp orted HTML markup languages (page 43). Even if you prefer

templating, you can still �drop down� to dynamic languages, such as JavaScript (server-side), when useful: Prudence

allows you to easily mix and match scriplets in di�erent languages. If you do so, take sp ecial note of the nifty

in-�ow tag.

There are some who shudder at the thought of mixing dynamic languages and HTML. This likely comes

from bad exp erience with p o orly-designed PHP/JSP/ASP applications, where everything gets mixed

together into the �view� �le. If you're afraid of losing control, then you can simply make yourself a

rule that only templating languages are allowed in template resources. It's purely a matter of pro ject

management discipline. We recommend, however, relaxing some of that extremism: for example, you

can make the rule that no �business logic� should app ear together with HTML, while still allowing some

�exibility for using server-side JavaScript, but only for UI-related work. Still unconvinced? We'll show

you b elow how to use your favorite pure templating engine with Prudence (page 129) .

The required data will b e injected into the view by the presenter as an �ob ject� POST payload, available via the

conversation.entity API . We'll detail b elow how that happ ens. For now, here's our example view, �/libraries/in-

cludes/views/user/comments.html�:

<h t m l >

<%

v a r c o n t e x t = c o n v e r s a t i o n . e n t i t y . o b j e c t

v a r p e r s o n = c o n t e x t . p e r s o n

v a r c o m m e n t s = p e r s o n . g e t C o m m e n t s () . g e t ()

%>

<b o d y>

<p>T h e s e a r e t h e c o m m e n t s f o r u s e r : <%= p e r s o n . g e t U s e r n a m e () %></p>

< t a b l e >

<% f o r (v a r c i n c o m m e n t s) { %>

< t r ><t d><%= c o m m e n t s [c] %></t d ></ t r >

<% } %>

</ t a b l e >

<p>You may a d d a c o m m e n t h e r e : < / p>

<f o r m >

< i n p u t n a m e="c o m m e n t " />

< i n p u t t y p e =" s u b m i t " />

</ f o r m >

</ b o d y>

</ h t m l >

127

http://threecrickets.com/scripturian/manual/faq/#in-flow
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.entity

Presenters

In Prudence, these are the resources that are actually exp osed in the URI-space, while the views remain hidden.

The presenter retrieves the appropriate view and presents it to the user.

You can use either manual or template resources as your presenters. However, manual resources (page 36) o�er

a bit more �exibility, so we will cho ose them for our example. Our example presenter is in �/resources/user/com-

ments.m.js�:

d o c u m e n t . r e q u i r e (

' / m o d e l s / u s e r / ' ,

' / p r u d e n c e / r e s o u r c e s / ' ,

' / s i n c e r i t y / o b j e c t s / ')

f u n c t i o n h a n d l e I n i t (c o n v e r s a t i o n) {

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' t e x t / h t m l ')

}

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

v a r n a m e = c o n v e r s a t i o n . l o c a l s . g e t (' n a m e ')

v a r p e r s o n = M o d e l s . g e t P e r s o n (n a m e)

r e t u r n g e t V i e w (' u s e r / c o m m e n t s ' , { p e r s o n : p e r s o n })

}

f u n c t i o n h a n d l e P o s t (c o n v e r s a t i o n) {

v a r n a m e = c o n v e r s a t i o n . l o c a l s . g e t (' n a m e ')

v a r c o m m e n t = c o n v e r s a t i o n . f o r m . g e t (' c o m m e n t ')

v a r p e r s o n = M o d e l s . g e t P e r s o n (n a m e)

p e r s o n . g e t C o m m e n t s () . a d d (c o m m e n t)

r e t u r n g e t V i e w (' u s e r / c o m m e n t s ' , { p e r s o n : p e r s o n })

}

f u n c t i o n g e t V i e w (v i e w , c o n t e x t) {

v a r p a g e = P r u d e n c e . R e s o u r c e s . r e q u e s t ({

u r i : ' / v i e w s / ' + v i e w + ' / ' ,

i n t e r n a l : t r u e ,

m e t h o d : ' p o s t ' ,

m e d i a T y p e : ' t e x t / � ' ,

p a y l o a d : {

t y p e : ' o b j e c t ' ,

v a l u e : c o n t e x t

}

})

r e t u r n S i n c e r i t y . O b j e c t s . e x i s t s (p a g e) ? p a g e : 4 0 4

}

To keep the example succinct, we're only making use of a single view in this presenter, though it should b e clear

that you can use any appropriate logic here to retrieve any view using getView.

getView is where the MVC �magic� happ ens, but as you can see it's really nothing more than an internal request.

We're sp eci�cally using two sp ecial features of internal requests:

� We can request URIs that are hidden: in this case, anything under �/libraries/includes/�.

� We can transfer �POST� payloads directly using the �ob ject� typ e: see (page 116).

We'll remind you also that internal requests are fast . They emphatically do not use HTTP, and �ob ject�-typ e

payloads are not serialized.

Here's our routing.js entry for the presenter:

a p p . r o u t e s = {

. . .

128

' / u s e r / { n a m e } / c o m m e n t s / ' : ' / u s e r / c o m m e n t s / ! '

}

Note the use of capture-and-hide (page 26).

Voila. Test your new MVC application by p ointing your web browser to �/user/Linus/comments/� under your

application's base URL.

Implications for Caching

You have two options for implementing caching (page 61):

� You can cache the presenter, by simply adding a caching.duration (page 62) directive in handleInit. However,

this would mean that all views would b e cached using the same parameters, which may not b e �exible enough.

� You can cache the views. Your presenter logic will always b e called for every request, but the views may b e

fetched from the cache. This will allow every view to use its own caching parameters. However, you should

take care to rememb er that the request hitting the template resource is the internal one, not the external

one, which actually hits the presenter. If there are attributes of the external request that you want to use for

the cache key template, then you must transfer them manually.

View Templates

One size do es not �t all. Almost every web framework comes with its own solution to templating, with its own

idiosyncratic syntax and set of features, manifesting its own templating philosophy. As you've probably picked

up, Prudence's philosophy is that the programmer knows b est: scriptlets should b e able do anything , and the

programmer do esn't need to b e �protected� from bad decisions via a dumb ed-down, sandb oxed templating domain

language.

There are two common counter-arguments, which we don't think are very convincing.

The �rst is that the p eople designing the templates might not, in fact, know b est: they might not b e pro�cient

programmers, but instead web designers who sp ecialize in HTML/CSS co ding and testing. They would b e able to

deal with a few inserted template co des, but not a full-blown programming language. The �real� programmers would

b e writing the controllers/presenters, and injecting values into the templates according to the web designers' needs.

This argument carries less validity than it used to: pro�cient web designers these days need to know JavaScript,

and if they can handle client-side JavaScript, they should b e able to handle server-side JavaScript, to o. Will they

need to learn some new things? Yes, but learning a new templating language is no trivial task, either.

The second counter-argument is ab out discipline: even comp etent programmers might b e tempted to make

�shortcuts,� and insert �business logic� into what should b e purely a �view.� This would short-circuit the MVC

separation and create hard-to-manage �spaghetti� co de. A restricted templating language could, then, enforce this

discipline. This seems like a brutal solution: programmers get annoyed if their own platforms don't trust them,

and in any case can circumvent these restrictions by writing plugins that would then do what they need. But the

real issue is that discipline should b e handled as a so cial issue of pro ject management, not by to ols.

In any case, we won't force our philosophy on you: Prudence has built in supp ort for two templating engines

(page 43), and it's easy to plug in a wide range of alternative templating engines into Prudence. If you're familiar

and comfortable with a particular one, use it. We'll guide you in this section.

There are many templating engines you can use. The b est p erforming and most minimal solutions are pure

JVM libraries: StringTemplate, Thymeleaf, Snipp etory and Chunk. However, p opular ones use other languages,

for example Jinja2 for Python. Below are examples p er b oth typ es.

The technique we'll show for using b oth typ es is the same: writing a custom dispatcher (page 33), so make sure

you understand dispatching b efore you continue to read.

StringTemplate Example

For this example, we chose StringTemplate: it's very minimal, and stringently esp ouses a philosophy entirely

opp osite to Prudence's: pro of that Prudence is not forcing you into a paradigm! We'll of course use the Java/JVM

p ort, though note that StringTemplate is also p orted to other languages.

It's available on Maven Central, so you can install it in your container using Sincerity:

s i n c e r i t y a t t a c h m a v e n � c e n t r a l : a d d o r g . a n t l r ST4 : i n s t a l l

129

http://www.stringtemplate.org/
http://www.thymeleaf.org/
http://www.jproggy.org/snippetory/
http://www.x5software.com/chunk/
http://jinja.pocoo.org/docs/
http://www.stringtemplate.org/

Otherwise, you can also download the binary Jar from the StringTemplate site and place it in your container's

�/libraries/jars/� directory.

Here's our application's �/libraries/dispatchers/st.js�:

d o c u m e n t . r e q u i r e (' / s i n c e r i t y / o b j e c t s / ')

f u n c t i o n h a n d l e I n i t (c o n v e r s a t i o n) {

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' t e x t / h t m l ')

}

f u n c t i o n h a n d l e P o s t (c o n v e r s a t i o n) {

i f (! c o n v e r s a t i o n . i n t e r n a l) {

r e t u r n 4 0 4

}

v a r i d = S t r i n g (c o n v e r s a t i o n . l o c a l s . g e t (' com . t h r e e c r i c k e t s . p r u d e n c e . d i s p a t c h e r . i d '))

i f (i d . e n d s W i t h (' / ')) {

i d = i d . s u b s t r i n g (0 , i d . l e n g t h � 1)

}

v a r s t = g e t D i r () . g e t I n s t a n c e O f (i d)

i f (! S i n c e r i t y . O b j e c t s . e x i s t s (s t)) {

r e t u r n 4 0 4

}

i f (S i n c e r i t y . O b j e c t s . e x i s t s (c o n v e r s a t i o n . e n t i t y)) {

v a r c o n t e x t = c o n v e r s a t i o n . e n t i t y . o b j e c t

i f (S i n c e r i t y . O b j e c t s . e x i s t s (c o n v e r s a t i o n . c o n t e x t)) {

f o r (v a r k e y i n c o n t e x t) {

v a r v a l u e = c o n t e x t [k e y]

i f (S i n c e r i t y . O b j e c t s . i s A r r a y (v a l u e)) {

f o r (v a r v i n v a l u e) {

s t . a d d (k e y , v a l u e [v])

}

}

e l s e {

s t . a d d (k e y , v a l u e)

}

}

}

}

r e t u r n s t . r e n d e r ()

}

f u n c t i o n g e t D i r () {

v a r d i r = n e w o r g . s t r i n g t e m p l a t e . v 4 . S T R a w G r o u p D i r (a p p l i c a t i o n . r o o t + ' / l i b r a r i e s / v i e w s / ')

d i r . d e l i m i t e r S t a r t C h a r = ' $ '

d i r . d e l i m i t e r S t o p C h a r = ' $ '

r e t u r n d i r

}

The StringTemplate API is very straightforward and this co de should b e easy to follow. Notes:

� We've allowed only internal requests through: we want to hide this dispatcher from the public URI space

b ecause it should only accessed by our presenters.

� We're stripping trailing slashes from the ID b ecause STRawGroupDir do esn't supp ort them.

� We've switched to the older � $� delimiters b ecause the default �<� and �>� delimiters are awkward to use

with HTML.

� STRawGroupDir do es not pick up template �le changes on-the-�y, so we're recreating it p er request. Because

130

it caches compiled templates, it would b e more e�cient to make it a global, but they you would have to �nd

an alternative way for invalidating it for live application edits.

Now for our routing.js:

a p p . r o u t e s = {

. . .

' / v i e w s / � ' : ' @ s t : { r w } '

}

a p p . d i s p a t c h e r s = {

. . .

s t : {

d i s p a t c h e r : ' / d i s p a t c h e r s / s t / '

}

}

See how we've interp olated the wildcard (page 114) into � {rw}�: this means that a URI such as �/views/hello/�

would translate to the ID �hello�.

Let's create our template, �/libraries/views/user/comments.st�:

<h t m l >

<b o d y>

<p>T h e s e a r e t h e c o m m e n t s f o r u s e r : $ u s e r n a m e $ </p>

< t a b l e >

$ c o m m e n t s : { c | < t r ><t d >$ c $ </ t d ></ t r >} $

</ t a b l e >

</ b o d y>

</ h t m l >

Note the use of an anonymous template (a lamb da). As an alternative, we can also use named templates,

which we can to group into reusable libraries. This is easy to do with group �les. With that, here's an alternative

de�nition of the ab ove, saved as �/libraries/views/user.stg�:

c o m m e n t s (u s e r n a m e , c o m m e n t s) : : = <<

<h t m l >

<b o d y>

<p>T h e s e a r e t h e c o m m e n t s f o r u s e r : $ u s e r n a m e $ </p>

< t a b l e >

$ c o m m e n t s : r o w () $

</ t a b l e >

</ b o d y>

</ h t m l >

>>

r o w (c o n t e n t) : : = <<

< t r ><t d >$ c o n t e n t $ </ t d ></ t r >

>>

Note that STRawGroupDir treats these �.stg� �les as if they were a directory with multiple �les when you lo ok

up an ID, so the URI to access �comments� would b e the same in b oth cases: �/views/users/comments/�.

Finally, our presenters would work the same as in the MVC tutorial (page 128). The only change would b e to

�atten out the contexts for StringTemplate to use:

v a r p e r s o n = M o d e l s . g e t P e r s o n (n a m e)

. . .

r e t u r n g e t V i e w (' u s e r / c o m m e n t s ' , {

u s e r n a m e : p e r s o n . g e t U s e r n a m e () ,

c o m m e n t s : p e r s o n . g e t C o m m e n t s () . g e t ()

})

That's it!

131

http://www.antlr.org/wiki/display/ST4/Group+file+syntax

Implications for Caching You can set caching on your presenter, but unfortunately you can't set di�erent

caching parameters p er view. StringTemplate's brutal rejection of any kind of programming logic in templates

means that you can't �call� anything from within a template, not even to change a parameter.

In our next example, we'll b e using a more �exible engine that allows for more integration with Prudence

features.

Jinja2 Example

Jinja2 is an emb eddable engine that mimics the well-known template syntax of the Django framework. We'll go

over its basic integration into Prudence, and also show you how to write Jinja2 custom tags to easily take advantage

of Prudence's caching mechanism (page 61).

First we need to install Python and Jinja2 in our container:

s i n c e r i t y a d d p y t h o n : i n s t a l l : e a s y _ i n s t a l l J i n j a 2 = = 2 . 6 s i m p l e j s o n

We're also installing the simplejson library, b ecause Jython do esn't come with the JSON supp ort we'll need

(more on that later).

Note that Jinja2 version 2.7 do esn't work in Jython (might b e �xed for version 2.8), but version 2.6

do es, so that's what we use here.

For our dispatcher, we'll do something a bit di�erent from b efore: b ecause we want to supp ort caching of templates,

we will want the actual template renderer as a template resource (page 39). The dispatcher, then, will simply

delegate to that template resource. Another change is that we'll b e writing it all in Python, so we can call the

Jinja2 API. Let's start with �/libraries/dispatchers/jinja.py�:

i m p o r t s i m p l e j s o n , u r l l i b

f r o m com . t h r e e c r i c k e t s . p r u d e n c e . u t i l i m p o r t I n t e r n a l R e p r e s e n t a t i o n

d e f h a n d l e _ i n i t (c o n v e r s a t i o n) :

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' t e x t / h t m l ')

d e f h a n d l e _ p o s t (c o n v e r s a t i o n) :

i f n o t c o n v e r s a t i o n . i n t e r n a l :

r e t u r n 4 0 4

i d = c o n v e r s a t i o n . l o c a l s [' com . t h r e e c r i c k e t s . p r u d e n c e . d i s p a t c h e r . i d ']

i f i d [� 1] == ' / ' :

i d = i d [0 : � 1]

i d += ' . h t m l '

c o n t e x t = { }

i f c o n v e r s a t i o n . e n t i t y :

i f c o n v e r s a t i o n . e n t i t y . m e d i a T y p e . n a m e == ' a p p l i c a t i o n / i n t e r n a l ' :

c o n t e x t = c o n v e r s a t i o n . e n t i t y . o b j e c t

e l s e :

c o n t e x t = c o n v e r s a t i o n . e n t i t y . t e x t

i f c o n t e x t :

c o n t e x t = s i m p l e j s o n . l o a d s (c o n t e x t)

p a y l o a d = I n t e r n a l R e p r e s e n t a t i o n ({

' c o n t e x t ' : c o n t e x t ,

' u r i ' : s t r (c o n v e r s a t i o n . r e f e r e n c e) ,

' b a s e _ u r i ' : s t r (c o n v e r s a t i o n . r e f e r e n c e . b a s e R e f) })

r e s o u r c e = d o c u m e n t . i n t e r n a l (' / j i n j a � t e m p l a t e / ' + u r l l i b . q u o t e (i d , ' ') + ' / ' , ' t e x t / h t m l ')

r e s u l t = r e s o u r c e . p o s t (p a y l o a d)

i f n o t r e s u l t :

r e t u r n 4 0 4

r e t u r n r e s u l t . t e x t

Notes:

� We've allowed only internal requests through: we want to hide this dispatcher from the public URI space

b ecause it should only b e accessed by our presenters.

132

http://jinja.pocoo.org/docs/
https://www.djangoproject.com/
http://threecrickets.com/sincerity/ecosystem/language-plugins/#python-plugin
http://simplejson.readthedocs.org/

� Jinja2's FileSystemLoader requires the full �lename, so we're stripping trailing slashes and adding �.html�.

� We're forwarding a few useful attributes of the request: the original URI and the original base URI. We'll

show you later how to use those for our custom tags.

� We're supp orting �application/internal� payloads (page 116), but also JSON payloads. Avoiding serialization

is �ne for Python-to-Python calls, but if we call from another programming language�say, JavaScript�the

native structures are incompatible. Thus, we're allowing the use of JSON as an interchange format. On

the other side, when we send the payload to �/jinja-template/�, it's �ne to send a raw ob ject, b ecause it's

Python-to-Python.

