
Diligen
e

Version 1.0-dev12

Main text written by Tal Liron

January 2, 2014

Copyright 2011-2014 by Three Cri
kets LLC.

This work is li
ensed under a

Attribution-NonCommer
ial-ShareAlike 4.0 International Li
ense.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

Assets Servi
e 5

Usage . 5

Authenti
ation Servi
e 5

Usage . 5

Authorization Servi
e 6

Usage . 6

Ba
kup Servi
e 6

Usage . 7

Do
uments Servi
e 7

Usage . 8

Con�guration . 9

Events Servi
e 9

Usage . 10

Con�guration . 12

Forms Servi
e 12

Setup . 13

Usage . 17

HTML Servi
e 22

Usage . 22

Internationalization Servi
e 22

Setup . 23

Usage . 24

Con�guration . 24

Ca
he Servi
e 25

Usage . 25

Linkba
k Servi
e 26

Usage . 26

Non
es Servi
e 27

Usage . 28

Con�guration . 28

Noti�
ation Servi
e 28

Usage . 29

Con�guration . 29

Progress Servi
e 30

Usage . 30

REST Servi
e 32

Setup . 33

Usage . 38

Extension . 41

RPC Servi
e 41

Setup . 42

Usage . 44

2

Sear
h Servi
e 45

Usage . 45

Serials Servi
e 45

Usage . 46

Syndi
ation Servi
e 46

Usage . 46

Links . 46

Gravatar Integration 46

Usage . 46

PayPal Integration 46

Usage . 46

Sen
ha Integration 46

Usage . 47

Sen
ha Integration: Grids 47

Setup . 48

Usage . 48

Sen
ha Integration: Trees 50

Setup . 50

Usage . 52

Sen
ha Integration: Charts 54

Usage . 54

Sen
ha Integration: Forms 54

Setup . 54

Usage . 54

Sen
ha Integration: Ext Dire
t 57

Setup . 57

Usage . 58

Blog Feature 59

Usage . 59

Console Feature 60

Usage . 60

Conta
t Us Feature 60

Usage . 60

Dis
ussion Feature 60

Usage . 60

Editable Graph Stru
tures in MongoDB . 60

Registration Feature 61

Usage . 61

SEO Feature 61

Usage . 61

The Goods . 61

Dynami
 or Stati
? . 62

Instru
tion Manual . 62

3

Shopping Cart Feature 64

Usage . 64

Wiki Feature 64

Usage . 64

4

Assets Servi
e

An �asset� is a
ommon term for stati
ally served �les, su
h as images. Be
ause assets use a lot of bandwidth to

download, they are often
a
hed on web browser
lients (
on�gured via a �
a
heControl� route type in routing.js).

This servi
e generates asset URLs,
ommonly used in dynami
ally generated HTML. The URLs are based on a

user-de�ned template, although the default should su�
e for most use
ases.

The important feature added by this servi
e is the ability to use the asset's base64-en
oded
a
hed
ontent

digest (usually a SHA-1) in the asset's generated URL. By spe
i�
ally using this digest as a query param to the

URL, two things are a

omplished: 1) the URL will still be routed to the resour
es normally, be
ause query params

are not use by the �stati
� route type, and 2) be
ause the URL is di�erent, web browsers will use a di�erent
a
he

for the asset per
lient
ontent.

The end result is that you
ould
a
he assets in
lients for as long as you want (using �farFuture� for �
a
heCon-

trol�) while maintaining the ability to e�e
tively bypass the
a
he for an asset whenever its
ontent
hanges.

The asset digests are stored in a �digests.
onf� �le in the appli
ation's root subdire
tory. It is a JVM properties

�le mat
hing asset names to their digests. You
an generate this �le automati
ally using the "diligen
e:digests"

Sin
erity
ommand.

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Assets.

Authenti
ation Servi
e

This all-important servi
e manages a few systems, whi
h together allow your site to be �logged into� by individual

users.

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Authenti
ation.

Users

Users are maintained in a simple MongoDB
olle
tion. You
an easily atta
h settings to any user do
ument, whi
h

an have any stru
ture and depth you need.

Passwords are hashed many times and stored with a random salt. This good pra
ti
e makes sure that even if a

ha
ker were to steal your database and ha
k into a few a

ounts, they would not be able to use the results of their

work to
ra
k the other passwords.

Users are
onsidered �entities� by the authorization servi
e (page 6), su
h that you
an atta
h permissions to

user do
uments. Users
an inherit permissions from groups and from other users.

Though you
an maintain the user do
uments yourself, you
an add the registration feature (page 61) to allow

individuals to
reate their own users.

Sessions

When users do log in, they get a
ookie with a session ID, whi
h mat
hes a do
ument in the sessions
olle
tion.

Thus, every
onversation is asso
iated with a session. You
an store anything you want in the session do
ument.

The authorization servi
e (page 6)
an
he
k any operation against the
onversation's session to make sure it's

permitted.

The servi
e
omes with a task to make sure to remove sessions that have not been used for a while. It's a good

se
urity feature! (People tend to forget to log out, whi
h
an be espe
ially dangerous in publi
 pla
es.)

Ca
hing Per User

This very powerful feature uses a
a
he key patten handler to inje
t the
urrently logged in user ID into the
a
he

key. This lets you
a
he any /web/dynami
/ or /web/fragment/ resour
e per user, whi
h
an do wonders towards

helping your site s
ale. Of
ourse, it does not make sense to
a
he every dynami
 part of a page, but if you
an

indetify those fragments that look di�erent only for di�erent users then you've a
hieved a lot.

5

http://threecrickets.com/api/javascript/?namespace=Diligence.Assets
http://threecrickets.com/api/javascript/?namespace=Diligence.Authentication

Authenti
ation Forms

The authenti
ation servi
e
omes with a bun
h of /web/fragments/ that you
an easily drop in to any page. They

handle things like logging in, logging out, and showing the
urrently logged-in user.

Providers

Using Diligen
e's plug-ins library, the authenti
ation servi
e adds transparent support for 3rd-party authenti
ation

providers. Currently supported providers are Fa
ebook, Windows Live, Twitter and OpenID (tested with Google,

Yahoo, Myspa
e, LiveJournal).

Users
oming from outside are real users: the �rst time they log in, a user do
ument is
reated for them in the

olle
tion, and it
an join in with settings, permissions, et
. Depending on how your appli
ation works, you
an

treat these users as any other user, or use the authorization servi
e to treat them as �guests� with the ability to do

only
ertain tasks. All 3rd-party users are automati
ally asso
iated with an authorization group named after their

provider. So, you
an grant spe
ial permissions (or deny permissions) to �fa
ebook.�

This useful feature allows your appli
ation to be espe
ially wel
oming. Studies have shown that typi
al users

think twi
e when a site requires registration (page 61). People either don't want to invest the e�ort in registering,

or are anxious about yet another
opy of their personal data being stored in somebody's database.

Authorization Servi
e

When used with the authenti
ation servi
e (page 5), this servi
e lets you se
ure your site by allowing only authorized

users to a

ess
ertain resour
es or perform
ertain operations.

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Authorization.

Entities and Inheritan
e

Permissions are asso
iated with �entities,� whi
h
ould be either individual user, from the authorization servi
e

(page 6), or groups, whi
h are here stores in a simple MongoDB
olle
tion.

Ea
h entity
an inherit permissions from any number of other entities, in order. The
ommon use
ase is for

a user to �belong� to a few groups, and inherit their permissions. This lets you
entrally manage permissions for

large groups of users, and easily
hange a user's permission pro�le by
hanging their groups. Entities
an inherit

from other entities, and so on.

Permissions will be overriden by the inheritor: for example, if you spe
i�
ally grant a user permission to edit a

ertain page, they will have this permission even if the group they inherit from spe
i�
ally forbids it. The order of

inheritan
e also allows for overriding.

Cas
ading Permissions

The
ommon pra
ti
e is to name permissions using a hierar
hi
al dot notation, with ea
h level of depth
orresponding

to moving into a spe
i�
 se
tion, resour
e or operation in your appli
ation. In some
ases, it may make sense to

treat a permission as if it
overs all sub-permissions in a hierar
hy. Here we
all this �
as
ading permissions.�

Ba
kup Servi
e

This servi
e lets you do a live export of your MongoDB databases and
olle
tions to JSON, optionally gzipping the

output to save spa
e. You
an set up your appli
ation's �
rontab� to have the ba
kup run regularly.

Ba
kups are very fast: large databases
an be fully exported in durations measured in se
onds or minutes.

You might wonder what advantages this servi
e has over MongoDB's mongodump or mongoexport tools. First,

from our experien
e, the admin tools that
ome with MongoDB are overly simplisti
 and unreliable. Otherwise,

Diligen
e's ba
kup servi
e o�ers the following advantages:

• Thoughput: Be
ause we're using the Java MongoDB driver underneath, with its support for
onne
tion

pooling, we
an a
hieve mu
h higher throughput than the
ommand line tools, whi
h use a single
onne
tion

and no
on
urren
y. The default is to use 5 threads (and thus 5
onne
tions at most) at on
e.