Our template resource is �/resources/jinja-template.t.html�:

<%p y t h o n

i m p o r t u r l l i b

f r o m j i n j a 2 i m p o r t E n v i r o n m e n t , F i l e S y s t e m L o a d e r

f r o m j i n j a 2 . e x c e p t i o n s i m p o r t T e m p l a t e N o t F o u n d

f r o m o s i m p o r t s e p

i d = u r l l i b . u n q u o t e (c o n v e r s a t i o n . l o c a l s [' i d '])

p a y l o a d = c o n v e r s a t i o n . e n t i t y . o b j e c t

c o n t e x t = p a y l o a d [' c o n t e x t ']

l o a d e r = a p p l i c a t i o n . g l o b a l s [' j i n a j 2 . l o a d e r ']

i f n o t l o a d e r :

l o a d e r = F i l e S y s t e m L o a d e r (a p p l i c a t i o n . r o o t . p a t h + s e p + ' l i b r a r i e s ' + s e p + ' v i e w s ')

l o a d e r = a p p l i c a t i o n . g e t G l o b a l (' j i n j a 2 . l o a d e r ' , l o a d e r)

e n v = E n v i r o n m e n t (l o a d e r = l o a d e r)

t r y :

t e m p l a t e = e n v . g e t _ t e m p l a t e (i d)

p r i n t t e m p l a t e . r e n d e r (c o n t e x t)

e x c e p t T e m p l a t e N o t F o u n d :

c o n v e r s a t i o n . s t a t u s C o d e = 4 0 4

%>

The Jinja2 API is very straightforward and this co de should b e easy to follow. Note that we're caching the

FileSystemLoader as an application.global: b ecause it can pick up our changes on-the-�y and cache them, it's

eminently reusable.

Now for our routing.js:

a p p . r o u t e s = {

. . .

' / v i e w s / � ' : ' @ j i n j a : { r w } ' ,

' / j i n j a � t e m p l a t e / { i d } / ' : ' / j i n j a � t e m p l a t e / ! '

}

a p p . d i s p a t c h e r s = {

. . .

j i n j a : {

d i s p a t c h e r : ' / d i s p a t c h e r s / j i n j a / '

}

}

See how we've interp olated the wildcard (page 114) into � {rw}�: this means that a URI such as �/views/hello/�

would translate to the ID �hello/�.

Let's create our template, �/libraries/views/user/comments.html�:

<h t m l >

<b o d y>

133

<p>T h e s e a r e t h e c o m m e n t s f o r u s e r : { { u s e r n a m e } } < / p>

< t a b l e >

{% f o r c o m m e n t i n c o m m e n t s %}

< t r ><t d >{{ c o m m e n t } } < / t d ></ t r >

{% e n d f o r %}

</ t a b l e >

</ b o d y>

</ h t m l >

Finally, we need to make two changes to our presenter (page 128). First, we need to isend JSON payloads (if

we were writing it in Python, we could optimize by sending �ob ject� payloads):

r e t u r n g e t V i e w (' u s e r / c o m m e n t s ' , {

u s e r n a m e : p e r s o n . g e t U s e r n a m e () ,

c o m m e n t s : p e r s o n . g e t C o m m e n t s () . g e t ()

})

f u n c t i o n g e t V i e w (v i e w , c o n t e x t) {

v a r p a g e = P r u d e n c e . R e s o u r c e s . r e q u e s t ({

u r i : ' / v i e w s / ' + v i e w + ' / ' ,

i n t e r n a l : t r u e ,

m e t h o d : ' p o s t ' ,

m e d i a T y p e : ' t e x t / � ' ,

p a y l o a d : {

t y p e : ' j s o n ' ,

v a l u e : c o n t e x t

}

})

r e t u r n S i n c e r i t y . O b j e c t s . e x i s t s (p a g e) ? p a g e : 4 0 4

}

And we have to ��atten� the mo del in order to make JSON-able:

v a r p e r s o n = M o d e l s . g e t P e r s o n (n a m e)

. . .

r e t u r n g e t V i e w (' u s e r / c o m m e n t s ' , {

u s e r n a m e : p e r s o n . g e t U s e r n a m e () ,

c o m m e n t s : p e r s o n . g e t C o m m e n t s () . g e t ()

})

That's it!

Custom Tags It's fairly easy to add custom tags to Jinja2. Let's add some to supp ort Prudence caching, as well

as other useful Prudence values. Here's �/libraries/jinja_extensions.py�:

f r o m j i n j a 2 i m p o r t n o d e s

f r o m j i n j a 2 . e x t i m p o r t E x t e n s i o n

f r o m o r g . r e s t l e t . d a t a i m p o r t R e f e r e n c e

c l a s s P r u d e n c e (E x t e n s i o n) :

a s e t o f n a m e s t h a t t r i g g e r t h e e x t e n s i o n

t a g s = s e t ([' c u r r e n t _ u r i ' , ' a p p l i c a t i o n _ u r i ' , ' t o _ b a s e ' , ' c a c h e _ d u r a t i o n ' , ' c a c h e _ t a g s '])

d e f _ _ i n i t _ _ (s e l f , e n v i r o n m e n t) :

s u p e r (P r u d e n c e , s e l f) . _ _ i n i t _ _ (e n v i r o n m e n t)

a d d t h e d e f a u l t s t o t h e e n v i r o n m e n t

e n v i r o n m e n t . e x t e n d (

p r u d e n c e _ c a c h i n g=N o n e ,

p r u d e n c e _ u r i=N o n e ,

134

p r u d e n c e _ b a s e _ u r i =N o n e

)

d e f p a r s e (s e l f , p a r s e r) :

t o k e n = p a r s e r . s t r e a m . n e x t ()

t a g = t o k e n . v a l u e

l i n e n o = t o k e n . l i n e n o

i f t a g == ' c u r r e n t _ u r i ' :

r e t u r n _ l i t e r a l (s e l f . e n v i r o n m e n t . p r u d e n c e _ u r i , l i n e n o)

e l i f t a g == ' a p p l i c a t i o n _ u r i ' :

r e t u r n _ l i t e r a l (s e l f . e n v i r o n m e n t . p r u d e n c e _ b a s e _ u r i , l i n e n o)

e l i f t a g == ' t o _ b a s e ' :

b a s e = R e f e r e n c e (s e l f . e n v i r o n m e n t . p r u d e n c e _ b a s e _ u r i)

r e f e r e n c e = R e f e r e n c e (b a s e , s e l f . e n v i r o n m e n t . p r u d e n c e _ u r i)

r e v e r s e r e l a t i v e p a t h t o t h e b a s e

r e l a t i v e = b a s e . g e t R e l a t i v e R e f (r e f e r e n c e) . p a t h

r e t u r n _ l i t e r a l (r e l a t i v e , l i n e n o)

e l i f t a g == ' c a c h e _ d u r a t i o n ' :

d u r a t i o n = p a r s e r . p a r s e _ e x p r e s s i o n () . a s _ c o n s t ()

s e l f . e n v i r o n m e n t . p r u d e n c e _ c a c h i n g . d u r a t i o n = d u r a t i o n

e l i f t a g == ' c a c h e _ t a g s ' :

t a g s = [p a r s e r . p a r s e _ e x p r e s s i o n () . a s _ c o n s t ()]

w h i l e p a r s e r . s t r e a m . s k i p _ i f (' comma ') :

t a g s . a p p e n d (p a r s e r . p a r s e _ e x p r e s s i o n () . a s _ c o n s t ())

c a c h e _ t a g s = s e l f . e n v i r o n m e n t . p r u d e n c e _ c a c h i n g . t a g s

f o r t a g i n t a g s :

c a c h e _ t a g s . a d d (t a g)

r e t u r n _ l i t e r a l (' ' , l i n e n o)

d e f _ p r i n t (t e x t , l i n e n o) :

r e t u r n n o d e s . O u t p u t ([n o d e s . T e m p l a t e D a t a (t e x t)]) . s e t _ l i n e n o (l i n e n o)

We'll then mo dify our �/resources/jinja-template.t.html� to use our extension, and set it up using the attributes

forwarded from the dispatcher.:

e n v = E n v i r o n m e n t (l o a d e r = l o a d e r , e x t e n s i o n s = [' j i n j a _ e x t e n s i o n s . P r u d e n c e '])

e n v . p r u d e n c e _ c a c h i n g = c a c h i n g

e n v . p r u d e n c e _ u r i = p a y l o a d [' u r i ']

e n v . p r u d e n c e _ b a s e _ u r i = p a y l o a d [' b a s e _ u r i ']

Here's a simple template to test the extensions:

<h t m l >

{% c a c h e _ d u r a t i o n 5 0 0 0 %}

{% c a c h e _ t a g s ' t a g 1 ' , ' t a g 2 ' %}

<b o d y>

<p>T h i s p a g e i s c a c h e d f o r 5 s e c o n d s . < / p>

<p> c u r r e n t _ u r i : {% c u r r e n t _ u r i %}</p>

<p> a p p l i c a t i o n _ u r i : {% a p p l i c a t i o n _ u r i %}</p>

<p>t o _ b a s e : {% t o _ b a s e %}</p>

135

</ b o d y>

</ h t m l >

RESTful Mo dels

In our MVC tutorial ab ove, we've implemented our mo dels as classes (OOP). However, it may make sense to

implement them as RESTful resources instead.

Doing so allows for p owerful deployment �exibility: it would b e p ossible to decouple the mo del layer entirely,

over HTTP. For example, you could have �mo del servers� running at one data center, close to the database servers,

while �presentation servers� run elsewhere, providing the direct resp onses to users. In this scenario, the presenters

would b e calling the mo dels using secured HTTP requests, instead of function calls.

Even if you're not planning for such �exibility at the moment, it might still b e a go o d idea to allow for it in the

future. Until then, you could optimize by treating the mo del layer as an internal API (page 115), which makes it

ab out as fast as function calls.

There are two p otential downsides to a RESTful mo del layer. First, there's the added programming complex-

ity: it's easier to create a class than a resource. Second, RESTful resources are limited to four verbs: though

GET/POST/PUT/DELETE might b e enough for most CRUD op erations, it can prove harder to design a RESTful

URI-space for complex �business logic.�

A go o d compromise, if necessary, can b e to still use HTTP to access mo dels, just not RESTfully: use Remote

Pro cedure Call (RPC) instead. We discuss this option in the URI-space architecture tips (page 157).

Tutorial

For simplicity, we'll use a mapp ed resource, �/resources/mo dels/p erson.m.js�:

d o c u m e n t . r e q u i r e (

' / m o d e l s / u s e r / ' ,

' / s i n c e r i t y / j s o n ')

f u n c t i o n h a n d l e I n i t (c o n v e r s a t i o n) {

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' a p p l i c a t i o n / j s o n ')

i f (c o n v e r s a t i o n . i n t e r n a l) {

c o n v e r s a t i o n . a d d M e d i a T y p e B y N a m e (' a p p l i c a t i o n / i n t e r n a l ')

}

}

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

v a r n a m e = c o n v e r s a t i o n . l o c a l s . g e t (' n a m e ')

v a r p e r s o n = M o d e l s . g e t P e r s o n (n a m e)

v a r r e s u l t = {

u s e r n a m e : p e r s o n . g e t U s e r n a m e () ,

c o m m e n t s : p e r s o n . g e t C o m m e n t s () . g e t ()

}

r e t u r n c o n v e r s a t i o n . m e d i a T y p e N a m e == ' a p p l i c a t i o n / i n t e r n a l ' ? r e s u l t : S i n c e r i t y . JSON . t o (r e s u l t)

}

f u n c t i o n h a n d l e P o s t (c o n v e r s a t i o n) {

v a r n a m e = c o n v e r s a t i o n . l o c a l s . g e t (' n a m e ')

v a r p a y l o a d = S i n c e r i t y . JSON . f r o m (c o n v e r s a t i o n . e n t i t y . t e x t)

i f (p a y l o a d . c o m m e n t) {

v a r p e r s o n = M o d e l s . g e t P e r s o n (n a m e)

p e r s o n . g e t C o m m e n t s () . a d d (c o m m e n t)

v a r r e s u l t = {

u s e r n a m e : p e r s o n . g e t U s e r n a m e () ,

c o m m e n t s : p e r s o n . g e t C o m m e n t s () . g e t ()

}

r e t u r n c o n v e r s a t i o n . m e d i a T y p e N a m e == ' a p p l i c a t i o n / i n t e r n a l ' ? r e s u l t : S i n c e r i t y . JSON . t o (r e s u l t)

136

}

r e t u r n 4 0 0

}

Note that we've optimized for internal requests (page 116).

We would then mo dify our presenter like so:

f u n c t i o n h a n d l e G e t (c o n v e r s a t i o n) {

v a r n a m e = c o n v e r s a t i o n . l o c a l s . g e t (' n a m e ')

v a r p e r s o n = g e t M o d e l (' p e r s o n / ' + e n c o d e U R I C o m p o n e n t (n a m e))

r e t u r n g e t V i e w (' c o m m e n t s ' , { p e r s o n : p e r s o n })

}

f u n c t i o n h a n d l e P o s t (c o n v e r s a t i o n) {

v a r n a m e = c o n v e r s a t i o n . l o c a l s . g e t (' n a m e ')

v a r c o m m e n t = c o n v e r s a t i o n . f o r m . g e t (' c o m m e n t ')

v a r p e r s o n = p o s t M o d e l (' p e r s o n / ' + e n c o d e U R I C o m p o n e n t (n a m e) , { c o m m e n t : c o m m e n t })

r e t u r n g e t V i e w (' c o m m e n t s ' , { p e r s o n : p e r s o n })

}

f u n c t i o n g e t M o d e l (m o d e l) {

r e t u r n P r u d e n c e . R e s o u r c e s . r e q u e s t ({

u r i : ' / m o d e l s / ' + m o d e l + ' / ' ,

i n t e r n a l : t r u e

})

}

f u n c t i o n p o s t M o d e l (m o d e l , p a y l o a d) {

r e t u r n P r u d e n c e . R e s o u r c e s . r e q u e s t ({

u r i : ' / m o d e l s / ' + m o d e l + ' / ' ,

i n t e r n a l : t r u e ,

m e t h o d : ' p o s t '

p a y l o a d : {

t y p e : ' o b j e c t ' ,

v a l u e : p a y l o a d

}

})

}

We've assumed an internal request here, but it's easy to change it to an external request if the mo del layer runs

elsewhere on the network.

Finally, here's our addition to routing.js, using capture-and-hide (page 26):

a p p . r o u t e s = {

. . .

' / m o d e l s / p e r s o n / { n a m e } / ' : ' / m o d e l s / p e r s o n / ! '

}

Clusters

Multiple JVMs running Prudence, on several machines or on a single one, may share certain resources. The running

instances do not have to b e identical (�redundant�), though in some deployment scenarios (page 140) they should

b e.

Many of the clustering features in Prudence rely on the excellent Hazelcast library: Hazelcast allows Prudence

no des to to share state and lo cks and to run tasks remotely. Its auto-discovery feature is esp ecially useful for �exible

cloud deployments.

You don't have to dig deep into Hazelcast: the core features work out-of-the-b ox with Prudence, and are fully

explained in this chapter. However, if you're serious ab out clustering, it's a go o d idea to study Hazelcast and see

137

http://www.hazelcast.com/

what more, p erhaps, it can do for you. Esp ecially, you may want to tweak the default con�guration (page 117), for

example to add backups, change eviction p olicies, create no de groups, enable SSL, encryption, etc.

Shared State

Easily share in-memory data b etween all no des and applications in the cluster using the

application.distributedGlobals and application.distributedSharedGlobals API family (page 83).

Concurrency

Like the other globals, distributed globals supp ort concurrently atomic op erations (page 84). In the following

example, we make sure that the default value is only ever set once:

v a r d e f a u l t P e r s o n = { n a m e : ' L i n u s ' , r o l e : ' b o s s ' }

v a r p e r s o n =

S i n c e r i t y . JSON . f r o m (a p p l i c a t i o n . g e t D i s t r i b u t e d G l o b a l (' p e r s o n ' , S i n c e r i t y .

JSON . t o (d e f a u l t P e r s o n)))

Serializability

Distributed globals must be serializable . If they aren't, you will get an exception when Hazelcast attempts to move

the data b etween no des.

If you're using JavaScript, this unfortunately means that you are limited to primitive typ es. One easy way to

get around this is to serialize via JSON:

d o c u m e n t . r e q u i r e (' / s i n c e r i t y / j s o n / ')

v a r p e r s o n = { n a m e : ' L i n u s ' , r o l e : ' b o s s ' }

a p p l i c a t i o n . d i s t r i b u t e d G l o b a l s . p u t (' p e r s o n ' , S i n c e r i t y . JSON . t o (p e r s o n))

p e r s o n = S i n c e r i t y . JSON . f r o m (a p p l i c a t i o n . d i s t r i b u t e d G l o b a l s . g e t (' p e r s o n '))

p r i n t l n (p e r s o n . n a m e)

Con�guration

You can con�gure the distributed globals in �/con�guration/hazelcast/application/globals.js� (page 117), as a map

named �com.threecrickets.prudence.distributedGlobals.[name]�, where �name� is the application name. You can also

change the name of that map in settings.js (page 74).

Cluster-Wide Synchronization

Use the application.getDistributedSharedLo ck API (page 84) to synchronize access to resources for the entire cluster:

v a r l o c k = a p p l i c a t i o n . g e t D i s t r i b u t e d S h a r e d L o c k (' s e r v i c e s . r e m o t e ')

l o c k . l o c k ()

t r y {

d o S o m e t h i n g A t o m i c a l l y W i t h R e m o t e S e r v i c e ()

}

f i n a l l y {

l o c k . u n l o c k ()

}

This apparently simple to ol o�ers a reliable and thus p owerful guarantee for atomicity across entire deployments,

even very large ones. It can replace the need to use a separate, dedicated synchronization to ol, such as is provided

Apache Zo oKeep er. Just make sure you understand the detrimental e�ect its use could have for your scalability.

See the Hazelcast do cumentation for more information on distributed lo cks.

138

http://zookeeper.apache.org/
http://docs.hazelcast.org/docs/latest/manual/html/lock.html

Task Farms

The distributed task APIs (page 105) let you spawn tasks anywhere, everywhere, or on sp eci�c no des in the cluster.

This p owerful feature is only really useful in a heterogeneous cluster: if all your no des are the same, and all of

them are answering user requests b ehind a load balancer (page 142), then it's hard to see what advantage you would

get by spawning background tasks on a no de other than the one that answered the request. However, if you have a

separate set of no des sp eci�cally designated to running tasks, or even multiple sets dedicated to tasks of di�erent

kinds, then you gain considerable control over your deployment strategies. You can scale out your �web no des� if

you need to handle more user requests, and separately scale out your �task no des,� �cache no des,� �database no des,�

etc. This deployment strategy is key to cost-e�cient use of your resources.

Prudence supp orts two ways to create such a heterogeneous cluster.

Tagging No des

You can �tag� each no de in your cluster with one or more custom strings. Many no des may share the same tag, or

you may create unique tags for some no des in order to refer to them, and only them, directly.

To tag no des, edit their �/con�guration/hazelcast/default/default.js�, and set the

�com.threecrickets.prudence.tags� attribute to a comma-separated list of tags (every no de can b e asso ciated

to one or more tags). As an example, let's give our no de two tags, �video-enco ding� and �backup�:

c o n f i g . m e m b e r A t t r i b u t e C o n f i g . s e t S t r i n g A t t r i b u t e (' com . t h r e e c r i c k e t s . p r u d e n c e . t a g s ' , ' v i d e o � e n c o d i n g , b a c k u p ')

We can then use the distributed task APIs (page 105) to execute a single task on any one of the �video-enco ding�

no des:

P r u d e n c e . T a s k s . t a s k ({

u r i : ' / r e e n c o d e � v i d e o / ,

c o n t e x t : { f i l e n a m e : ' g r e a t _ m o v i e . a v i ' , r e s o l u t i o n : {w : 6 0 0 , h : 4 0 0 } } ,

j s o n : t r u e ,

d i s t r i b u t e d : t r u e ,

w h e r e : ' v i d e o � e n c o d i n g '

})

Or, we can execute a backup op eration on al l the �backup� no des, by setting the �multi� param to true:

P r u d e n c e . T a s k s . t a s k ({

u r i : ' / b a c k u p / ,

d i s t r i b u t e d : t r u e ,

m u l t i : t r u e ,

w h e r e : ' b a c k u p '

})

Note that �where� can also b e a comma-separated list.

Separate Cluster for Tasks

In a more complex deployment, you may want your task farm as an entirely separate Hazelcast cluster. For example,

your task farm may b e running in an entirely di�erent data center, and you do not need or want it to share state

with the application cluster.

By default, Prudence executes all tasks on one Hazelcast instance, but it allows you to con�gure a separate

instance for tasks. To enable this scenario, Prudence comes with commented-out con�gurations (page 117) for b oth

the �task� no des (the servers) and for the no des that will b e spawning the tasks (the clients):

� �/con�guration/hazelcast/task/1-server.js�: Enable this if you want this no de to b e a full memb er of the �task�

cluster, which means it will b e able to accept and run distributed tasks. Note that the no de would still b e a

memb er of the �application� cluster (unless you disable its con�guration explicitly), meaning it will b e able

to share state (page 138) with the application no des.

� �/con�guration/hazelcast/task/2-client.js�: Enable this if you want this no de to b e able to spawn tasks in

the �task� cluster. This creates a lightweight HazelcastClient for the �tasks� cluster, which is not an actual

memb er.

139

http://www.hazelcast.com/docs/3.5/javadoc/index.html?com/hazelcast/client/HazelcastClient.html

It normally do esn't make sense to have b oth �1-server.js� and �2-client.js� enabled on the same no de: a server is

already a full memb er, and do esn't have to also b e a lightweight client. However, it can b e useful to enable b oth for

the purp ose of testing the complete lo op in a single container: it wil l work. (That's why there are numeric pre�xes

for the �lenames: this makes sure they are initialized in the correct order if b oth are enabled.)

Once con�gured, you can use the task APIs as usual on b oth the client and server no des, but the tasks will

only run on the server no des. Note that you can still use no de tags (page 139) for the server no des by editing

�1-server.js�.

For more options for partitioning clusters in Hazelcast, see its grouping feature.

Shared Cache

Obviously, in a cluster you want to use a shared cache backend, and even implement a tiered caching strategy. The

con�guration chapter (page 123) details your many built-in options.

Centralized Logging

There are four p ossible strategies for handling logging in a cluster, each with its own advantages:

� Let every no de keep its own log �les, which is the default con�guration in Prudence. This makes it easier to

debug problems sp eci�c to each no de. However, in a load-balancing scenario (page 142) it can b e very hard

to follow user activities over time, b ecause each request might b e logged on a di�erent no de.

� Centralize all logging. There are actually two ways to achieve this in Prudence:

� Log to a database. Sincerity's logging plugin comes with p owerful supp ort for logging to MongoDB.

� Run a dedicated logging no de (a Apache Log4j server). This is again explicitly supp orted by

Sincerity's logging plugin: it allows all your no des to send their log messages to the logging no de over

the network. The logging no de will b e doing the actual message writing.

� It's easy to log b oth lo cally and centrally, immediately giving you the b ene�ts of b oth worlds, at the cost of

some wasted resources due to the duplication.

� A hybrid approach can b e the b est idea: some loggers might b e stored lo cally, others might write to the

central log.

Deployment

�Deployment� here refers to getting your Prudence applications running so that users can, well, use them. The

challenge is that the development environment is often quite di�erent from the pro duction, staging and testing

environments, and indeed it's the p oint where development work must integrate with systems administration and

op erations.

Approaching deployment can quickly mire you into a comparison of ideologies of pro ject management: some

prefer Continuous Integration (CI) and agile metho ds, others prefer more careful deployment by humans according

to step-by-step plans. We'll bypass the ideological discussion here, and deal sp eci�cally with the technical p ossi-

bilities and to ols. It's up to you to decide which deployment technologies �t b est with or b est enable your pro ject

management ideology.

Deployment Strategies

File Synchronization

Sometimes the b est strategies are the most straightforward.

Because your entire Prudence installation is contained in one directory, you can simply copy it from your

development environment to your deployment environments. Even b etter, you can use a synchronization to ol like

rsync, which will e�ciently copy only the up dated/new �les. Best of all, you can use a two-way synchronization

to ol like Unison, which allows on-the-�y changes you make at the deployment environment to synchronize back to

your development environment. Both to ols mentioned use compression and batch transfers for sp eed and can run

over SSH for security.

140

http://docs.hazelcast.org/docs/latest/manual/html/partitiongroupconfig.html
http://threecrickets.com/sincerity/ecosystem/feature-plugins/#logging-plugin
http://www.mongodb.org/
http://logging.apache.org/log4j/
http://threecrickets.com/sincerity/ecosystem/feature-plugins/#logging-plugin
http://rsync.samba.org/
http://www.cis.upenn.edu/~bcpierce/unison/

Actually, the deployment origin do es not have to b e a single programmer's development environment: you can

create a dedicated deploying environment from which to deploy to all no des and have it shared among a team of

programmers.

Example Let's see how this is done using Unison. First, let's create a pro�le in our development environment.

We'll store it in �~/.unison/pro duction.prf �:

r o o t = / p a t h / t o / p r u d e n c e

r o o t = s s h : / / n o d e 1 . m y s i t e . o r g / / p a t h / t o / p r u d e n c e

r o o t = s s h : / / n o d e 2 . m y s i t e . o r g / / p a t h / t o / p r u d e n c e

i g n o r e = P a t h c a c h e

i g n o r e = P a t h l o g s

i g n o r e = P a t h c o m p o n e n t / a p p l i c a t i o n s / s t i c k s t i c k / d a t a

i g n o r e = P a t h . g i t

i g n o r e = P a t h . g i t i g n o r e

Note how easy it is to include several no des in a single pro�le. Also note that likely want to exclude syncing

a few lo calized directories: in this example, we're ignoring an extra data path and also �les used by our version

control system, Git.

To synchronize with the ab ove pro�le, run this:

u n i s o n p r o d u c t i o n � b a t c h

Of course, you can create additional pro�les, for example �staging.prf � for your staging environment.

Version Control Systems (VCS)

If you're already using a VCS, why not use it to deploy your applications, to o? In many ways, this is as straight-

forward as �le synchronization, though there are a few imp ortant advantages and disadvantages:

� You don't need a deploying origin: every no de can up date itself.

� You can automatically upgrade/downgrade simply by checking out a revision, tag or branch.

� Distributed VCSs (such as Git and Mercurial) normally require a clone of the entire rep ository, including its

history. This can b e quite heavy and redundant. One solution is to do a �shallow clone,� which avoids the

history. However, shallow clones have several limitations that might make them di�cult to use.

� VCSs don't deal well with large binary �les. For development work, there are go o d solutions, such as git-annex

for Git. However, these solutions don't solve the problem for deployment: you still need to get those binaries

to your deployed environment somehow.

� Allowing VCS access from your deployed environment might b e an unacceptable security risk.

You can also adopt a hybrid strategy: use VCS to deploy the main application co de, and install the other parts of

it (including Prudence itself) via some other means.

Be sure to read the Sincerity tutorial, which gives you a few suggestions to using a VCS with Prudence, which

apply to development as well as to deployment.

Packaging

You can encapsulate your entire Prudence container, or individual applications and services, into deployable, ver-

sioned, interdep endent, signed packages.

Though con�guring and creating the packages is the hard part, deploying them is often very easy. Packaging's big

advantage in how easy and safe it makes uninstalling, upgrading and downgrading pro cesses. The strategy indeed

reveals many of its advantages when it is used mo dularly: it makes it p ossible to install/upgrade/downgrade only

sp eci�c applications or services, while leaving the rest of the deployment intact. Di�erent typ es of no des could thus

b e installed as assemblages (meta-packages) of particular packages. Finally, careful management of dep endencies

can b e used to ensure that the package has everything it needs to run prop erly.

Mo dularity has a huge cost in terms of pro ject management complexity, which should not b e underestimated.

However, if you're already managing your pro ject as separate mo dules, with their own roadmaps and version

progression, it can make a lot of sense to deploy it that way, to o.

141

http://git-scm.com/
http://git-annex.branchable.com/
http://threecrickets.com/sincerity/manual/tutorial/#working-with-a-vcs

There are many packaging standards and to ols out there, but we'll mention a few that you are esp ecially likely

to use with Prudence.

Do cker Because everything is one directory, and the only requirement is a JVM (actually, just a JRE), it's trivial

to package your Prudence containers in Do cker. See the Sincerity Manual for instructions.

Maven Apache Maven is a comprehensive (and highly complex) pro ject management to ol for the JVM, esp ecially

targeted at the Java language and related technologies. Whether or not you use the Maven to ol itself, its rep ository

format (also known as iBiblio) has b ecome the de facto standard for JVM packaging.

The Sincerity to ol, on which Prudence is itself distributed, uses the Maven rep ository format, but adds a few

imp ortant (and optional) features to its packaging sp eci�cation, namely the ability to unpack archives into the

container, and to run install/uninstall ho oks for each package. We recommend Sincerity for Maven-typ e package

deployment: it will handle not only your own packages, but also Prudence itself, as well as other Sincerity plugins

and add-ons.

You can package and publish your packages using the Maven to ol: the Sincerity packaging do cumentation

includes a template con�guration for Maven, which you can easily mo dify for your own packages (and bypass

Maven's notorious learning curve). Alternatively, you can use easier to ols like Gradle and Ivy.

Maintaining and managing the rep ository is easy enough. At its most straightforward, you can simply host the

rep ository's �lesystem via a web server. However, there are also several p owerful to ols and hosted solutions o�ering

many useful features, such as proxying of other rep ositories. Sonatyp e's Nexus is esp ecially easy to install and get

running using Sincerity. Another great option is JFrog's Artifactory.

Debian and RPM If you are deploying to no des based on a Linux-based op erating system, then you're are

likely already using a packaging system: either Debian or RPM. Using the native packaging system for your own

deployment gives you the very useful advantage of allowing for dep endencies to OS packages, as well as having a

single, uni�ed packaging system for everything . At the very least, for example, you'll want your Prudence packages

to dep end on a JVM. By creating a meta-package for each no de typ e, you can then install and upgrade entire no des,

starting from a freshly installed op erating system, by simply installing a single package.

Debian is the the more complex of the two standards: it's actually not just a �le format, but part of a compre-

hensive, integrated op erating system build system, requiring several highly sp eci�c con�guration �les p er package.

It might b e easier to use more minimal to ols for packaging your Prudence applications: we recommend jdeb for

Debian and Redline for RPM, which b oth run on the JVM and can b e integrated into Ant builds.

Another imp ortant advantage of using Debian or RPM is that you can integrate your Prudence packages into

comprehensive infrastructure management and orchestration to ols. There is a great variety among these: some are

tied to sp eci�c op erating systems, some are hosted, some proprietary. If you're using Ubuntu, you can use Juju and

Landscap e. For RedHat and CentOS, you can use YADT , which can also b e used for your build pro cess.

Load Balancing and Proxies

One of the great advantages of REST architectures (page 152) is that they're trivial, in an architectural sense, to

scale horizontally: any numb er of identical no des can sit comfortably b ehind a load balancer. Because each REST

request is self-contained, it do esn't matter which no de handles which request.

Well, that's a bit idealized. Actually, requests are not themselves identical: some might need access

shared resources, such as databases and task farms (page 139), and in complex applications it may make

sense to have di�erent kinds of no des answering di�erent kinds of requests, or at the very least it may

b e imp ortant to route certain requests to certain no des that would do a b etter job at servicing the

request (for example, if they are nearer to the sp eci�c resources the request needs). Your routing needs

might b e quite sophisticated. See a more comprehensive discussion of the �partitioning� problem in the

scaling tips article (page 166). Nevertheless, for simpler applications load balancing is indeed trivial,

and ready-made pro ducts, services and algorithms will �t most use cases.

Clusters

You don't have to enable clusters (page 137) in order to create a load-balanced Prudence deployment. However,

you can use the cluster features to allow for p owerful co op eration b etween no des. In particular, they can share a

Hazelcast cache backend (page 123).

142

https://www.docker.com/
http://threecrickets.com/sincerity/manual/tutorial/#working-with-docker
http://maven.apache.org/
http://threecrickets.com/sincerity/
http://threecrickets.com/sincerity/manual/specifications/#sincerity-packages
http://threecrickets.com/sincerity/manual/packaging/
http://www.gradle.org/
http://ant.apache.org/ivy/
http://www.sonatype.org/nexus/
http://threecrickets.com/sincerity/ecosystem/skeletons/#nexus
http://www.jfrog.com/home/v_artifactory_opensource_overview
https://github.com/tcurdt/jdeb
http://redline-rpm.org/
http://ant.apache.org/
https://juju.ubuntu.com/
https://landscape.canonical.com/
http://www.yadt-project.org/

Also take a lo ok at the task farming (page 139) feature: you can run a separate task farm cluster without the

application no des forming a cluster themselves.

Choices

Go o d load balancers do more than just scale: they allow for robustness by removing problematic no des from the

p o ol, either b ecause of errors or b ecause of p o or p erformance. Often, you can con�gure the various thresholds and

the b ehavior of the back-o� algorithms.

If you're deploying to a hosted �cloud� environment, it could b e that your host provides a load-balancing solution.

It's often a go o d choice: these load balancers will likely p erform b etter and b e more reliable than those running

inside a virtual host. However, they may not b e �exible (or trustworthy) enough for your needs. It's easy enough

to install your own load balancer using a wide range of pro ducts: we'll provide examples for using two p opular

solutions b elow.

Who should handle SSL? Prudence can handle SSL p erfectly �ne on its own (page 120). However,

when using a load balancer, you may have the option of �terminating� SSL there. The problem with

terminating SSL early is that you have unencrypted packets moving b etween the load balancer and your

no des, which is a security risk. You de�nitely want SSL going all the way to Prudence if you're deployed

in an environment you can't trust. Otherwise, terminating early is often recommended, as it can o�er

b etter utilization of your application no de resources, and allow for simpler deployments. Both examples

b elow demonstrate how to terminate SSL at the load balancer.

Nginx

Nginx is a p opular general-purp ose web server, which has several high-quality mo dules. It's a go o d choice if you

need other features in addition to load balancing, but also works �ne as a standalone load balancer. Refer to the

do cumentation for the proxy and upstream mo dules for a complete reference.