6

http://threecrickets.com/api/javascript/?namespace=Diligence.Authorizaion
http://www.mongodb.org/display/DOCS/Import+Export+Tools

• True JSON: The mongoexport tool does not export a real JSON array, instead it exports ea
h do
ument as

a JSON di
t, separating ea
h do
ument with a newline. Diligen
e exports a standard JSON array, readable

from any standard JSON parser.

• Consisten
y: Works with the same MongoDB
onne
tion as your appli
ation, guaranteeing that you're

ba
king up exa
tly the same data your appli
ation sees. This is espe
ially important in a sharded or repli
a

set deployment.

• Operations: You don't have to
reate system s
ripts to ba
kup your DB. Instead, you
an stay in JavaS
ript

and Diligen
e. You do not even need MongoDB or its
ommand line tools installed.

• Iterators: The ba
kup servi
e uses Iterators, so you
an transform your data in various ways while ba
king

up, or even in
lude non-MongoDB data.

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Ba
kup.

To export the whole database:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e /ba
kup / ')

D i l i g en
 e . Ba
kup . exportMongoDb ({ d i r e
 t o r y : '/tmp/ d i l i g en
 e−ba
kup / '})

The API further lets you sele
t the MongoDB database and
olle
tions you wish to export, otherwise by default

it uses the
urrent default database and goes through all
olle
tions. You
an also set �gzip� to true in order to gzip

the resulting �les.

To s
hedule the ba
kup to run every day at 6am, add this to your �
rontab�:

6 <% do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e /ba
kup / ') ; D i l i g en
 e . Ba
kup . exportMongoDb ({ d i r e
 t o r y : '/tmp/ d i l i g en
 e ba
kup / ' , gz ip : t rue }) ; %>

To import a
olle
tion:

D i l i g en
 e . Ba
kup . importMongoDbColle
tion({ f i l e : '/tmp/ d i l i g en
 e−ba
kup/ use r s . j son ' })

The
olle
tion name will be parsed from the �lename. If the �lename ends with �.gz�, it will be assumed to be

gzipped and unzipped a

ordingly. (For example �/tmp/diligen
e-ba
kup/users.json.gz�.) By default the imported

do
uments will be merged into the
olle
tion: set the �drop� key true if you want the
olle
tion to be dropped before

importing.

Do
uments Servi
e

This servi
e lets you store versioned HTML do
uments in MongoDB using your
hoi
e among several markup

languages: Markdown, Textile, Con�uen
e, MediaWiki, TWiki and Tra
. It's thus an essential building blo
k for

CMS features, su
h as wikis and blogs.

Every �do
ument� in this servi
e is indeed a single MongoDB do
ument, but internally it
omposed of versioned

�drafts�. The last draft (of the highest revision number) represents the
urrent state of the do
ument. For e�
ien
y,

the last draft in its own key (�a
tiveDraft�), allowing you to retrieve it from MongoDB without retrieving the whole

history of drafts, whi
h is an array. Additionally, ea
h draft is stored both as markup sour
e
ode and as rendered

result, so that rendering only happens on
e.

MongoDB atomi
 operations guarantee that even if more than one person is revising a do
ument at the same,

no draft will be lost. Only last update to
ome in, though, will get to set the �a
tiveDraft� key.

Do
uments are asso
iated with a �site�, of whi
h there must be at least one. The Do
ument Servi
e
an handle

many �sites� at on
e, ea
h with its own set of do
uments. The versioning system is designed to be global per ea
h

site, meaning that all drafts asso
iated with a site will have serial and unique revision numbers per that site. This

allows time travel: you that you
an view the entire state of a site at a given time by fet
hing only drafts smaller

than a
ertain revision. (This also implies that every draft as its own unique revision number, but there's no easy

way in MongoDB to traverse drafts in this order.)

Note the markup rendering is handled by the HTML servi
e (page 22), whi
h you
an
hoose to use dire
tly if

you do not need the versioning system.

7

http://threecrickets.com/api/javascript/?namespace=Sincerity.Iterators
http://threecrickets.com/api/javascript/?namespace=Diligence.Backup
http://daringfireball.net/projects/markdown/
http://redcloth.org/textile
http://confluence.atlassian.com/display/DOC/Confluence+Wiki+Markup
http://www.mediawiki.org/wiki/Help:Formatting
http://twiki.org/cgi-bin/view/TWiki/TextFormattingRules
http://trac.edgewall.org/wiki/WikiFormatting

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Do
uments.

The API doesn't a
tually en
ourage you to a

ess �do
uments� dire
tly. Instead, you a

ess �drafts� via the

do
ument ID and its revision, or simply request the latest draft. As stated above, the API is designed to be very

e�
ient in doing this: whether it's the latest draft you need or a spe
i�
 older revision, it's a very dire
t MongoDB

fet
h.