Here's a simple con�guration:

h t t p {

s e r v e r {

l i s t e n 8 0 ;

l o c a t i o n / {

p r o x y _ p a s s h t t p : / / p r u d e n c e ;

}

}

s e r v e r {

l i s t e n 4 4 3 s s l s p d y ;

s s l o n ;

s s l _ c e r t i f i c a t e _ k e y / e t c / s s l / s e r v e r . k e y ;

s s l _ c e r t i f i c a t e / e t c / s s l / s e r v e r . c r t ;

s s l _ p r o t o c o l s T L S v 1 T L S v 1 . 1 T L S v 1 . 2 ;

s s l _ c i p h e r s ' ECDHE � RSA � A E S 1 2 8 � GCM � S H A 2 5 6 : ECDHE � ECDSA � A E S 1 2 8 � GCM � S H A 2 5 6 : ECDHE � RSA � A E S 2 5 6 � GCM S H A 3 8 4 : ECDHE ECDSA A E S 2 5 6 GCM S H A 3 8 4 : DHE RSA A E S 1 2 8 GCM S H A 2 5 6 : DHE DSS A E S 1 2 8 GCM S H A 2 5 6 : kEDH+AESGCM : ECDHE RSA A E S 1 2 8 S H A 2 5 6 : ECDHE ECDSA A E S 1 2 8 S H A 2 5 6 : ECDHE RSA A E S 1 2 8 SHA : ECDHE ECDSA A E S 1 2 8 SHA : ECDHE RSA A E S 2 5 6 S H A 3 8 4 : ECDHE ECDSA A E S 2 5 6 S H A 3 8 4 : ECDHE RSA A E S 2 5 6 SHA : ECDHE ECDSA A E S 2 5 6 SHA : DHE RSA A E S 1 2 8 S H A 2 5 6 : DHE RSA A E S 1 2 8 SHA : DHE DSS A E S 1 2 8 S H A 2 5 6 : DHE RSA A E S 2 5 6 S H A 2 5 6 : DHE DSS A E S 2 5 6 SHA : DHE RSA A E S 2 5 6 SHA : A E S 1 2 8 GCM S H A 2 5 6 : A E S 2 5 6 GCM S H A 3 8 4 : A E S 1 2 8 S H A 2 5 6 : A E S 2 5 6 S H A 2 5 6 : A E S 1 2 8 SHA : A E S 2 5 6 SHA : AES : CAMELLIA : DES CBC3 SHA : ! aNULL : ! eNULL : ! EXPORT : ! DES : ! RC4 : ! MD5 : ! PSK : ! aECDH : ! EDH DSS DES CBC3 SHA : ! EDH RSA DES CBC3 SHA : ! KRB5 DES CBC3 SHA ' ;

s s l _ p r e f e r _ s e r v e r _ c i p h e r s o n ;

s s l _ s e s s i o n _ t i m e o u t 5m ;

s s l _ s e s s i o n _ c a c h e s h a r e d : S S L : 5 m ;

l o c a t i o n / {

p r o x y _ p a s s h t t p : / / s e c u r e _ p r u d e n c e ;

}

}

u p s t r e a m p r u d e n c e {

s e r v e r n o d e 1 . myapp . o r g : 8 0 8 0 ;

s e r v e r n o d e 2 . myapp . o r g : 8 0 8 0 ;

s e r v e r n o d e 3 . myapp . o r g : 8 0 8 0 ;

}

143

http://wiki.nginx.org/Main
http://nginx.org/en/docs/http/ngx_http_proxy_module.html
http://nginx.org/en/docs/http/ngx_http_upstream_module.html

u p s t r e a m s e c u r e _ p r u d e n c e {

s e r v e r n o d e 1 . myapp . o r g : 8 0 8 1 ;

s e r v e r n o d e 2 . myapp . o r g : 8 0 8 1 ;

s e r v e r n o d e 3 . myapp . o r g : 8 0 8 1 ;

}

}

Nginx o�ers some useful routing features. For example, you can gives no des �weights,� where a higher weight

means that more requests will b e sent to that no de:

u p s t r e a m p r u d e n c e {

i p _ h a s h ;

s e r v e r n o d e 1 . myapp . o r g : 8 0 8 0 w e i g h t = 1 ;

s e r v e r n o d e 2 . myapp . o r g : 8 0 8 0 w e i g h t = 2 ;

s e r v e r n o d e 3 . myapp . o r g : 8 0 8 0 w e i g h t = 4 ;

}

Or you can enable client IP-based routing, so that requests from a particular client will always go to the same

no de:

u p s t r e a m p r u d e n c e {

i p _ h a s h ;

s e r v e r n o d e 1 . myapp . o r g : 8 0 8 0 ;

s e r v e r n o d e 2 . myapp . o r g : 8 0 8 0 ;

s e r v e r n o d e 3 . myapp . o r g : 8 0 8 0 ;

}

Perlbal

Perlbal is a minimalist web server dedicated solely to load balancing. It o�ers very few con�guration options, but

is eminently hackable due to b eing written in crisp Perl. It is recommended for users who don't like �ddling with

knobs or who appreciate single-purp ose to ols.

Here's an example �p erlbal.conf �:

CREATE POOL p o o l

SET n o d e f i l e = / e t c / p e r l b a l / n o d e s

CREATE POOL s e c u r e _ p o o l

SET n o d e f i l e = / e t c / p e r l b a l / s e c u r e _ n o d e s

HTTP

CREATE SERVICE b a l a n c e r

SET l i s t e n = 0 . 0 . 0 . 0 : 8 0

SET r o l e = r e v e r s e _ p r o x y

SET p o o l = p o o l

SET v e r i f y _ b a c k e n d = o n

HTTPS

CREATE SERVICE s e c u r e _ b a l a n c e r

SET l i s t e n = 0 . 0 . 0 . 0 : 4 4 3

SET r o l e = r e v e r s e _ p r o x y

SET p o o l = s e c u r e _ p o o l

SET v e r i f y _ b a c k e n d = o n

SET e n a b l e _ s s l = o n

SET s s l _ k e y _ f i l e = / e t c / s s l / s e r v e r . k e y

SET s s l _ c e r t _ f i l e = / e t c / s s l / s e r v e r . c r t

T h e f o l l o w i n g i s r e c o m m e n d e d t o w o r k a r o u n d a b u g i n o l d e r v e r s i o n s o f I E

(t h e d e f a u l t i s ALL : ! LOW : ! EXP)

144

https://github.com/perlbal/Perlbal

SET s s l _ c i p h e r _ l i s t = ALL : ! ADH : ! EXPORT56 : RC4+RSA: +HIGH: +MEDIUM: +LOW: + S S L v 2 : +EXP: +

eNULL

I n t e r n a l m a n a g e m e n t p o r t

CREATE SERVICE mgmt

SET r o l e = m a n a g e m e n t

SET l i s t e n = 1 2 7 . 0 . 0 . 1 : 6 0 0 0 0

ENABLE b a l a n c e r

ENABLE s e c u r e _ b a l a n c e r

ENABLE mgmt

The �no des� �le is a list of IP addresses (not hostnames!) with p orts. We'll add three Prudence instances

running at the default server p ort:

1 9 2 . 1 6 8 . 1 . 1 0 : 8 0 8 0

1 9 2 . 1 6 8 . 1 . 1 1 : 8 0 8 0

1 9 2 . 1 6 8 . 1 . 1 2 : 8 0 8 0

The �secure_no des� �le is the same, but uses our separate server p ort:

1 9 2 . 1 6 8 . 1 . 1 0 : 8 0 8 1

1 9 2 . 1 6 8 . 1 . 1 1 : 8 0 8 1

1 9 2 . 1 6 8 . 1 . 1 2 : 8 0 8 1

If the no de �les are edited, Perlbal will pick up their changes on the �y.

Web Data

The load balancer handles user requests instead of your Prudence instances. (This is sometimes called, from the

client's p ersp ective, a �reverse� proxy.) This means that request headers might b e mo di�ed before they reach you,

and resp onse headers after they leave you.

Your Host One thorny issue is that the host and p ort (and scheme, if you are proxying https to http)

you get are di�erent from those the client sent. For example, the client might have made a request to

�https://myapp.org/myapp/� (at p ort 443), but it reaches your no de as �http://192.168.1.10:8081/myapp/�.

In terms of routing your URI-space, this is not a problem: Prudence always uses the URL in the original request.

However, you might care ab out which server you are on, for example if you need to access lo cal services.

Usefully, the standard HTTP/1.1 �Host� header can b e used here: your load balancer will likely set it to b e your

server. In Prudence, you can access its parsed value via the conversation.request.hostRef API :

v a r h o s t R e f = c o n v e r s a t i o n . r e q u e s t . h o s t R e f

v a r h o s t = h o s t R e f . h o s t D o m a i n / / ' 1 9 2 . 1 6 8 . 1 . 1 0 '

v a r p o r t = h o s t R e f . h o s t P o r t / / 8 0 8 1

v a r p r o t o c o l = h o s t R e f . s c h e m e / / ' h t t p '

The same value is used for virtual host con�guration (page 118).

In some cases you might want the load balancer to work transparently, leaving the original �Host� header intact.

This b ehavior is sometimes con�gurable in load balancers.

For example, in Nginx:

l o c a t i o n / {

p r o x y _ p a s s h t t p : / / p r u d e n c e ;

p r o x y _ s e t _ h e a d e r H o s t $ h o s t ;

}

Forwarded Headers One problem with the standard �Host� header is that it only contains the host and p ort,

but not the scheme. If you're proxying https to http, and are setting the �Host� header to work transparently, you

will nevertheless lose the original scheme.

145

http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.request

Though the HTTP/1.1 sp eci�cation do es not have a solution to this problem, we can use a widely supp orted de

facto standard, �rst intro duced in Squid: the �X-Forwarded-Proto� header. Also, �X-Forwarded-Host� (and/or �X-

Forwarded-Port�) can b e used instead of �Host�, allowing you to retain the �Host� of the proxy without overwriting

it.

You can enable supp ort of these headers in Prudence p er application by setting

�app.settings.routing.useForwardedHeaders� (page 74) to true in your application's settings.js:

a p p . s e t t i n g s = {

. . .

r o u t i n g : {

u s e F o r w a r d e d H e a d e r s : t r u e

}

}

By default, Prudence do es not enable the interpretation of these headers, b ecause if you're not b ehind a proxy,

it would allow clients to manipulate the information.

Note that you can also use the ForwardedFilter directly for more �ne-grained control over which requests will

use these headers.

Your load balancer must also b e con�gured to set these headers. For example, in Nginx:

l o c a t i o n / {

p r o x y _ p a s s h t t p : / / p r u d e n c e ;

p r o x y _ s e t _ h e a d e r X � F o r w a r d e d � P r o t o $ s c h e m e ;

p r o x y _ s e t _ h e a d e r X � F o r w a r d e d � P o r t $ s e r v e r _ p o r t ;

}

Client IP Address Prudence's conversation.client.upstreamAddress API identi�es the request's client, however,

in a load-balancing scenario, the client is actually the load balancer itself. This is tricky: there actually might

b e various comp onents (load balancers, caches, gateways) along the way, so how can the original IP address b e

preserved?

We can use the �X-Forwarded-For� header (a de facto standard), which is a comma-separated list of all client

IP addresses in order. Each comp onent along the way can app end itself to b efore forwarding onward. The �rst IP

address would thus b e the original client.

The default server con�guration (page 120) in Prudence do es not enable the interpretation of this header, b ecause

if you're not b ehind a proxy, it would allow clients to manipulate the information. To enable it, uncomment or add

this line in �/comp onent/servers/http.js�:

s e r v e r . c o n t e x t . p a r a m e t e r s . s e t (' u s e F o r w a r d e d F o r H e a d e r ' , ' t r u e ')

See the relevant Restlet do cumentation here and here. Also note that you can use

conversation.client.forwardedAddresses API to access the complete list.

Your load balancer must also b e con�gured to set �X-Forwarded-For�. For example, in Nginx:

l o c a t i o n / {

p r o x y _ p a s s h t t p : / / p r u d e n c e ;

p r o x y _ s e t _ h e a d e r X � F o r w a r d e d � F o r $ p r o x y _ a d d _ x _ f o r w a r d e d _ f o r ;

}

Adaptable Con�gurations

The Sincerity to ol, which is used to b o otstrap Prudence, gives you a lot deployment p ower.

In particular, the "con�guration-by-script" principle means that you don't have to create separate con�guration

�les for di�erent deployment environments: you can use the same deployed �les for development, staging, testing

and pro duction.

This dep ends on the scripts discovering in what environment they are running, and p erforming the appropriate

con�guration. Here are a few suggested discovery metho ds:

146

http://www.squid-cache.org/
http://threecrickets.com/api/java/prudence/index.html?com/threecrickets/prudence/util/ForwardedFilter.html
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.client
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/engine/index.html?org/restlet/engine/adapter/HttpServerHelper.html
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/api/index.html?org/restlet/data/ClientInfo.html
http://threecrickets.com/api/javascript/?namespace=conversation&item=conversation.client
http://threecrickets.com/sincerity/manual/introduction/#lather-rinse-repeat_configuration-and-quotxml-hellquot

By System Con�guration File You can con�gure your no de via a single �le. For example, let's create �/etc/de-

ployment�:

DEPLOYMENT= p r o d u c t i o n

In our Prudence b o otstrapping scripts, we can parse the �le safely like so:

d o c u m e n t . r e q u i r e (' / s i n c e r i t y / j v m / ')

v a r d e p l o y m e n t = ' s t a g i n g '

t r y {

d e p l o y m e n t = S i n c e r i t y . JVM . f r o m P r o p e r t i e s (S i n c e r i t y . JVM . l o a d P r o p e r t i e s (' / e t c / d e p l o y m e n t ')) . DEPLOYMENT

} c a t c h (x) { }

p r i n t l n (' D e p l o y m e n t : ' + d e p l o y m e n t)

i f (d e p l o y m e n t == ' d e v e l o p m e n t ') {

. . .

}

Note that we are defaulting to �staging� in case the �le do esn't exist. Defaulting to �development� might b e

risky: development deployments usually reveal to o much data, or otherwise provide security overrides.

The advantage of this �le format is that it's very easy to parse in other languages, so you can use it to con�gure

non-Prudence comp onents, to o. Here's an example in bash:

i f [� f / e t c / d e p l o y m e n t] ; t h e n

. / e t c / d e p l o y m e n t

e c h o " D e p l o y m e n t : $DEPLOYMENT"

e l s e

DEPLOYMENT= s t a g i n g

e c h o " D e p l o y m e n t : s t a g i n g (d e f a u l t) "

f i

By IP Address Your deployment environment might b e known according to the lo cal IP address or subnetwork.

It's p ossible to lo okup the IP address in a table, or other parse parts of it (the subnetwork).

To retrieve it, the following might work:

v a r a d d r e s s = j a v a . n e t . I n e t A d d r e s s . l o c a l H o s t . h o s t A d d r e s s

This API won't work as exp ected in some lo cal con�gurations, instead returning the lo opback address, �127.0.0.1�.

Also, some no des may have multiple IP addresses. To iterate al l lo cal IP addresses, use this co de:

v a r a d d r e s s e s = []

f o r (v a r e = j a v a . n e t . N e t w o r k I n t e r f a c e . n e t w o r k I n t e r f a c e s ; e . h a s M o r e E l e m e n t s () ;) {

v a r i n t e r f a c e = e . n e x t E l e m e n t ()

f o r (v a r e e = i n t e r f a c e . i n e t A d d r e s s e s ; e e . h a s M o r e E l e m e n t s () ;) {

v a r a d d r e s s = e e . n e x t E l e m e n t ()

i f (! a d d r e s s . l o o p b a c k A d d r e s s) {

a d d r e s s e s . p u s h (a d d r e s s . h o s t A d d r e s s)

}

}

}

By �Cloud� API If you're running in a �cloud� environment, your host likely provides you with an API service

to discover your no de's name, group it b elongs to, etc., making it easy to determine your deployment environment.

Many cloud environments supp ort the Op enStack API , which you can access easily directly via RESTful requests

(page 60) or a dedicated JVM wrapp er. Sp eci�cally, its identity service can b e used to retrieve information ab out

the current no de.

For example, let's list the tenants of our no de:

d o c u m e n t . r e q u i r e (' / p r u d e n c e / r e s o u r c e s / ')

v a r o p e n s t a c k B a s e U r i = . . .

147

http://api.openstack.org/
https://github.com/woorea/openstack-java-sdk
http://docs.openstack.org/api/openstack-identity-service/2.0/content/index.html
http://docs.openstack.org/api/openstack-identity-service/2.0/content/GET_listTenants_v2.0_tokens_tenants_.html

v a r t e n a n t s = P r u d e n c e . R e s o u r c e s . r e q u e s t ({

u r i : o p e n s t a c k B a s e U r i + ' v 2 . 0 / t e n a n t s ' ,

m e d i a T y p e : ' a p p l i c a t i o n / j s o n '

})

f o r (v a r t i n t e n a n t s) {

v a r t e n a n t = t e n a n t s [t]

p r i n t l n (t e n a n t . n a m e)

}

Note that the ab ove co de will only work from a running Prudence application: during b o otstrapping, you will

have to use a di�erent metho d to make REST requests, for example the dedicated JVM wrapp er.

Op erating System Service (Daemon)

In pro duction environments it's recommend to have Prudence installed as an op erating system service (�daemon�),

which allows you to use standard to ols to start, stop and monitor its status. It will also guarantee that Prudence

starts as quickly as p ossible when the system starts, reducing downtime in the cases of restarts.

In Prudence this is b est handled by installing the Sincerity service plugin, which adds a p owerful native

�wrapp er� service around the JVM. The do cumentation there also provides you with examples of how to install it

in your op erating system.

Note that the wrapp er uses its own logging system, separate from the one used by Prudence (page 88), though

the default con�gurations of b oth will work well together.

Security

Securing your deployment is imp ortant whether you're running an Internet site or a lo cal intranet site. Actually,

�security� is an umbrella term for various asp ects dealing with, ahem, unintended use of your site:

� You want to make sure that outsiders do not have access to your secret data.

� You want to make sure that outsiders, and p ossibly even you , don't have access to other users' data, for which

you are the trusted caretaker.

� You want to make sure that outsiders cannot take mo dify your site's op eration, essentially hijacking it for

their own uses, while using your users' con�dence in you for their own purp oses.

� You want to make sure that outsiders cannot stop your site from op erating. This is often called a Denial of

Service (DoS) attack.

It's crucial that you study this topic well or hire an exp ert to handle it for you. It's astounding how often big,

�trusted� companies fail miserably in securing their applications. Don't wait until the �re starts to put it out:

prevent it from ever happ ening.

Unfortunately, it's not a simple problem �eld: attacks are getting more and more sophisticated, using sheer

computational prowess to break through encryption, �rainb ow� attacks to uncover user passwords, and �nding

clever lo opholes for injecting co de into your application or database runtime. We de�nitely can't cover all asp ects

of security here, esp ecially b ecause it's a moving target. But we'll cover some essentials that are directly related to

Prudence and the deployment technologies mentioned in this chapter.

Is Prudence less secure, as an op en source pro duct, than proprietary alternatives? To b e honest, there's

something scary ab out revealing all your cards to the hackers. At the same time, these cards are also seen

by the community of users, like you, who have an interest in plugging security holes as so on as they're

discovered. With closed-source software, ignorance is bliss: you have to rely on indirect knowledge to

evaluate just how secure it is. And if a lo ophole is discovered, you have to rely on others to �x it. With

Prudence, you don't have to wait for us: we've gone to great lengths not only to share the co de, but

also to make it as easy as p ossible for you to build your own patched-up Prudence. When all the factors

are considered, we b elieve that op en source is the b etter choice in the long run for those who care ab out

security.

148

http://threecrickets.com/sincerity/ecosystem/feature-plugins/#service-plugin
http://wrapper.tanukisoftware.com/

Lo cked-Down User

When applications are hacked, your only line of defense is the op erating system. And let's put is plainly: all

applications have exploits. Thus, esp ecially b ecause it's so easy, there's no excuse not to implement basic op erating

system security.

The �rst thing you should do is create a sp ecial user that will spawn and thus own the Prudence pro cess. If

you're running Prudence as a service (page 148), then you should install that service via that user.

Then, lock that user down . All op erating systems let your control �le access p er user, so make sure the user

can only exact only the �les it needs. Most op erating systems are to o promiscuous by default, so make sure that

nothing imp ortant is readable by your designated user.

But accessing the �les is only the tip of the iceb erg: you want Mandatory Access Control (MAC), to o, to limit

the user's ability to execute pro cesses it shouldn't. If you're deploying on Linux, consider using AppArmor, which

allows for simple pro�les to con�gure the use of Linux's many security features.

Firewall

Whether you're running a cluster (page 137) or a single server, there's no reason unused p orts should b e op en to

the world, and to mischief. Get yourself a �rewall.

If you're deploying on Linux, iptables (a net�ler mo dule) is the standard solution. However, it can

b e quite daunting to manage directly, so consider using a higher-level to ol instead: we recommend the

Uncomplicated Firewall (UFW) , which allows for p er-application pro�les, and comes with sensible iptables defaults.

Which p orts should you leave op en?

HTTP and HTTPS The standard and default Internet p orts for these are 80 and 443 resp ectively. Of course,

you are free to use other p orts for your deployment, for which there might b e security advantages.

Cluster Are you running your no des as a cluster (page 137)? The default p ort used by Hazelcast is 5701, though

it's easy to change it.

Cache Backends Do you need access to a shared cache backend (page 123)?

� Hazelcast: See cluster, ab ove: the default p ort is 5701.

� memcached: The default p ort is 11211.

� MongoDB: The default p ort is 27018.

� SQL: This varies, refer to your pro duct's do cumentation.

HTTPS

Enabling TLS/SSL encryption for HTTP is usual ly more ab out protecting your user data than protecting your

own. And indeed, this service you provide to your users is costly in terms of CPU cycles it requires and certi�cation

authorities you must pay for generally trusted certi�cates.

HTTPS also has an entirely di�erent use case, sp eci�cally when it's used with privately issued certi�cates: you

gain a p owerful authentication barrier. Only users who own the certi�cate would b e able to access the protected

resources.

You have the option of handling SSL directly in Prudence (page 120) or �terminating� at the load balancer (page

142).

HTTP Authentication

Prudence supp orts HTTP basic authentication (page 112), which is in turn supp orted by most web browsers and

other HTTP clients. Coupled with HTTPS (in order to ensure that the password is transferred securely to you),

it's actually not such a bad way to secure your resources. Web browsers will cache user credentials for the duration

of a �session,� which usually means until the web browser is closed.

HTTP authentication is secure enough when coupled with HTTPS, but it's not a scalable

way to supp ort many users and sessions. If you need a comprehensive solution, consider

Diligence's authentication service.

149

http://wiki.apparmor.net/
http://www.netfilter.org/projects/iptables/index.html
https://wiki.ubuntu.com/UncomplicatedFirewall
http://www.hazelcast.com/docs/latest/manual/multi_html/ch14s02.html
http://www.hazelcast.com/
http://memcached.org/
http://www.mongodb.org/

Quarantine the Admins

Many sites allow for �administrative� logins that have sp ecial privileges and abilities. Probably, these abilities would

b e utterly destructive in the wrong hands.

It thus makes a lot of sense to quarantine these users and their needs into a separate security domains: it should

b e harder for an admin to login than for a regular user. All defenses should b e up: HTTPS with private certi�cates,

a separate cluster �rewalled from the regular application no des, and sharing only the resources that are absolutely

necessary for admin functionality.

Utilities for Restlet

If you are a Restlet Java programmer, Prudence may still b e of use to you. The Prudence standalone Jar has several

well-do cumented classes useful for any Restlet application. They're all in the �com.threecrickets.prudence.util�

package, and intro duced b elow.

Also, rememb er that can use Sincerity without Prudence: Sincerity's Restlet skeleton gives you all the b ene�ts

of JavaScript-based con�guration and b o otstrapping for your Java Restlet applications. Use Java where it matters,

JavaScript where it do esn't: don't waste your time recompiling Java when all you need is some external, deployment-

related features. Edit your scripts on the �y, and you're done.

Utility Restlets

We wish these general-purp ose utilities existed in the standard Restlet library!

� CacheControlFilter: A Filter that adds cache control directives to resp onses. Great for wrapping around a

Directory.

� CorsFilter: A Filter that add Cross-Origin Resource Sharing (CORS) resp onse headers.

� CustomEnco der: A more lo calized alternative to using the Enco derService. Place it as a Filter b efore any

restlet.

� ForwardedFilter: A Filter that applies the X-Forwarded-Proto, X-Forwarded-Host, and X-Forwarded-Port

HTTP headers to the request's references.

� Injector: A Filter that adds values to the request attributes b efore moving to the next restlet. It allows for

a straightforward implementation of IoC (Inversion of Control). Automatically supp orts casting of Template

instances.

� StatusRestlet: A restlet that always sets a sp eci�c status and do es nothing else.

� VirtualHostInjector: A Filter that sets the virtual host as a request attribute.

Client Data

These classes add no new functionality, but make working with some client data a bit easier.

� CompressedStringRepresentation: This is a ByteArrayRepresentation that can b e constructed using text and

an enco ding, which it then compresses into bytes according the enco ding. This is an alternative to using an

Enco der �lter, allowing you direct control over and access to the �nal representation.

� ConversationCo okie: A mo di�able extension of a regular Co okie. Tracks mo di�cations, and up on calling

save() stores them as a Co okieSetting, likely in the Resp onse. Also supp orts co okie deletion via remove().

� FormWithFiles: A form that can parse MediaTyp e.MULTIPART_FORM_DATA entities by accepting �le

uploads. Files will app ear as parameters of typ e FileParameter.

� InternalRepresentation: A representation used to transfer internal ob jects. Uses a custom �application/inter-

nal� media typ e.

150

Redirection

Restlet's server-side redirection works by creating a new request. Unfortunately, this means that some information

from the original request is lost. Prudence includes a set of classes that work together to preserve the original URI,

which we here call the �captured� URI.

� CapturingRedirector: A Redirector that keeps track of the �captured� (original) reference.

� NormalizingRedirector: A Redirector that normalizes relative paths. This may b e unnecessary in future

versions of Restlet: see Restlet issue 238.

Fallback Routing

�Fallback� is a p owerful new routing paradigm intro duced in Prudence that lets you attach multiple restlets to a

single route.

� Fallback: A restlet that delegates Restlet.handle(Request, Resp onse) to a series of targets in sequence, stop-

ping at the �rst target that satis�es the condition of wasHandled. This is very useful for allowing multiple

restlets a chance to handle a request, while �falling back� to subsequent restlets when those �fail.�

� FallbackRouter: A Router that takes care to bunch identical routes under Fallback restlets.

Resolver Selection

Restlet do es not provide an easy way to use di�erent template variable resolver instances (see Restlet issue 798

for more information). We've created new implementations of a few of the core classes that let you cho ose which

resolver to use.

� ResolvingTemplate: A Template that allows control over which Resolver instances it will use.

� ResolvingRedirector: A Redirector that uses ResolvingTemplate. It also allows another useful feature: turning

o� the cleaning of headers during server-side redirections.

� ResolvingRouter: A Router that uses ResolvingTemplate for all routes.

Web Filters

A set of Filter classes for web technologies.

� CssUnifyMinifyFilter: Automatically uni�es and/or compresses CSS source �les, saving them as a single �le.

Unifying them allows clients to retrieve the CSS via one request rather than many. Compressing them makes

their retrieval faster. Compression is done via CSSMin.

� JavaScriptUnifyMinifyFilter: Automatically uni�es and/or compresses JavaScript source �les, saving them

as a single �le. Unifying them allows clients to retrieve the JavaScript via one request rather than many.

Compressing them makes their retrieval faster. Compression is done via John Reilly's Java p ort of Douglas

Cro ckford's JSMin.

� LessFilter: Automatically parses LESS co de and renders CSS using the Less4j library. Also supp orts minifying

�les, if the �.min.css� extension is used.

� ZussFilter: Automatically parses ZUSS co de and renders CSS. Also supp orts minifying �les, if the �.min.css�

extension is used.

Other Utilities

� CustomAuthenticatorHelp er: Makes it easy to register custom authentication schemes.

� EnhancedCallResolver: Improves on the default Restlet CallResolver.

151

Upgrading from Prudence 1.1

Prudence 1.1 did not use Sincerity: instead, it was a self-contained container with everything in the b ox. This meant

it could also not b e mo dular, and instead supp orted several distributions (��avors�) p er supp orted programming

language. Rather than standardizing on a single language for b o otstrapping co de, and indeed the pro ject maintained

a separate set of b o otstrapping co de for each supp orted language.

This was not only cumb ersome in terms of do cumentation and maintenance, but it also made it hard to p ort

applications b etween ��avors.�

With the move to Sincerity in Prudence 2.0, it was p ossible to make Prudence more minimal as well as more

mo dular, as Sincerity handles the b o otstrapping and installation of supp orted languages. Though Sincerity can

ostensibly run b o otstrapping scripts in any Scripturian-supp orted language, it standardizes on JavaScript in order

to maintain fo cus and p ortability. The b ottom line is that if you used non-JavaScript �avors of Prudence 1.1, you

will need to use JavaScript for your b o otstrapping scripts, even if your application co de (resources, scriptlets, tasks,

etc.) is written in a di�erent language.

To b e 100% clear: al l ��avors� supported in Prudence 1.1 are stil l supported in Prudence 2.0 , and your application

co de will likely not even have to change. You only need (or rather, are recommended) to use JavaScript for

b o otstrapping.

Upgrading Applications

There are no signi�cant API changes b etween Prudence 1.1 and Prudence 2.0. However, the b o otstrapping and

con�guration has b een completely overhauled. You will likely need to take a few minutes to rewrite your settings.js,

routing.js, etc. Here is a step-by-step checklist:

1. Start with a new application based on the default template.

(a) Rename old application (add �-old�), for example: �myapp-old�

(b) Use the �prudence� Sincerity to ol to create a new application for your application name:

s i n c e r i t y p r u d e n c e c r e a t e myapp

2. Copy over individual settings from settings.js, using the new manual (page 70) to �nd equivalences.

3. Redo your routing.js, using the new manual (page 117) to �nd equivalences. Prudence 2.0 uses a far more

p owerful and clearer routing con�guration.

4. Rename �/resources/� �les to add a �.m.� pre-extension (they are now called �manual resources�). Under

Unix-like op eration systems, you can rename the all �les in the tree via a Perl expression using something like

this:

f i n d . � n a m e " � . j s " � e x e c r e n a m e � v ' s / \ . j s $ / \ .m . j s / i ' { } \ ;

5. Rename �/web/dynamic/� �les to add a �.t.� pre-extension (they are now called �template resources�). Under

Unix-like op eration systems, you can rename the all �les in the tree via a Perl expression using something like

this:

f i n d . � n a m e " � . h t m l " � e x e c r e n a m e � v ' s / \ . h t m l $ / \ . t . h t m l / i ' { } \ ;

6. Merge �/web/dynamic/� and �/web/static/� into �/resources/�.

7. Move �/web/fragments/� to �/libraries/includes/�.

Part I I I

Articles

The Case for REST

There's a lot of buzz ab out REST, but also a lot confusion ab out what it is and what it's go o d for. This essay

attempts to convey REST's simple essence.

152

Let's start, then, not at REST, but at an attempt to create a new architecture for building scalable applications.

Our goals are for it to b e minimal, straightforward, and still have enough features to b e pro ductive. We want to

learn some lessons from the failures of other, more elab orate and complicated architectures.

Let's call ours a �resource-oriented architecture.�

Resources

Our base unit is a �resource,� which, like an ob ject in ob ject-oriented architectures, encapsulates data with some

functionality. However, we've learned from ob ject-orientation that implementing arbitrary interfaces is a recip e for

complexity: proxy generation, supp ort for arbitrary typ es, marshaling, etc. And then we would need middleware

to do all that heavy lifting for us. So, let's instead keep it simple and de�ne a limited, uni�ed interface that would

b e just useful enough.

From our exp erience with relational databases, we've learned that tremendous p ower can b e found in �CRUD�:

Create, Read, Up date and Delete. If we supp ort just these op erations, our resources will already b e very p owerful,

enjoying the accumulated wisdom and design patterns from the database world.

Identi�ers

Let's start with a way of uniquely identifying our resources. We'll de�ne a name-based address space where our

resources live. Each resource is �attached� to one or more addresses. We'll allow for �/� as a customary separator

to allow for hierarchical addressing schemes. For example:

/ a n i m a l / d o g / 3 /

/ a n i m a l / c a t / 1 2 / i m a g e /

/ a n i m a l / c a t / 1 2 / i m a g e / l a r g e /

/ a n i m a l / c a t / 1 2 / s p e c s /

In the ab ove, we've allowed for di�erent kinds of animals, a way of referencing individual animals, and a way of

referencing sp eci�c asp ects of these animals.

Let's now go over CRUD op erations in increasing order of complexity.

Delete

�Delete� is the most trivial op eration. After sending �delete� to an identi�er, we exp ect it to not exist anymore.

Whether sub-resources in our hierarchy can exist or not, we'll leave up to individual implementations. For example,

deleting �/animal/cat/12/image� may or may not delete �/animal/cat/12/image/large�.

Note that we don't care ab out atomicity here, b ecause we don't exp ect anything to happ en after our �delete�

op eration. A million changes can happ en to our cat b efore our command is pro cessed, but they're all forgotten

after �delete.� (See �up date,� b elow, for a small caveat.)

Read

�Read� is a bit more complicated than �delete.� Since our resource might b e changed by other clients, to o, we want

to make sure that there's some kind of way to mark which version we are reading. This will allow us to avoid

unnecessary reads if there hasn't b een any change.

Thus, we'll need our resource-oriented architecture to supp ort some kind of version tagging feature.

Up date

The problem with �up date� is that it always references a certain version that we have �read� b efore. In some cases,

though not all, we need some way to make sure that the data we exp ect to b e there hasn't changed since we've last

�read� it. Let's call this a �conditional up date.� (In databases, this is called a �compare-and-set� atomic op eration.)

Actually, we've oversimpli�ed our earlier de�nition of �delete.� In some cases, we'd want a �conditional delete�

to dep end on certain exp ectations ab out the data. We might not want the resource deleted in some cases.

We'll need our resource-oriented architecture to supp ort a general �conditional� op eration feature.

153

Create

This is our most complex op eration. Our �rst problem is that our identi�er might not exist yet, or might already

b e attached to a resource. One approach could b e to try identi�ers in sequence:

C r e a t e : / a n i m a l / c a t / 1 3 / � > E r r o r , a l r e a d y e x i s t s

C r e a t e : / a n i m a l / c a t / 1 4 / � > E r r o r , a l r e a d y e x i s t s

C r e a t e : / a n i m a l / c a t / 1 5 / � > E r r o r , a l r e a d y e x i s t s

. . .

C r e a t e : / a n i m a l / c a t / 3 0 2 0 4 1 / � > S u c c e s s !

Obviously, this is not a scalable solution. Another approach could b e to have a help er resource which provides

us with the necessary ID:

R e a d : / a n i m a l / c a t / n e x t / � > 1 4

C r e a t e : / a n i m a l / c a t / 1 4 / � > O o p s , s o m e o n e e l s e b e a t u s t o 1 4 !

R e a d : / a n i m a l / c a t / n e x t / � > 1 5

C r e a t e : / a n i m a l / c a t / 1 5 / � > S u c c e s s !

Of course, we can also have �/animal/cat/next/� return unique IDs (such as GUIDs) to avoid duplications. If

we never create our cat, they will b e wasted, though. The main problem with this approach is that it requires two

calls p er creation: a �read,� and then a �create.� We can handle this in one call by allowing for �partial� creation, a

�create� linked with an intrinsic �read�:

C r e a t e : / a n i m a l / c a t / � > We s e n d t h e d a t a f o r t h e c a t w i t h o u t t h e I D , a n d g e t b a c k

t h e s a m e c a t w i t h a n I D

Other solutions exist, to o. The p oint of this discussion is to show you that �create� is not trivial, but also

that solutions to �create� already exist within the resource-oriented architecture we've de�ned. �Create,� though

programmatically complex, do es not require any additional architectural features.

Aggregate Resources

At �rst glance, handling the problem of getting lots of resources at the same time, thus saving on the numb er of

calls, can trivially b e handled by the features we've listed so far. A common solution is to de�ne a �plural� version

of the �singular� resource:

/ a n i m a l / c a t s /

A �read� would give us all cats. But what if there are ten million cats? We can supp ort paging. Again, we have

a solution within our current feature set, using identi�ers for each subset of cats:

/ a n i m a l / c a t s / 1 0 0 / 2 0 0 /

We can de�ne the ab ove to return no more than 100 cats: from the 100th, to the 200th. There's a slight problem

in this solution: the burden is on whatever comp onent in our system handles mapping identi�ers to resources. This

is not terrible, but if we want our system to b e more generic, it could help if things like �100 to 200� could b e handled

by our resource more directly. For convenience, let's implement a simple parameter system for all commands:

R e a d (1 0 0 , 2 0 0) : / a n i m a l / c a t s /

In the ab ove, our mapping comp onent only needs to know ab out �/animal/cats�. The dumb er our mapping

comp onent is, the easier it is to implement.

Formats

The problem of supp orting multiple formats seems similar, at �rst glance, to that of aggregate resources. Again,

we could p otentially solve it with command parameters:

R e a d (UTF � 8 , R u s s i a n) : / a n i m a l / c a t / 1 3 /

This would give us a Russian, Unico de UTF-8 enco ded version of our cat. Lo oks go o d, except that there is a

p otential problem: the client might prefer certain formats, but actually b e able to handle others. It's more a matter

of preference than any precision. Of course, we can have another resource where all available formats are listed, but

this would require an extra call, and also intro duce the problem of atomicity�what if the cat changes b etween these

154

calls? A b etter solution would b e to have the client asso ciate certain preferences p er command, have our resource

emit its capabilities, with the mapping comp onent in b etween �negotiating� these two lists. This �negotiation� is a

rather simple algorithm to cho ose the b est mutually preferable format.

This would b e a simple feature to add to our resource-oriented architecture, which could greatly help to decouple

its supp ort for multiple formats from its addressing scheme.

Shared State

Shared state b etween the client and server is very useful for managing sessions and implementing basic security. Of

course, it's quite easy to abuse shared state, to o, by treating it as a cache for data. We don't want to encourage

that. Instead, we just want a very simple shared state system.

We'll allow for this by attaching small, named, shared state ob jects to every request and resp onse to a command.

Nothing fancy or elab orate. There is a p otential security breach here, so we have to trust that all comp onents along

the way honor the relationship b etween client and server, and don't allow other servers access to our shared state.

Summary of Features

So, what do we need?

We need a way to map identi�ers to resources. We need supp ort for the four CRUD op erations. We need supp ort

for �conditional� up dates and deletes. We need all op erations to supp ort �parameters.� We need �negotiation� of

formats. And, we need a simple shared state attachment feature.