To fet
h the latest draft by the do
ument ID and print out its rendered HTML:

<html>

<%

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e /do
uments / ')

var d r a f t = D i l i g en
 e . Do
uments . getDra f t (' 4 f
4457ae4b030
6611
072f ')

%>

<body>

<%= dra f t . render () %>

</body>

</html>

E�
ien
y note: if that parti
ular draft has already been rendered on
e, the render()
all won't do anything

at all, the rendered version having already been fet
hed. Other options for fet
hing drafts: you
an also
all

�getLatestDraft� with a maximum revision number, or just
all �getDraft� with a spe
i�
 revision number you want.

To revise a draft, meaning that you will add a new revision to the do
ument:

d r a f t . r e v i s e (' t h i s i s the markup sour
e ' , ' t e x t i l e ')

Note that after revision, the draft obje
t is updated with the new information. So you
an
all

�draft.getRevision()� to see the new revision number if you need it. Again, remember that this parti
ular revi-

sion number will be unique for the entire �site�: no other do
ument or draft will have it.

To
reate a new do
ument:

var s i t e = D i l i g en
 e . Do
uments . g e tS i t e (' 4 d5595e3f7f2d14d2ab9630f ')

var d r a f t = s i t e .
reateDo
ument (' a new do
ument ! ' , ' t e x t i l e ')

Note that �
reateDo
ument� returns a draft obje
t, whi
h will be the �rst and only draft of the do
ument.

As you you
an see, the usage is simple and e�
ient, but the implementation does have some sophisti
ation.

It's re
ommended that you look at the MongoDB
olle
tions for �do
uments� and �sites� to get a sense of how they

work together.

Integration

To integrate the Do
uments Servi
e into your appli
ation, use the do
ument ID by
alled �getDo
umentId()� on

a draft obje
t, and then store that ID in your own stru
ture. For example, if you're writing a wiki, you might

want to asso
iate a wiki page with that do
ument ID. Similarly for a blog entry. And, of
ourse, this is s
hema-

free MongoDB: feel free to add whatever data you need to your �do
ument� do
uments. You
an also inherit the

Do
ument Servi
e
lasses and add the ne
essary fun
tionality.

An important feature of wiki markup languages is support for spe
ial pro
essing of wiki page referen
es, turning

them into HTML hyperlinks and possibly
reating the page in the wiki. The Do
uments Servi
e lets you hook in

your
ode to support
ustom delimiters, so it
an output proper links. Example:

var rendered = dra f t . render ({

odes : {

s t a r t : ' {{ ' ,

end : ' }} ' ,

fn : f un
 t i on (t ex t) {

return '<a h r e f="/ l i n k /{0}">{0} '.
a s t (t ex t)

}

}

})

You
ould then insert these
ustom
odes in your markup:

8

http://threecrickets.com/api/javascript/?namespace=Diligence.Documents

This i s a l i n k to {{mywikitopi
 }} .

The �
odes� key
an be an array of several su
h
ode pro
essors, and the fun
tion
an output anything at all,

not just links, so you
an use it to extend the markup language. In fa
t, the fun
tion
an a
tually do something

more substantial than output: you
ould, for example, save a
ross referen
e to the remote wiki page, or
reate an

empty template for a non-existing page.

Note that
ustom
ode pro
essing happens only during the �rst render: in subsequent
alls to �render()� on this

draft the �
odes� argument will be ignored.

Con�guration

If you like, you
an avoid spe
ifying the markup language in all the API
alls. The default language would then be

�textile�, but you
an
hange it in your appli
ation's �settings.js� by adding something like this to your app.globals:

app . g l oba l s = {

. . .

d i l i g e n
 e : {

s e r v i
 e : {

do
uments : {

defaultLanguage : 'markdown '

}

}

}

}

Events Servi
e

Almost every appli
ation framework provides some generi
 way to listen to and �re one-way messages
alled �events.�

By de
oupling event produ
er
ode from event
onsumer
ode, you
an allow for a looser, more dynami

ode

ar
hite
ture.

Some frameworks go a step beyond simple
ode de
oupling, and treat produ
ers and
onsumers as separate

omponents, in whi
h the produ
er
annot make any assumptions on the
onsumer's thread behavior. Consider two

extremes: a
onsumer might respond to events immediately, in thread, possibly tying up the produ
er's thread in

the pro
ess. Or, it might allow for events to be queued up, and poll o

asionally to handle them. In the latter highly

abstra
ted situations, events are
alled �messages,� and implementations often involve sophisti
ated middleware to

queue messages, persist them,
reate interdependen
ies, and make sure they travel from sour
e to destination via

repeated attempts, ba
k-o� algorithms, noti�
ations to system administrators in
ase of failure, et
.