This list is very easy to implement. It requires very little computing p ower, and no supp ort for generic, arbitrary

additions.

Transactions. . . Not!

Before we go on, it's worth mentioning one imp ortant feature which we did not require: transactions. Transactions

are optional, and sometimes core features in many databases and distributed ob ject systems. They can b e extremely

p owerful, as they allow atomicity across an arbitrary numb er of commands. They are also, however, heavy to

implement, as they require considerable shared state b etween client and server. Powerful as they are, it is p ossible

to live without them. For example, we can implement complex atomicity schemes ourselves within a single resource.

This puts some burden on us, but it do es remove the heavy burden of supp orting arbitrary transactions from our

architecture. With some small reluctance, then, we'll do without transactions.

Let's Do It!

OK, so now we know what we need, let's go ahead and implement the infrastructure of comp onents to handle our

requirements. All we need is stacks for all supp orted clients, backend stacks for all our p otential server platforms,

middleware comp onents to handle all the identi�er routing, content negotiation, caching of data. . .

. . . And thousands of man hours to develop, test, deploy, and integrate. Like any large-scale, enterprise architec-

ture, even trivial requirements have to jump through the usual ho ops set up by the sheer scale of the task. Behind

every great architecture are the nuts and b olts of the infrastructure.

Wouldn't it b e great if the infrastructure already existed?

The Punchline

Well, duh. Al l the requirements for our resource-oriented architecture are already supp orted by HTTP:

Our resource identi�ers are URLs. The CRUD op erations are in the four HTTP verbs: PUT, GET, POST and

DELETE. �Conditional� and �negotiated� mo des are handled by headers, as are �co okies� for shared state. Version

stamps are e-tags and timestamps. Command parameters are query matrices app ended to URLs. It's all there.

Most imp ortantly, the infrastructure for HTTP is already fully deployed world-wide. TCP/IP stacks are part

of practically every op erating system; wiring, switching and routing are part and parcel; HTTP gateways, �re-

walls, load balancers, proxies, caches, �lters, etc., are stable consumer comp onents; certi�cate authorities, national

laws, international agreements are already in place to supp ort the complex inter-business interaction. Best of

all, this available infrastructure is successfully maintained, with minimal down-time, by highly-skilled indep endent

technicians, organizations and comp onent vendors across the world.

155

It's imp ortant to note a dep endency and p ossible limitation of HTTP: it is b ound to TCP/IP. Indeed,

all identi�ers are URLs: Uniform Resource Lo cators. In URLs, the �rst segment is reserved for the

domain, either an IP address or a domain name translatable to an IP address. Compare this with the

more general URIs (Uniform Resource Identi�ers), which do not have this requirement. Though we'll

often b e tied to HTTP in REST, you'll see the literature attempting, at least, to b e more generic. There

are de�nitely use cases for non-HTTP, and even non-TCP/IP addressing schemes. In Prudence, it's

p ossible to address internal resources with URIs that are not URLs ; see internal APIs (page ??).

It's All Ab out Infrastructure

The most imp ortant lesson to take from this exercise is the imp ortance of infrastructure, something easily

forgotten when planning architecture in ideal, abstract terms. This is why, I b elieve, Roy Fielding named

Chapter 5 of his 2000 dissertation �Representational State Transfer (REST)� rather than, say, �resource-oriented

architecture,� as we have here. Fielding, one of the authors of the HTTP proto col, was intimately familiar with its

deployment challenges, and the name �REST� is intended to p oint out the key characteristic of its infrastructure:

HTTP and similar proto cols are designed for transferring lightly annotated data representations, nothing more.

�Resources� are merely logical encapsulations of these representations, dep ending on a contract b etween client and

server. The infrastructure do es not, in itself, do anything in particular to maintain, say, a sensible hierarchy of

addresses, abitrary atomicity of CRUD op erations, etc. That's up to your implementation. But, representational

state transfer�REST�is the mundane, underlying magic that makes it all p ossible.

To come back to where we started: a resource-oriented architecture requires a REST infrastructure. In practice,

the two terms b ecome interchangeable.

The principles of resource-orientation can and are applied in many systems. The word wide web, of course, with

its ecology of web browsers, web servers, certi�cate authorities, etc., is the most obvious mo del. But other core

Internet systems, such as email (SMTP, POP, IMAP), �le transfer (FTP, WebDAV) also implement some subset

of REST. Your application can do this, to o, and enjoy the same p otential for scalability as these global, op en

implementations.

Do es REST Scale?

Part of the buzz ab out REST is that it's an inherently scalable architecture. This is true, but p erhaps not in the

way that you think.

Consider that there are two uses of the word �scalable�:

First, it's the ability to resp ond to a growing numb er of user requests without degradation in

resp onse time , by �simply� adding hardware (horizontal scaling) or replacing it with more p owerful hardware

(vertical scaling). This is the asp ect of scalability that engineers care ab out. The simple answer is that REST can

help, but it do esn't stand out. SOAP, for example, can also do it pretty well. REST a�cionados sometimes p oint

out that REST is �stateless,� or �session-less,� b oth characteristics that would de�nitely help scale. But, this is

misleading. Proto cols might b e stateless, but architectures built on top of them don't have to b e. For example,

we've sp eci�cally talked ab out sessions here, and many web frameworks manage sessions via co okies. On the other

hand, you can easily make p o orly scalable REST. The b ottom line is that there's nothing in REST that guarantees

scalability in this resp ect. Indeed, engineers coming to REST due to this false lure end up wondering what the big

deal is. We wrote a whole article for Scaling Tips (page 159), which is indeed not sp eci�cally ab out REST.

The second use of �scalability� comes from the realm of enterprise and pro ject management. It's the ability

of your pro ject to grow in complexity without degradation in your ability to manage it . And that's

REST's b eauty�you already have the infrastructure, which is the hardest thing to scale in a pro ject. You don't

need to deploy client stacks. You don't need to create and up date proxy ob jects for �ve di�erent programming

languages used in your enterprise. You don't need to deploy incompatible middleware by three di�erent vendors and

sp end weeks trying to force them to play well together. Why would engineers care ab out REST? Precisely b ecause

they don't have to: they can fo cus on application engineering, rather than get b ogged down by infrastructure

management.

That said, a �resource-oriented architecture� as we de�ned here is not a bad start for�engineering-wise�scalable

systems. Keep your extras lightweight, minimize or eliminate shared state, and encapsulate your resources according

to use cases, and you won't, at least immediately, create any obstacles to scaling.

156

Prudence

Convinced? The b est way to understand REST is to exp eriment with it. You've come to the right place. Start with

the tutorial (page 6), and feel free to skip around the do cumentation and try things out for yourself. We're sure

that you'll �nd it easy, fun, and p owerful enough for you to create large-scale applications that take full advantage

of the inherently scalable infrastructure of REST.

URI-space Architecture

REST do es not standardize URI-spaces, and indeed has little to say ab out URI design. However, it do es imply a

preference for certain architectural principles. We go over much of the imp etus in The Case for REST article (page

152), and suggest you start there.

It's a go o d idea to think very carefully ab out your URI-space: a go o d design will in turn help you de�ne

well-encapsulated RESTful resources. Below are some topics to consider.

Nouns vs. Verbs

It's useful to think of URIs as syntactic nouns , a grammatical counterpart to HTTP's verbs . To put it simply:

make sure that you do not include verbs in your URIs. Examples:

� Go o d: �/service/{id}/status/�

� Bad: �/service/{id}/start/�, �/service/{id}/stop/�

What is wrong with verbs in URIs?

One p otential problem is clarity. Which HTTP verb should b e used on a verb URI? Do you need to POST, PUT

or DELETE to �/service/{id}/stop/� in order to stop the service? Of course, you can supp ort all and do cument

this, but it won't b e immediately obvious to the user.

A second p otential problem is that you need to keep increasing the size of your URI-space the more actions

of this sort you want to supp ort. This means more �les, more classes, and generally more co de. Handling these

op erations inside a single resource would just mean a simple �if � or �switch� statement and an extra metho d.

A third, more serious p otential problem is idemp otency. The idemp otent verbs PUT and DELETE may b e

optimized by the HTTP infrastructure (for example, a smart load balancer) such that requests arrive more than once:

this is allowed by the very de�nition of idemp otency. However, your intended op erations may not be semantically

idemp otent. For example, if a �stop� is sent to an already-stopp ed service, it may return an �already stopp ed� 500

error. In this case, if the infrastructure indeed allows for two �stop� commands to come through, then the user

may get an error even though the op eration succeeded for the �rst �stop.� There's an easy way around this: simply

allow only POST, the non-idemp otent verb, for all such op erations. The infrastructure would never allow more

than request to come through p er POST. However, if you enforce the use of POST, you will lose the ability of the

infrastructure to optimize for non-idemp otency. POST is the least scalable HTTP verb.

The b ottom line is that if you standardize on only using nouns for your URIs, you will avoid many of these

semantic pitfalls.

Also: beware of gerunds! A URI such as �/service/{id}/stopping/� is may b e a noun, but allows for some

verb-related problems to creep in.

Do You Really Need REST?

In the ab ove section, it was suggested that you prefer nouns to verbs. However, this preference may b e to o

constraining for your pro ject. Your application may b e very command-oriented, such that you will end up with a

very small set of �noun� URIs that need to supp ort a large amount of commands, meaning less clarity and more

cluttered co de.

REST's b est feature it it's tiny set of tightly de�ned verbs: GET, POST, PUT, DELETE. The entire infras-

tructure is highly optimized around them: load balancers, caches, browsers, gateways, etc., all know how b est to

handle each of these for maximum scalability and reliability. But, it's entirely p ossible that your needs cannot b e

easily satis�ed by just four verbs.

And that's OK. REST is not always the b est solution for APIs.

Instead, take a lo ok at RPC (Remote Pro cedure Call) mechanisms. The Diligence framework, based on Prudence,

provides easy and robust supp ort for b oth JSON-RPC and XML-RPC in its RPC Service as well as Ext Direct

157

in its Sencha Integration, allowing you to ho ok a JavaScript function on the server directly to a URI. In terms of

HTTP, these proto cols all use HTTP POST, and do not leverage the HTTP infrastructure as well as a more fully

RESTful API. But, one size do es not �t all, and an RPC-based solution may prove a b etter match for your pro ject.

It's also p erfectly p ossible to use both REST and RPC in your pro ject. Use each approach where it is most

appropriate.

Hierarchical URIs

It's entirely a matter of convention that the use of �/� in URIs implies hierarchy. Historically, the convention was

likely imp orted from �lesystem paths, where a name b efore a �/� signi�es a directory rather than a �le.

This convention is useful b ecause it's very familiar to users, but b eyond that it implies a few semantic prop erties

that can add clarity and p ower to your resource design. There are two p ossible principles you may consider:

1. A descendant resource belongs to its ancestor, such that resources have cascading relationships in the hierarchy.

This implies two rules:

(a) Op erations on a resource may a�ect descendants. This rule is most obvious when applied to the

DELETE verb: for example, if you delete �/user/{id}/�, then it is exp ected that the resources at

�/user/{id}/pro�le/� and �/user/{id}/preferences/� also b e deleted. A PUT, to o, would also a�ect

the descendant resources.

(b) Op erations on a resource should not a�ect ancestors. In other words, a descendant's state is isolated from

its ancestors. For example, if I send a POST to �/user/{id}/pro�le/�, the representation at �/user/{id}/�

should remain unaltered.

2. A descendant resource belongs to its ancestor and also represents an aspect of its ancestor, such that op erations

on a resource can b e �ne-tuned to particular asp ects of it. This implies three rules:

(a) Descendant representations are included in ancestor representations. For example, a GET on �/ser-

vice/{id}/� would include information ab out the status that you would see if you GET on �/ser-

vice/{id}/status/�. The latter URI makes it easier for the client to direct op erations at the status

asp ect.

(b) Op erations on a resource may a�ect descendants. See ab ove.

(c) Op erations on a resource wil l a�ect ancestors. This is the opposite of the ab ove: the descendant's state

is not isolated from its ancestors. For example, a POST to �/service/{id}/status/� would surely also

a�ect �/service/{id}/�, which includes the status.

You can see from the di�erence b etween rule 1.b and 2.c. that it's imp ortant to carefully de�ne the nature of your

hierarchical relationships. Unlike �lesystem directory hierarchies, in a URI-space there is no single standard or

obvious interpretation of what of a hierarchical relationship would mean. But unless you clarify it for yourself, it

cannot b e clear to your users.

Formats Are Not Asp ects

A format should not b e considered �an asp ect� in the sense used in principle 2. For example, �/service/{id}/html/�

would not b e a go o d way to supp ort an HTML format for �/service/{id}/�. The reason is that you would b e

allowing for more than one URI for the same encapsulated resource, creating confusion for users. For example, it's

not immediately clear what would happ en if they DELETE �/service/{id}/html/�. Would that just remove the

ability to represent the service as HTML? Or delete the service itself ?

Supp orting multiple formats is b est handled with content negotiation, within the REST architecture. If further

formatting is required, URI query parameters can b e used. For example: �/service/{id}/?indent=2� might return

a JSON representation with 2-space indentation.

Plural vs. Singular

You'll see RESTful implementations that use either convention. The advantage of using the singular form is that

you have less addresses, and what some p eople would call a more elegant scheme:

158

/ a n i m a l / c a t / 1 2 / � > J u s t o n e c a t

/ a n i m a l / c a t / � > A l l c a t s

Why add another URL format when a single one is enough to do the work? One reason is that you can help the

client avoid p otential errors. For example, the client probably uses a variable to hold the ID of the cat and then

constructs the URL dynamically. But, what if the client forgets to check for empty IDs? It might then construct

a URL in the form �/animal/cat//� which would then successfully access al l cats. This can cause unintended

consequences and b e di�cult to debug. If, however, we used this scheme:

/ a n i m a l / c a t / 1 2 / � > J u s t o n e c a t

/ a n i m a l / c a t s / � > A l l c a t s

. . . then the form �/animal/cat//� would route to our singular cat resource, which would indeed not �nd the

�empty� cat and return the exp ected, debuggable 404 error.

From this example, we can extract a go o d rule of thumb: clearly separate URI templates by usage , so that

mistakes cannot happ en. More URI typ es means more debuggability.

Scaling Tips

Scalability is the ability to resp ond to a growing numb er of user requests without degradation in resp onse time.

Two variables in�uence it: 1) your total numb er of threads and 2) the time it takes each thread to pro cess a request.

Increasing the numb er of threads seems straightforward: you can keep adding more machines b ehind load balancers.

However, the two variables are tied, as there are diminishing returns and even reversals: b eyond a certain p oint,

time p er request can actually grow longer as you add threads and machines.

Let's ignore the �rst variable here, b ecause the challenge of getting more machines is mostly �nancial. It's the

second that you can do something ab out as an engineer.

If you want your application to handle many concurrent users, then you're �ghting this fact: a request will get

queued in the b est case or discarded in the worst case if there is no thread available to serve it. Your challenge is

to make sure that a thread is always available. And it's not easy, as you'll �nd out as you read through this article.

Minimizing the time p er request b ecomes an architectural challenge that encompasses the entire structure of your

application

Performance Do es Not Equal Scalability

Performance do es not equal scalability. Performance do es not equal scalability. Performance do es not equal scala-

bility.

Get it? Performance do es not equal scalability.

This is an imp ortant mantra for two reasons:

1. Performant Can Mean Less Scalable

Optimizing for p erformance can adversely a�ect your scalability. The reason is contextual: when you optimize for

p erformance, you often work in an isolated context, sp eci�cally so you can accurately measure resp onse times and

�ne-tune them. For example, making sure that a sp eci�c SQL query is fast would involve just running that query.

A full-blown exp eriment involving millions of users doing various op erations on your application would make it very

hard to accurately measure and optimize the query. Unfortunately, by working in an isolated context you cannot

easily see how your e�orts would a�ect other parts of an application. To do so would require a lot of exp erience

and imagination. To continue our example, in order to optimize your one SQL query you might create an index.

That index might need to b e synchronized with many servers in your cluster. And that synchronization overhead,

in turn, could seriously a�ect your ability to scale. Congratulations! You've made one query run fast in a situation

that never happ ens in real life, and you've brought your web site to a halt.

One way to try to get around this is to fake scale. To ols such as JMeter, Siege and ApacheBench can create

�load.� They also create unfounded con�dence in engineers. If you simulate 10,000 users b ombarding a single web

page, then you're, as b efore, working in an isolated context. All you've done is add concurrency to your p erformance

optimization measurements. Your application pathways might work optimally in these situations, but this might

very well b e due to the fact that the system is not doing anything else. Add those �other� op erations in, and you

might get worse site capacity than you did b efore �optimizing.�

(The folk who make Jetty have an interesting discussion of this.)

159

2. Wasted E�ort

Even if you don't adversely a�ect your scalability through optimizing for p erformance, you might b e making no

gains, either. No harm done? Well, plenty of harm, mayb e. Optimizing for p erformance might waste a lot of

development time and money. This e�ort would b e b etter sp ent on work that could actually help scalability.

And, p erhaps more seriously, it demonstrates a fundamental misunderstanding of the problem �eld. If you don't

know what your problems are, you'll never b e able to solve them.

Pitfalls

Study the problem �eld carefully. Understand the challenges and p otential pitfalls. You don't have to apply every

single scalability strategy up-front, but at least make sure you're not making a fatal mistake, such as binding yourself

strongly to a technology or pro duct with p o or scalability. A bad decision can mean that when you need to scale up

in the future, no amount of money and engineering e�ort would b e able to save you b efore you lose customers and

tarnish your brand.

Moreover, b e very careful of blindly applying �successful� strategies used and recommended by others to your

pro duct. What worked for them might not work for you. In fact, there's a chance that their strategy do esn't even

work for them, and they just think it did b ecause of a combination of seemingly unrelated factors. The realm of

web scalability is still young, full of guesswork, intuition and magical thinking. Even the exp erts are often making

it up as they're going along.

Generally, b e very suspicious of pro ducts or technologies b eing touted as �faster� than others. �Fast� doesn't say

anything about the ability to scale. Is a certain database engine �fast�? That's imp ortant for certain applications,

no doubt. But mayb e the database is missing imp ortant clustering features, such that it would b e a p o or choice

for scalable applications. Do es a certain programming language execute faster than another? That's great if you're

doing video compression, but sp eed of execution might not have a noticeable e�ect on scalability. Web applications

mostly do I/O, not computation. The same web application might have very similar p erformance characteristics

whether it's written in C++ or PHP.

Moreover, if the faster language is di�cult to work with, has p o or debugging to ols, limited integration with web

technologies, then it would slow down your work and your ability to scale.

Sp eed of execution can actually help scalability in its �nancial asp ect: If your application servers are

constantly at maximum CPU load, then a faster execution platform would let you cram more web threads

into each server. This could help you reduce costs. For example, see Faceb o ok's HipHop: they saved

millions by translating their PHP co de to C. Because Prudence is built on the fast JVM platform, you're

in go o d hands in this resp ect. Note, however, that there's a p otential pitfall to high p erformance: more

threads p er machine would also mean more RAM requirements p er machine, which also costs money.

Crunch the numb ers and make sure that you're actually saving money by increasing p erformance. Once

again, p erformance do es not equal scalability.

That last p oint ab out programming languages is worth some elab oration. Beyond how well your chosen technologies

p erform, it's imp ortant to evaluate them in terms to how easy they are to manage. Large web sites are large pro jects,

involving large teams of p eople and large amounts of money. That's di�cult enough to co ordinate. You want the

technology to present you with as few extra managerial challenges as p ossible.

Beware esp ecially of languages and platforms describ ed as �agile,� as if they somehow emb o dy the spirit of the

p opular Agile Manifesto. Often, �agile� seems to emphasize the following features: forgiveness for syntax slips, light

or no typ e checking, automatic memory management and automatic concurrency�all features that seem to sp eed

up development, but could just as well b e used for sloppy, error-prone, hard-to-debug, and hard-to-�x co de, slowing

down development in the long run. If you're reading this article, then your goal is likely not to create a quick demo,

but a stable application with a long, evolving life span.

Ignore the buzzwords (�pro ductivity�, �fast�), and instead make sure you're cho osing technology that you can

control, instead of technology that will control you.

We discuss this topic some more in �The Case for REST� (page 152) . By building on the existing web infras-

tructure, Prudence can make large Internet pro jects easier to manage.

Analysis

Be esp ecially careful of applying a solution b efore you know if you even have a problem.

160

How to identify your scalability b ottlenecks? You can create simulations and measurements of scalability rather

than p erformance. You need to mo del actual user b ehavior patterns, allow for a diversity of such b ehaviors to

happ en concurrently, and replicate this diversity on a massive scale.

Creating such a simulation is a di�cult and exp ensive, as is monitoring and interpreting the results and iden-

tifying p otential b ottlenecks. This is the main reason for the lack of go o d data and go o d judgment ab out how to

scale. Most of what we know comes from tweaking real live web sites, which either comes at the exp ense of user

exp erience, or allows for very limited exp erimentation. Your b est b et is to hire a team who's already b een through

this b efore.

Optimizing for Scalability

In summary, your architectural ob jective is to increase concurrency, not necessarily p erformance. Optimizing for

concurrency means breaking up tasks into as many pieces as p ossible, and p ossibly even breaking requests into

smaller pieces. We'll cover numerous strategies here, from frontend to backend. Meanwhile, feel free to frame these

inspirational slogans on your wall:

Requests are hot p otato es: Pass them on!

And:

It's b etter to have many short requests than one long one.

Caching

Retrieving from a cache can b e orders of magnitude faster than dynamically pro cessing a request. It's your most

p owerful to ol for increasing concurrency.

Caching, however, is only e�ective is there's something in the cache. It's p ointless to cache fragments that

app ear only to one user on only one page that they won't return to. On the other hand, there may very well b e

fragments on the page that will recur often. If you design your page carefully to allow for fragmentation, you will

reap the b ene�ts of �ne-grained caching. Rememb er, though, that the outermost fragment's expiration de�nes the

expiration of the included fragments. It's thus go o d practice to de�ne no caching on the page itself, and only to

cache fragments.

In your plan for �ne-grained caching with Prudence, take sp ecial care to isolate those fragments that cannot b e

cached, and cache everything around them.

Make sure to change the cache key template (page 63) to �t the lowest common denominator: you want as many

p ossible requests to use the already-cached data, rather than generating new data. Note that, by default, Prudence

includes the request URI in the cache key. Fragments, though, may very well app ear identically in many di�erent

URIs. You would thus not want the URI as part of their cache key.

Cache aggressively, but also take cache validation seriously. Make go o d use of Prudence's cache tags (page 63)

to allow you to invalidate p ortions of the cache that should b e up dated as data changes. Note, though, that every

time you invalidate you will lose caching b ene�ts. If p ossible, make sure that your cache tags don't cover to o many

pages. Invalidate only those entries that really need to b e invalidated.

(It's sad that many p opular web sites do cache validation so p o orly. Users have come to exp ect that sometimes

they see wrong, outdated data on a page, sometimes mixed with up-to-date data. The problem is usually solved

within minutes, or after a few browser refreshes, but please do strive for a b etter user exp erience in your web site!)

If you're using a background task (page 165), you might want to invalidate tagged cache entries when tasks are

done. Consider creating a sp ecial internal API that lets the task handler call back to your application to do this.

How long should you cache? As long as the user can b ear! In a p erfect world, of limitless computing resources,

all pages would always b e generated freshly p er request. In a great many cases, however, there is no harm at all if

users see some data that's a few hours or a few days old.

Note that even very small cache durations can make a big di�erence in application stability. Consider it

the maximum throttle for load. For example, a huge sudden p eak of user load, or even a denial-of-service

(DOS) attack, might overrun your thread p o ol. However, a cache duration of just 1 second would mean

that your page would never b e generated more than once every second. You are instantly protected

against a destructive scenario.

161

Cache Warming

Caches work b est when they are �warm,� meaning that they are full of data ready to b e retrieved.

A �cold� cache is not only useless, but it can also lead indirectly to a serious problem. If your site has b een

optimized for a warm cache, starting from cold could signi�cantly strain your p erformance, as your application

servers struggle to generate all pages and fragments from scratch. Users would b e getting slow resp onse times until

the cache is signi�cantly warm. Worse, your system could crash under the sudden extra load.

There are two strategies to deal with cold caches. The �rst is to allow your cache to b e p ersistent, so that if you

restart the cache system it retains the same warmth it had b efore. This happ ens automatically with database-backed

caches (page 163). The second strategy is to delib erately warm up the cache in preparation for user requests.

Consider creating a sp ecial external pro cess or pro cesses to do so. Here are some tips:

1. Consider mechanisms to make sure that your warmer do es not overload your system or take to o much band-

width from actual users. The b est warmers are adaptive, changing their load according to what the servers can

handle. Otherwise, consider shutting down your site for a certain amount of time until the cache is su�ciently

warm.

2. If the scop e is very large, you will have to pick and cho ose which pages to warm up. In Prudence, this is

supp orted via app.preheat (page 33). You would want to cho ose only the most p opular pages, in which case

you might need a system to record and measure p opularity. For example, for a blog, it's not enough just to

warm up, say, the last two weeks of blog p osts, b ecause a blog p ost from a year ago might b e very p opular at

the moment. E�ective warming would require you to �nd out how many times certain blog p osts were hit in

the past two weeks. It might make sense to emb ed this auditing ability into the cache backend itself.

Pre-Filling the Cache

If there are thousands of ways in which users can organize a data view, and each of these views is particular to one

user, then it may make little sense to cache them individually, b ecause individual schemes would hardly ever b e

re-used. You'll just b e �lling up the cache with useless entries.

Take a closer lo ok, though:

1. It may b e that of the thousands of organization schemes only a few are commonly used, so it's worth caching

the output of just those.

2. It could b e that these schemes are similar enough to each other that you could generate them all in one

op eration, and save them each separately in the cache. Even if cache entries will barely b e used, if they're

cheap to create, it still might b e worth creating them.

This leads us to an imp ortant p oint:

Prudence is a �frontend� platform, in that it do es not sp ecify which data backend, if at all, you should

use. Its cache, however, is general purp ose, and you can store in it anything that you can enco de as a

string.

Let's take as a pre-�lling example a tree data structure in which branches can b e visually op ened and closed.

Additionally, according to user p ermissions di�erent parts of the tree may b e hidden. Sounds to o complicated to

cache all the view combinations? Well, consider that you can trigger, up on any change to the tree data structure,

a function that lo ops through all the di�erent iterations of the tree recursively and saves a view of each of them

to the cache. The cache keys can b e something like �branch1+.branch2-.branch3+�, with �+� and �-� signifying

whether the branch is visually op en or closed. You can use similar +'s and -'s for p ermissions, and create views

p er p ermission combinations. Later, when users with sp eci�c p ermissions request di�erent views of the tree, no

problem: all p ossibilities were already pre-�lled. You might end up having to generate and cache thousands of views

at once, but the di�erence b etween generating one view and generating thousands of views may b e quite small,

b ecause the ma jority of that duration is sp ent communicating with the database backend.

If generating thousands of views takes to o long for the duration of a single request, another option is to generate

them on a separate thread. Even if it takes a few minutes to generate all the many, many tree view combinations,

it might b e OK in your application for views to b e a few minutes out-of-date. Consider that the scalability b ene�ts

can b e very signi�cant: you generate views only once for the entire system, while millions of concurrent users do a

simple retrieval from the cache.

162

Caching the Data Backend

Pre-�lling the cache can take you very far. It is, however, quite complicated to implement, and can b e ine�ective

if data changes to o frequently or if the cache has to constantly b e up dated. Also, it's hard to scale the pre-�lling

to mil lions of fragments.

If we go back to our tree example ab ove, the problem was that it was to o costly to fetch the entire tree from

the database. But what if we cache the tree itself ? In that case, it would b e very quick to generate any view of the

tree on-demand. Instead of caching the view, we'd b e caching the data, and achieving the same scalability gains.

Easy, right? So why not cache al l our data structures? The reason is that it's very di�cult to do this correctly

b eyond trivial examples. Data structures tend to have complex interrelationships (one-to-many, many-to-many,

foreign keys, recursive tree structures, graphs, etc.) such that a change in data at one p oint of the structure

may alter various others in particular ways. For example, consider a calendar database, and that you're caching

individual days with all their events. Weekly calendar views are then generated on the �y (and quickly) for users

according to what kinds of events they want to see in their p ersonal calendars. What happ ens if a user adds a

recurring event that happ ens every Monday? You'll need to make sure that all Mondays currently cached would b e

invalidated, which might mean tagging all these as �monday� using Prudence's cache tags. This requires a sp eci�c

caching strategy for a sp eci�c application.

By all means, cache your data structures if you can't easily cache your output, but b e aware of the challenge!

Cache Backends

Your cache backend can b ecome a b ottleneck to scalability if 1) it can't handle the amount of data you are storing,

or 2) it can't resp ond quickly enough to cache fetching.

Before you start worrying ab out this, consider that it's a rare problem to have. Even if you are caching millions

of pages and fragments, a simple relational-database-backed cache, such as Prudence's SqlCache implementations,

could handle this just �ne. A key/value table is the most trivial workload for relational databases, and it's also

easy to shard (page 167). Relational database are usually very go o d at caching these tables in their memory and

resp onding optimally to read requests. Prudence even lets you chain caches together to create tiers: an in-pro cess

memory cache in front of a SQL cache would ensure that many requests don't even reach the SQL backend.

High concurrency can also b e handled very well by this solution. Despite any limits to the numb er of concurrent

connections you can maintain to the database, each request is handled very quickly, and it would require very

high loads to saturate. The math is straightforward: with a 10ms average retrieval time (very p essimistic!) and a

maximum of 10 concurrent database connections (again, p essimistic!) you can handle 1,000 cache hits p er second.

A real environment would likely provide results orders of magnitude b etter.

The nice thing ab out this solution is that it uses the infrastructure you already have: the database.

But, what if you need to handle mil lions of cache hits p er second? First, let us congratulate you for your

global p opularity. Second, there is a simple solution: distributed memory caches. Prudence comes with Hazelcast

and supp ort for memcached, which b oth o�er much b etter scalability than database backends. Because the cache

is in memory, you lose the ability to easily p ersist your cache and keep it warm: restarting your cache no des

will e�ectively reset them. There are workarounds�for example, parts of the cache can b e p ersisted to a second

database-backed cache tier�but this is a signi�cant feature to lose.

Actually, Hazelcast o�ers fail-safe, live backups. While it's not quite as p ermanent as a database, it

might b e go o d enough for your needs. And memcached has various plugins that allow for real database

p ersistence, though using them would require you to deal with the scalability challenges of database

backends (page 168).

You'll see many web frameworks out there that supp ort a distributed memory cache (usually memcached) and

recommend you use it (�it's fast!� they claim, except that it can b e slower p er request than optimized databases,

and that anyway p erformance do es not equal scalability). We'd urge you to consider that advice carefully: keeping

your cache warm is a challenge made much easier if you can store it in a p ersistent backend, and database backends

can take you very far in scale without adding a new infrastructure to your deployment. It's go o d to know, though,

that Prudence's supp ort for Hazelcast and memcached is there to help you in case you reach the p opularity levels

of LiveJournal, Faceb o ok, YouTub e, Twitter, etc.

Client-Side Caching

Mo dern web browsers supp ort client-side caching, a feature meant to improve the user exp erience and save band-

width costs. A site that makes go o d use of client-side caching will app ear to work fast for users, and will also help

163

to increase your site's p opularity index with search engines.

Optimizing the user exp erience is not the topic of this article: our job here is to make sure your site do esn't

degrade its p erformance as load increases. However, client-side caching can indirectly help you scale by reducing

the numb er of hits you have to take in order for your application to work.

Actually, doing a p o or job with client-side caching can help you scale: users will hate your site and stop

using it�voila, less hits you have to deal with. OK, that was a joke!

Generally, Prudence handles client-side caching automatically. If you cache a page, then headers will b e set to ask

the client to cache for the same length of time. By default, conditional mo de is used: every time the client tries to

view a page, it will make a request to make sure that nothing has changed since their last request to the page. In

case nothing has changed, no content is returned.

You can also turn on �o�ine caching� mo de, in which the client will avoid even that quick request. Why not

enable o�ine caching by default? Because it involves some risk: if you ask to cache a page for one week, but then

�nd out that you have a mistake in your application, then users will not see any �x you publish until their lo cal

cache expires, which can take up to a week! It's imp ortant that you you understand the implications b efore using

this mo de. See the caching guide (page 65) for a complete discussion.

It's generally safer to apply o�ine caching to your static resources, such as graphics and other resources. A

general custom is to ask the client to cache these �forever� (10 years), and then, if you need to up date a �le, you

simply create a new one with a new URL, and have all your HTML refer to the new version. Because clients cache

according to URL, their cached for the old version will simply not b e ignored. See static resources guide (page

47). There, you'll also see some more tricks Prudence o�ers you to help optimize the user exp erience, such as

unifying/minimizing client-side JavaScript and CSS.

Upstream Caching

If you need to quickly scale a web site that has not b een designed for caching, a band-aid is available: upstream

caches, such as Varnish, NCache and even Squid. For archaic reasons, these are sometimes called �reverse proxy�

caches, but they really work more like �lters: according to attributes in the user request (URL, co okies, etc.), they

decide whether to fetch and send a cached version of the resp onse, or to allow the request to continue to your

application servers.

The crucial use case is archaic, to o. If you're using an old web framework in which you cannot implement

caching logic yourself, or cannot plug in to a go o d cache backend, then these upstream caches can do it for you.

They are problematic in two ways:

1. Decoupling caching logic from your application means losing many features. For example, invalidating p ortions

of the cache is di�cult if not imp ossible. It's b ecause of upstream caching, indeed, that so many web sites do

a p o or job at showing up-to-date information.

2. Filtering actually implements a kind of partitioning, but one that is vertical rather than horizontal. In

horizontal partitioning, a �switch� decides to send requests to one cluster of servers or another. Within each

cluster, you can control capacity and scale. But in vertical partitioning, the ��lter� handles requests internally.

Not only is the ��lter� more complex and vulnerable than a �switch� as a frontend connector to the world,

but you've also complicated your ability to control the capacity of the caching layer. It's emb edded inside

your frontend, rather than b eing another cluster of servers. We'll delve into backend partitioning (page 166)

b elow.

Unfortunately, there is a use case relevant for newer web frameworks, to o: if you've designed your application

p o orly, and you have many requests that could take a long time to complete, then your thread p o ols could get

saturated when many users are concurrently making those requests. When saturated, you cannot handle even the

sup er-quick cache requests. An upstream cache band-aid could, at least, keep serving its cached pages, even though

your application servers are at full capacity. This creates an illusion of scalability: some users will see your web site

b ehaving �ne, while others will see it hanging.

The real solution would b e to re-factor your application so that it do es not have long requests, guaranteeing

that you're never to o saturated to handle tiny requests. Below are tips on how to do this.

Dealing with Lengthy Requests

One size do es not �t all: you will want to use di�erent strategies to deal with di�erent kinds of tasks.

164

Deferrable Tasks

Deferrable tasks are tasks that can be resolved later, without impeding on the user's ability to continue using the

application.

If the deferrable task is deterministically fast, you can do all pro cessing in the request itself. If not, you should

queue the task on a handling service. Prudence's background tasks (page 102) implementation is a great solution

for deferrable tasks, as it lets you run tasks on other threads or even distribute them in a Hazelcast cluster.

Deferring tasks do es present a challenge to the user exp erience: What do you do if the task fails and the user

needs to know ab out it? One solution can b e to send a warning email or other kind of message to the user. Another

solution could b e to have your client constantly p oll in the background (via �AJAX�) to see if there are any error

messages, which in turn might require you to keep a queue of such error messages p er user.

Before you decide on deferring a task, think carefully of the user exp erience: for example, users might b e

constantly refreshing a web page waiting to see the results of their op eration. Perhaps the task you thought you

can defer should actually b e considered necessary (see b elow)?

Necessary Tasks

Necessary tasks are tasks that must be resolved before the user can continue using the application.

If the necessary task is deterministically fast, you can do all pro cessing in the request itself. If not, you should

queue the task on a handling service and return a �please wait� page to the user.

It would b e nice to add a progress bar or some other kind of estimation of how long it would take for the task to

b e done, with a maximum duration set after which the task should b e considered to have failed. The client would

p oll until the task status is marked �done,� after which they would b e redirected back to the application �ow. Each

p olling request sent by the client could likely b e pro cessed very quickly, so this this strategy e�ectively breaks the

task into many small requests (�It's b etter to have many short requests than one long one�).