One size does not �t all. With Diligen
e, we wanted to keep events lightweight: we assume that your
onsumer

and produ
er
omponents are all running inside a Pruden
e
ontainer: either they are expli
it or impli
it resour
es

running in web request threads, or they are asyn
hronous tasks. This allows us to optimize for this situation without

having to rely on abstra
ting middleware. Still, more sophisti
ated, dedi
ated messaging middleware is out there

and available if you need it. We suggest you try RabbitMQ.

That said, the
ombination of Pruden
e Hazel
ast
lusters, MongoDB, and JavaS
ript's inherent dynamism

within the Pruden
e
ontainer allows for a truly s
alable event framework. If what you need is asyn
hrony and

s
alable distribution, rather than generi
 de
oupling, then Diligen
e events might be far more useful and simpler

than deploying
omplex middleware.

The point of an event-driven ar
hite
ture is that you're relinquishing some
ontrol of your
ode-�ow.

It's thus hard to know, simply by looking at the
ode, whi
h parts of it will be triggered when an event

is �red. You also need to know what exa
tly is subs
ribing and where that listener
ode is. De
oupling

ode is a great way to introdu
e some really di�
ult bugs into your
odebase, and vastly redu
e its

debuggability. We present this servi
e for your use, but en
ourage you to think of the
osts vs. the

bene�ts in terms of
ode
larity. Perhaps there is a more straightforward way to solve your problem?

If all you need as asyn
hroni
ity, then you
an also use the Pruden
e.Task API more dire
tly, allowing

you to
all spe
i�
 listening
ode, rather than any generi
 subs
riber. The bottom line is that as great

as this servi
e is, we re
ommend using it with dis
rimination.

9

http://www.rabbitmq.com/
http://threecrickets.com/api/javascript/?namespace=Prudence.Task

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Events.

In-Thread Events

First, the basi
s. Here's our �/libraries/politeness/a
knowledgements.js�:

D i l i g en
 e . Events . s ub s
 r i b e ({

name : ' payments . s u

 e s s f u l ' ,

fn : f un
 t i on (name ,
ontext) {

l o gg e r . i n f o (' User {0} has paid us {1} ! ' ,
ontext . username ,
ontext . amount)

A
knowledgements . sendThankYou(
ontext . username)

}

})

Then, to �re the event, somewhere in our payments work�ow:

do
ument . exe
uteOn
e (' / p o l i t e n e s s /a
knowledgements / ')

D i l i g en
 e . Events . f i r e ({

name : ' payments . s u

 e s s f u l ' ,

ontext : {

username : user . name ,

id : user . id ,

amount : payment . amount

}

})

For this to work, you have to make sure the �ring
ode has already run the
ode that hooks up the listeners.

Often, a simple do
ument.exe
ute will do the tri
k, as in this example.

Asyn
hronous Events

You
an easily make the listeners run outside your thread, in fa
t anywhere in your Pruden
e
luster. This, of

ourse, is
ru
ial for s
alability, be
ause you don't want the listeners holding your web request thread.

For this to work, we need to add something small to our subs
ription:

D i l i g en
 e . Events . s ub s
 r i b e ({

name : ' payments . s u

 e s s f u l ' ,

dependen
 ies : '/ p o l i t e n e s s /a
knowledgements / ' ,

fn : f un
 t i on (name ,
ontext) {

l o gg e r . i n f o (' User {0} has paid us {1} ! ' ,
ontext . username ,
ontext . amount)

A
knowledgements . sendThankYou(
ontext . username)

}

})

Note that we had to add a �dependen
ies� key to the listener, to allow it to be
alled in di�erent
ontexts. These

dependen
ies are do
ument.exe
uteOn
e'd to make sure the
alling thread has a

ess to all the
ode it needs.

Firing it:

do
ument . exe
uteOn
e (' / p o l i t e n e s s /a
knowledgements / ')

D i l i g en
 e . Events . f i r e ({

name : ' payments . s u

 e s s f u l ' ,

asyn
 : true ,

ontext : {

username : user . name ,

id : user . id ,

amount : payment . amount

}

})

10

http://threecrickets.com/api/javascript/?namespace=Diligence.Events

All we did was add �asyn
: true�, and. . . that's pretty mu
h it. Every listener will run in its own thread within

the global pool. You
an add a �distributed: true� �ag to
ause listeners to be exe
uted anywhere in the
luster,

and there's where things get really powerful: you
an properly s
ale out your event handling in the
luster, with

nothing more than a simple �ag.

How does this magi
 work? It's JavaS
ript magi
: we're evaluating the serialized listener sour
e
ode. The

ode that �res the event is
alled as a Pruden
e task. The task makes sure to run the dependen
ies and evaluate

the JavaS
ript you stored. Voila. (Serialization and eval will only o

ur on asyn
 events: otherwise, it's a regular

fun
tion
all.)

Con
erned about JavaS
ript eval performan
e? Generally, it's very fast, and surely whatever overhead is required

to parse the JavaS
ript grammar would be less than any network I/O that a distributed event would involve. If

you're really worried about performan
e, make sure to store as little
ode as possible in the listener fun
tion and

qui
kly delegate to
ompiled
ode. For example, your listener
an simply
all a fun
tion from one of the dependen
y

libraries, whi
h are already
ompiled and at their most e�
ient.

Stored Listeners

So far so good, but both examples above require you to exe
ute the
ode that subs
ribes the listeners before �ring

the event. Stored listeners remove this requirement by saving the event and its listeners in one of several storage

implementations.

For example, let's store our listeners in appli
ation.distributedGlobals, so that we
an �re the event anywhere

in the Pruden
e
luster:

var g loba lEvents = new Di l i g en
 e . Events . Globa l sStore (app l i
 a t i on . d i s t r ibutedGloba l s , ' myevents . ')

D i l i g en
 e . Events . s ub s
 r i b e ({

name : ' payments . s u

 e s s f u l ' ,

s t o r e s : g lobalEvents ,

id : ' sendThankYou ' ,

dependen
 ies : '/ p o l i t e n e s s /a
knowledgements / ' ,

fn : f un
 t i on (name ,
ontext) {

l o gg e r . i n f o (' User {0} has paid us {1} ! ' ,
ontext . username ,
ontext . amount)

A
knowledgements . sendThankYou(
ontext . username)

}

})

We
an also use appli
ation.globals or appli
ation.sharedGlobals.

One small issue to note when using stored listeners is that storage must support
on
urren
y. One impli
ation of

this is that you need to make sure that they are not registered more than on
e, say by multiple nodes in the
luster,

otherwise your listener
ode would be
alled multiple times. And that's what the listener �id� �eld is for. (In fa
t,

the �id� �eld
an also be used for in-thread listeners.) It also might make sense to set up all your stored listeners

in your �/startup/� task, but it's not a requirement: you
an install listeners whenever ne
essary and relevant.

Be
ause it's stored, �ring the event does not require us to exe
ute the listener
ode �rst in our thread. We
an

remain blissfully unaware of who or what is subs
ribed to our event:

D i l i g en
 e . Events . f i r e ({

name : ' payments . s u

 e s s f u l ' ,

s t o r e s : g lobalEvents ,

asyn
 : true ,

d i s t r i b u t e d : true ,

ontext : {

username : user . name ,

id : user . id ,

amount : payment . amount

}

})

The �stores� param
an also be an array, so you
an �re the event on listeners from various stores. The in-thread

store is in �Diligen
e.Events.defaultStores�, so you
an
on
at that to your
ustom store if you want to �re the event

a
ross all stores. Or, set �Diligen
e.Events.defaultStore� to your own value.

11

http://threecrickets.com/prudence/manual/tasks/

Persistent Listeners

In the above example, the listeners would have to be re-subs
ribed when the appli
ation restarts, be
ause it
annot

guaranteed that appli
ation.distributedGlobals would keep its value. (Well, you
an
on�gure Hazel
ast to persist

the distributedGlobals map. . .)

Let's store our listeners in MongoDB, instead (the default is to use the �events� MongoDB
olle
tion):

D i l i g en
 e . Events . s ub s
 r i b e ({

name : ' payments . s u

 e s s f u l ' ,

s t o r e s : new D i l i g en
 e . Events . MongoDbColle
tionStore () ,

id : ' sendThankYou ' ,

dependen
 ies : '/ p o l i t e n e s s /a
knowledgements / ' ,

fn : f un
 t i on (name ,
ontext) {

l o gg e r . i n f o (' User {0} has paid us {1} ! ' ,
ontext . username ,
ontext . amount)

A
knowledgements . sendThankYou(
ontext . username)

}

})

Everything is otherwise the same. Neat!

You
an also store events inside a spe
i�
, arbitrary MongoDB do
ument, using

Diligen
e.Events.MongoDbDo
umentStore. This is a great way to keep events and their listeners (and the

namespa
e for events) lo
alized to a spe
i�
 obje
t without adding external me
hanisms and storage.

Finally, you
an
reate your own
ustom store
lass to store events anywhere else.