Prudence's background tasks (page 102) implementation is a go o d start for creating such a mechanism: however,

it would b e up to you to create a �please wait� mechanism, as well as a way to track the tasks' progress and deal

with failure.

Implementing such a handling service is not trivial. It adds a new comp onent to your architecture, one that also

has to b e made to scale. One can also argue that it adversely a�ects user exp erience by adding overhead, delaying

the time it takes for the task to complete. The b ottom line, though, is you're vastly increasing concurrency and

your ability to scale. And, you're improving the user exp erience in one resp ect: they would get a feedback on what's

going on rather than having their browsers spin, waiting for their requests to complete.

File Uploads

These are p otentially very long requests that you cannot break into smaller tasks, b ecause they dep end entirely on

the client. As such, they present a unique challenge to scalability.

Fortunately, Prudence handles client requests via non-blo cking I/O, meaning that large �le uploads will not hold

on to a single thread for the duration of the upload. See accepting uploads (page 57).

Unfortunately, many concurrent uploads will still saturate your threads. If your application relies on frequent

�le uploads, you are advised to handle such requests on separate Prudence instances, so that uploads won't stop

your application from handling other web requests. You may also consider using a third-party service sp ecializing

in �le storage and web uploads.

Asynchronous Request Pro cessing

Having the client p oll until a task is completed lets you break up a task into multiple requests and increase

concurrency. Another strategy is to break an individual request into pieces. While you're pro cessing the request

and preparing the resp onse, you can free the web thread to handle other requests. When you're ready to deliver

content, you raise a signal, and the next available web thread takes care of sending your resp onse to the client.

You can continue doing this inde�nitely until the resp onse is complete. From the client's p ersp ective it's a single

request: a web browser, for example, would spin until the request was completed.

You might b e adding some extra time overhead for the thread-switching on your end, but the b ene�ts for

scalability are obvious: you are increasing concurrency by shortening the time you are holding on to web threads.

For web services that deliver heavy content, such as images, video, audio, it's absolutely necessary. Without

it, a single user could tie up a thread for minutes, if not hours. You would still get degraded p erformance if you

have more concurrent users than you have threads, but at least degradation will b e shared among users. Without

165

asynchronous pro cessing, each user would tie up one thread, and when that �nite resource is used up, more users

won't b e able to access your service.

Even for lightweight content such as HTML web pages, asynchronous pro cessing can b e a go o d tactic for

increasing concurrency. For example, if you need to fetch data from a backend with non-deterministic resp onse

time, it's b est to free the web thread until you actually have content available for the resp onse.

It's not a go o d idea to do this for every page. While it's b etter to have many short requests instead of one long

one, it's obviously b etter to have one short request rather than many short ones. Which web requests are go o d

candidates for asynchronous pro cessing?

1. Requests for which pro cessing is made of indep endent op erations. (They'll likely b e required to work in

sequence, but if they can b e pro cessed in parallel, even b etter!)

2. Requests that must access backend services with non-deterministic resp onse times.

And, even for #2, if the service can take a very long time to resp ond, consider that it might b e b etter to queue the

task on a task handler and give prop er feedback to the user.

And so, after this lengthy discussion, it turns out that there aren't that many places where asynchronous

pro cessing can help you scale. Caching is far more useful.

As of Prudence 2.0, there is no supp ort for asynchronous pro cessing. However, it is planned for a future

release, dep ending on prop er supp ort b eing included in Restlet.

Backend Partitioning

You can keep adding more no des b ehind a load balancer insofar as each request do es not have to access shared

state. Useful web applications, however, are likely data-driven, requiring considerable state.

If the challenge in handling web requests is cutting down the length of request, then that of backends is the

struggle against degraded p erformance as you add new no des to your database cluster. These no des have to

synchronize their state with each other, and that synchronization overhead increases exp onentially. There's a

de�nite p oint of diminishing returns.

The backend is one place where high-p erformance hardware can help. Ten exp ensive, p owerful machines might

b e equal in total p ower to forty cheap machines, but they require a quarter of the synchronization overhead, giving

you more elb ow ro om to scale up. Fewer no des means b etter scalablity.

But CPUs can only take you so far.

Partitioning is as useful to backend scaling as caching is to web request scaling. Rather than having one big

cluster of identical no des, you would have several smaller, indep endent clusters. This lets you add no des to each

cluster without spreading synchronization overhead everywhere. The more partitions you can create, the b etter

you'll b e able to scale.

Partitioning can happ en in various comp onents of your application, such as application servers, the caching

system, task queues, etc. However, it is most e�ective, and most complicated to implement, for databases. Our

discussion will thus fo cus on relational (SQL) databases. Other systems would likely require simpler subsets of

these strategies.

Reads vs. Writes

This simple partitioning scheme greatly reduces synchronization overhead. Read-only servers will never send data

to the writable servers. Also, knowing that they don't have to handle writes means you can optimize their con�g-

urations for aggressive caching.

(In fact, some database synchronization systems will only let you create this kind of cluster, providing you with

one �master� writable no de and several read-only �slaves.� They force you to partition!)

Another nice thing ab out read/write partitioning is that you can easily add it to all the other strategies. Any

cluster can thus b e divided into two.

Of course, for web services that are heavily balanced towards writes, this is not an e�ective strategy. For

example, if you are implementing an auditing service that is constantly b eing b ombarded by incoming data, but is

only queried once in a while, then an extra read-only no de won't help you scale.

Note that one feature you lose is the ability to have a transaction in which a write might happ en, b ecause a

transaction cannot contain b oth a read-only no de and a write-only no de. If you must have atomicity, you will have

to do your transaction on the writable cluster, or have two transactions: one to lo okup and see if you need to

166

change the data, and the second to p erform the change�while �rst checking again that data didn't change since

the previous transaction. To o much of this obviously lessens the e�ectiveness of read/write partitioning.

By Feature

The most obvious and e�ective partitioning scheme is by feature. Your site might o�er di�erent kinds of services

that are functionally indep endent of each other, even though they are displayed to users as united. Behind the

scenes, each feature uses a di�erent set of tables. The rule of thumb is trivial: if you can put the tables in separate

databases, then you can put these databases in separate clusters.

One concern in feature-based partitioning is that there are a few tables that still need to b e shared. For example,

even though the features are separate, they all dep end on user settings that are stored in one table.

The go o d news is that it can b e cheap to synchronize just this one table b etween all clusters. Esp ecially if this

table do esn't change often�how often do you get new users signing up for your service?�then synchronization

overhead will b e minimal.

If your database system do esn't let you synchronize individual tables, then you can do it in your co de by writing

to all clusters at the same time.

Partitioning by feature is terri�c in that it lets you partition other parts of the stack, to o. For example, you can

also use a di�erent set of web servers for each feature.

Also consider that some features might b e candidates for using a �NoSQL� database (page 168). Cho ose the

b est backend p er feature.

By Section

Another kind of partitioning is sometimes called �sharding.� It involves splitting up tables into sections that can b e

placed in di�erent databases. Some databases supp ort sharding as part of their synchronization strategy, but you

can also implement it in your co de. The great thing ab out sharding is that it lets you create as many shards (and

clusters) as you want. It's the key to the truly large scale.

Unfortunately, like partitioning by feature, sharding is not always p ossible. You need to also shard all related

tables, so that queries can b e self-contained within each shard. It's thus most appropriate for one-to-many data

hierarchies. For example, if your application is a blog that supp orts comments, then you put some blogs and their

comments on one shard, and others in another shard. However, if, say, you have a feature where blog p osts can

refer to other arbitrary blog p osts, then querying for those would have to cross shard b oundaries.

The b est way to see where sharding is p ossible is to draw a diagram of your table relationships. Places in the

diagram which lo ok like individual trees�trunks spreading out into branches and twigs�are go o d candidates for

sharding.

How to decide which data go es in which shard?

Sometimes the b est strategy is arbitrary. For example, put all the even-numb ered IDs in one shard, and the

o dd-numb ered ones in another. This allows for straightforward growth b ecause you can just switch it to division

by three if you want three shards.

Another strategy might seem obvious: If you're running a site which shows di�erent sets of data to di�erent users,

then why not implement it as essentially separate sites? For example, a so cial networking site strictly organized

around individual cities could have separate database clusters p er city.

A �region� can b e geographical, but also topical. For example, a site hosting dance-related discussion forums

might have one cluster for ballet and one for tango. A �region� can also refer to user typ es. For example, your

so cial networking site could b e partitioned according to age groups.

The only limitation is queries. You can still let users access pro�les in other regions, but cross-regional relational

queries won't b e p ossible. Dep ending on what your application do es, this could b e a reasonable solution.

A great side-b ene�t to geographical partitioning is that you can host your servers at data centers within the

geographical lo cation, leading to b etter user exp eriences. Regional partitioning is useful even for �NoSQL� databases.

Co ding Tips for Partitioning

If you organize your co de well, it would b e very easy to implement partitioning. You simply assign di�erent database

op erations to use di�erent connection p o ols. If it's by feature, then you can hard co de it for those features. If it's

sharding, then you add a switch b efore each op eration telling it which connection p o ol to use.

For example:

167

d e f g e t _ b l o g g e r _ p r o f i l e (u s e r _ i d) :

c o n n e c t i o n = b l o g g e r _ p o o l . g e t _ c o n n e c t i o n ()

. . .

c o n n e c t i o n . c l o s e ()

d e f g e t _ b l o g _ p o s t _ a n d _ c o m m e n t s (b l o g _ p o s t _ i d) :

s h a r d _ i d = o b j e c t . i d % 3

c o n n e c t i o n = b l o g _ p o o l s [s h a r d _ i d] . g e t _ c o n n e c t i o n ()

. . .

c o n n e c t i o n . c l o s e ()

Unfortunately, some programming practices make such an e�ective, clean organization di�cult.

Some develop ers prefer to use ORMs (ob ject-relational mapp ers) rather than access the database directly. Many

ORMs do not easily allow for partitioning, either b ecause they supp ort only a single database connection p o ol, or

b ecause they don't allow your ob jects to b e easily shared b etween connections.

For example, your logic might require you to retrieve an �ob ject� from the database, and only then decide if

you need to alter it or not. If you're doing read/write partitioning, then you obviously want to read from the read

partition. Some ORMs, though, have the ob ject tied so strongly to an internal connection ob ject that you can't

trivially read it from one connection and save it into another. You'd either have to read the ob ject initially from

the write partition, minimizing the usefulness of read/write partitioning, or re-read it from the write partition when

you realize you need to alter it, causing unnecessary overhead. (Note that you'll need to do this anyway if you need

the write to happ en in a transaction.)

Ob ject oriented design is also problematic in a more general sense. The �rst principle of ob ject orientation is

�encapsulation,� putting your co de and data structure in one place: the class. This might make sense for business

logic, but, for the purp oses of re-factoring your data backend for partitioning or other strategies, you really don't

want the data access co de to b e spread out among dozens of classes in your application. You want it all in one

place, preferably even one source co de �le. It would let you plug in a whole new data backend strategy by replacing

this source co de �le. For data-driven web development, you are b etter o� not b eing to o ob ject oriented.

Even more generally sp eaking, organizing co de together by mechanism or technology, rather than by �ob ject�

encapsulation, will let you apply all kinds of re-factorizations more easily, esp ecially if you manage to decouple your

application's data structures from any library-sp eci�c data structures.

Data Backends

Relational (SQL) databases such as MySQL were, for decades, the backb one of the web. They were originally

develop ed as minimal alternatives to enterprise database servers such as Oracle Database and IBM's DB2. Their

mo dest feature set allowed for b etter p erformance, smaller fo otprints, and low investment costs�p erfect for web

applications. The free software LAMP stack (Linux, Apache, MySQL and PHP) was the web.

Relational databases require a lot of synchronization overhead for clusters, limiting their scalability. Though

partitioning can take you far, using a �NoSQL� database could take you even further.

Graph Databases

If your relational data structure contains arbitrary-depth relationships or many �generic� relationships forced into

a relational mo del, then consider using a graph database instead. Not only will traversing your data b e faster,

but also the database structure will allow for more e�cient p erformance. The implications for scalability can b e

dramatic.

So cial networking applications are often used as examples of graph structures, but there are many others: forums

with threaded and cross-referenced discussions, semantic knowledge bases, warehouse and parts management, music

�genomes,� user-tagged media sharing sites, and many science and engineering applications.

Though fast, querying a complex graph can b e di�cult to prototyp e. Fortunately, the Gremlin and SPARQL

languages do for graphs what SQL do es for relational databases. Your query b ecomes coherent and p ortable.

A p opular graph database is Neo4j, and it's esp ecially easy to use with Prudence. Because it's JVM-based, you

can access it internally from Prudence. It also has emb edded bindings for many of Prudence's supp orted languages,

and supp orts a network REST interface which you can easily access via Prudence's do cument.external API .

168

Do cument Databases

If your data is comp osed mostly of �do cuments��self-contained records with few relationships to other do cuments�

then consider a do cument database.

Do cument databases allow for straightforward distribution and very �ne-grained replication, requiring consid-

erably less overhead than relational and graph databases. Do cument databases are as scalable as data storage gets:

variants are used by all the sup er-massive Internet services.

The cost of this scalability is the loss of your ability to do relational queries of your data. Instead, you'll b e

using distributed map/reduce, or rely on an indexing service. These are p owerful to ols, but they do not match

relational queries in sheer �exibility of complex queries. Implementing something as simple as a many-to-many

connection, the bread-and-butter of relational databases, is non-trivial in do cument databases. Where do cument

databases shine is at listing, sorting and searching through very large catalogs of do cuments.

Candidate applications include online retail, blogs, CMS, archives, newspap ers, contact lists, calendars, photo

galleries, dating pro�les. . . The list is actually quite long, making do cument databases very attractive for many

pro ducts. But, it's imp ortant to always b e aware of their limitations: for example, merely adding so cial networking

capabilities to a dating site would require complex relations that might b e b etter handled with a graph database.

The combination of a do cument database with a graph database might, in fact, b e enough to remove any b ene�t a

relational database could bring.

A p opular do cument database is MongoDB. Though do cument-based, it has a few basic relational features that

might b e just go o d enough for your needs. OrientDB is interesting b ecause it handles do es b oth do cuments and

graphs, and is entirely JVM-based. Another is CouchDB, which is a truly distributed database. With CouchDB it's

trivial to replicate and synchronize data with clients' desktops or mobile devices, and to distribute it to partners.

It also supp orts a REST interface which you can easily access via Prudence's do cument.external API . And, b oth

MongoDB and CouchDB use JavaScript extensively, making it natural to use with Prudence's JavaScript �avor.

We've started a pro ject to b etter integrate Prudence JavaScript with MongoDB.

Column Databases

These can b e considered as subsets of do cument databases. The �do cument,� in this case, is required to have an

esp ecially simple, one-dimensional structure.

This requirement allows optimization for a truly massive scale.

Column databases o ccupy the �cloud� market niche: they allow companies like Go ogle and Amazon to o�er

cheap database storage and services for third parties. See Go ogle's Datastore (based on Bigtable) and Amazon's

SimpleDB (based on Dynamo; actually, Dynamo is a �key/value� database, which is even more opaque than a

column database).

Though you can run your own column database via op en source pro jects like Cassandra (originally develop ed

by/for Faceb o ok), HBase and Redis, the do cument databases mentioned ab ove o�er richer do cument structures and

more features. Consider column databases only if you need truly massive scale, or if you want to make use of the

cheap storage o�ered by �cloud� vendors.

Best of All Worlds

Of course, consider that it's very p ossible to use b oth SQL and �NoSQL� (graph, do cument, column) databases

together for di�erent parts of your application. See backend partitioning (page 166).

169

	I Basic Manual
	Tutorial
	Up and Running
	First Steps
	Let's Make a CMS
	A Persistent CMS
	A Scalable CMS
	A CMS API
	Finishing Touches
	Not Only JavaScript
	What's Next?

	The URI-space
	routing.js
	app.routes
	Two Routing Paradigms
	Resource Mapping
	URI/Resource Separation
	app.errors
	app.hosts
	app.dispatchers
	app.preheat
	Understanding Routing

	Implementing Resources
	Programmable Resources
	Manual Resources
	Template Resources
	Static Resources
	On-the-Fly Resources
	Java Resources
	Resource Type Comparison Table

	Web Data
	URLs
	Request Payloads
	Cookies
	Custom Headers
	Redirection
	HTML Forms
	Response Payloads
	External Requests

	Caching
	The State of the Art
	Server-Side Caching
	Client-Side Caching

	Configuring Applications
	settings.js
	app.settings.description
	app.settings.errors
	app.settings.code
	app.settings.templates
	app.settings.caching
	app.settings.compression
	app.settings.uploads
	app.settings.mediaTypes
	app.settings.distributed
	app.settings.routing
	app.settings.logger
	app.globals

	Programming
	APIs
	Entry Points
	State and Scope
	Execution Environments

	Debugging
	Live Execution
	Logging
	Debug Page
	Monitoring

	Describing APIs
	Generating Description Data
	Swagger

	FAQ
	Technology
	Performance and Scalability
	Errors
	Licensing

	II Advanced Manual
	Background Tasks
	Implementing Tasks
	APIs for Spawning and Scheduling
	Application crontab
	System crontab
	crontab APIs
	/startup/
	Tweaking

	Filters
	Tutorial
	Examples
	Built-in Filters

	String Interpolation
	Request URIs
	Request Attributes
	Client Attributes
	Payload Attributes
	Negotiated Attributes
	Implementation Attributes
	Response Attributes
	conversation.locals

	The Internal URI-space
	Internal Requests
	Private URI-space
	Avoiding Serialization for Internal Requests

	Configuration
	/configuration/logging/
	/configuration/sincerity/
	/configuration/hazelcast/
	/component/
	/component/hosts/
	/component/servers/
	/component/clients/
	/component/services/
	/component/templates/

	Model-View-Controller (MVC)
	Background
	Tutorial
	View Templates
	RESTful Models

	Clusters
	Shared State
	Cluster-Wide Synchronization
	Task Farms
	Shared Cache
	Centralized Logging

	Deployment
	Deployment Strategies
	Load Balancing and Proxies
	Adaptable Configurations
	Operating System Service (Daemon)
	Security

	Utilities for Restlet
	Utility Restlets
	Client Data
	Redirection
	Fallback Routing
	Resolver Selection
	Web Filters
	Other Utilities

	Upgrading from Prudence 1.1
	Upgrading Applications