Con�guration

You don't have to
on�gure the Events Servi
e, but it is possible to set a few defaults. In your appli
ation's

�settings.js� add something like this to your app.globals:

app . g l oba l s = {

. . .

d i l i g e n
 e : {

s e r v i
 e : {

events : {

de fau l tAsyn
 : true ,

d e f au l tD i s t r i bu t ed : true ,

d e f au l t S t o r e s : [f un
 t i on () {

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / events / ')

re turn new D i l i g en
 e . Events . MongoDbColle
tionStore ()

} ℄

}

}

}

}

Note the use of fun
tion(): this is required in order to allow the Events Servi
e to lazily
reate the servi
e

implementations on demand during runtime.

Forms Servi
e

Forms are an important feature for any GUI appli
ation. As for web appli
ations, forms are supported in HTML,

but many web appli
ations also use JavaS
ript to send forms to the server in the ba
kground (�AJAX�). Diligen
e

goes a long way towards making it easier for you to use both models, ea
h with its own
omplexities and subtleties,

through a uni�ed API. Allowing for both AJAX and HTML
lient forms with the same server
ode makes it easy

to support �lega
y�
lients that
an't use AJAX.

Diligen
e expli
itly supports Ext JS Forms, and re
ommends Ext JS as a
lient-side framework. See the se
tion

on Sen
ha Integration for full details.

12

http://threecrickets.com/api/javascript/?namespace=Diligence.Events.MongoDbDocumentStore

Client-side Validation vs. Server-side Validation

Like all good form frameworks, Diligen
e's Form Servi
e makes it espe
ially makes it easy to implement form

validation, both on the server and the
lient, using an extensible system of �eld types. Due to the fa
t that

Diligen
e is a server-side JavaS
ript framework, you
an a
tually share the exa
t same validation
ode on both the

lient and the server! This marvelous advantage makes using forms in Diligen
e less
umbersome as
ompared to

other frameworks.

What are the advantages of ea
h kind of validation? Why you would want both?

• Server-side validation: You'll at least want this. It prote
ts against user error, and
an return friendly error

odes so that the user will know how to
orre
t the form. It's also important for se
urity, to make sure that

potentially damaging data will never enter the other parts of your appli
ation. For example, you
an prote
t

yourself from atta
ks whi
h try to over�ow your database with too mu
h data, or attempts at SQL inje
tion.

(MongoDB inje
tion atta
ks may be possible, too!) Note also that Diligen
e Forms will automati
ally
at
h

server-side ex
eptions, invalidating the form and returning the error to the user, but obviously relying on

ex
eptions is not se
ure enough.

• Client-side validation: Adding this to server-side validation will enhan
e the user experien
e by providing

fast, instant feedba
k, thus avoiding an extra round-trip to the server to validate the form data. It will also

save you some bandwidth and help you s
ale. There are two kinds of
lient-side validation supported by

Diligen
e, whi
h when used together will o�er the best user experien
e:

� Validation: The �eld's whole value will be tested before allowing the form to be submitted.

� Masking: When entering textual data, this lo
ks the user's text �eld to only a

ept allowed
hara
ters.

For example, if an integer is required, only the
hara
ters �0� to �9� and �-� (for negative integers) will

be allowed.

Setup

Make sure to
he
k out the API do
umentation for Diligen
e.Forms.

Every form is an instan
e of �Diligen
e.Forms.Form� or its sub
lasses. This
lass inherits �Dili-

gen
e.REST.Resour
e,� and thus
an immediately be hooked to your URI-spa
e. Indeed, mu
h of the Forms

Servi
e power
omes from su
h a setup, so we'll go over it here. However, note that is also possible to use the form

instan
e without hooking it up to a URI, as we'll show in �Usage,� below.

First, let's
on�gure the URI-spa
e in your appli
ation's �routing.js�. Add the following to app.routes and

app.dispat
hers:

app . route s = {

. . .

'/ mult ip ly / ' : ' �multiply '

}

app . d i s pa t
h e r s = {

. . .

j a v a s
 r i p t : '/manual−r e s ou r
 e s / '

}

We
an now
on�gure our resour
es in �/libraries/manual-resour
es.js�:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / forms / ')

var multiplyForm = {

f i e l d s : {

f i r s t : {

type : ' number ' ,

l a b e l : 'A number ' ,

r equ i r ed : t rue

} ,

se
ond : {

13

http://threecrickets.com/api/javascript/?namespace=Diligence.Forms

type : ' i n t ege r ' ,

l a b e l : 'An in t ege r ' ,

r equ i r ed : t rue

}

} ,

p ro
e s s : f un
 t i on (r e s u l t s) {

i f (r e s u l t s . s u

 e s s) {

r e s u l t s . va lue s . r e s u l t = Number(r e s u l t s . va lue s . f i r s t) Number(r e s u l t s . va lue s . se
ond)

r e s u l t s . msg = '{ f i r s t } t imes { se
ond } equa l s { r e s u l t } ' .
a s t (r e s u l t s . va lue s)

}

e l s e {

r e s u l t s . msg = ' Inva l i d ! '

}

}

}

r e s ou r
 e s = {

. . .

mult ip ly : new D i l i g en
 e . Forms . Form(multiplyForm)

}

Let's look more
losely at this setup below.

Fields and Validation

Ea
h �eld has at least a name (the key in the di
t) and a type (defaults to �string�). If that's all the information

you provide, then no validation will o

ur: any value, in
luding an empty value, will be a

epted.

• required: The �eld
annot be empty, neither a null value nor an empty string will be a

epted. Note that

the �required�
he
k happens before the �validator� fun
tion is
alled. [TODO error key℄

• validator: A validating fun
tion, meant for both
lient- and server-side validation. It must return true to

signify that the value valid. Any other return value will signify invalidity. (See �validation fun
tions,� below.)

• serverValidator: As �validator�, but intended only for server-side validation.

•
lientValidator: As �validator�, but intended only for
lient-side validation.

• mask: A regular expression used for masking. This
ould be JavaS
ript literal regular expression, a RegExp

obje
t, or a string.

• serverValidation: Set to false to override the default for the form.

•
lientValidation: Set to false to override the default for the form.

• textKeys: An array of text pa
k keys used by validator fun
tion. See �Text and Internationalization,� below.

• type: Instead of providing �validator�, �
lientValidator�, �serverValidator�, �mask�, �serverValidation�, �
lient-

Validation� and �textKeys� for every single �eld, you
an spe
ify a �type� from whi
h these keys will be

inherited. Defaults to �string�. Note that even if you spe
ify �type�, you
an override the inherited keys in the

�eld de�nition.

• value: This is a default value assigned to the �eld when the form is initialized.

Validator Fun
tions

Let's look at su
h a fun
tion in the
ontext of a �eld de�nition:

f i r s t : {

r equ i r ed : t rue

va l i d a t o r : f un
 t i on (value , f i e l d ,
onve r sa t i on) {

return va lue % 1 == 0 ? true : 'Must be an in t ege r '

14

}

}

The return value, as stated before must be true to signify a valid value. Otherwise, the value will be
onsidered

invalid and the return value will be used as the error message.

The arguments are as follows:

• value: The value to be validated, most likely a string.

• �eld: The �eld de�nition. This is useful if you are using the same fun
tion for multiple �elds, and need to

validate di�erently per �eld. Note that the �eld de�nition is framework-dependent. For example, if you are

on the server, it will look like the examples above, but if you're on an Ext JS
lient, then it will use Ext

JS's de�nition. Be
ause we're not using ��eld� in this example, we supplied just one �validator� fun
tion for

both the
lient and the server. However, if you do need to a

ess ��eld�, it may be better to have separate

�serverValidator� and �
lientValidator� fun
tions.

•
onversation: The Pruden
e
onversation. Only available on the server.

The fun
tion is
alled with an impli
it �this� obje
t, whi
h obviously refers to di�erent obje
ts on the server and

the
lient, but you
an expe
t these �elds:

• form: The form instan
e. Only available on the server.

• textPa
k: The
urrently used text pa
k. Always available on the server, and available on some
lients, su
h

as Ext JS if you use Diligen
e's Sen
ha Integration. See �Text and Internationalization,� below, for more

information.

Through a

essing the ��eld� and �
onversation� arguments as well as �this.form�, you
an do some very sophis-

ti
ated server-side validation. For example, you
an query MongoDB and
he
k against data,
he
k for se
urity

authorization, et
. And, of
ourse, you
an use similar sophisti
ation for
lient-side frameworks a

ording to the

features they provide.

(At this point, you might be wondering how exa
tly
lient-side validator fun
tions get to be
alled on the
lient,

sin
e we are de�ning them on the server. We'll talk about that in �Usage,� below, but the solution is simple: we

send the sour
e
ode dire
tly as text!)

Types

The Forms Servi
e
omes with a few basi
 types to get you started, all de�ned under �Diligen
e.Forms.Types�:

• string: All values are valid. This is the default type.

• number: Valid if the value
an be
onverted into a JavaS
ript number. Masked for digits, �-� and �.�.

• integer: Valid if the value
an be
onverted into a JavaS
ript integer. Masked for digits and �-�.

• email: Valid if the value is a standard email address. Does no masking.

• re
apt
ha: See reCAPTCHA.

You
an also provide your own types:

var servi
eForm = {

types : {

bool : {

va l i d a t o r : f un
 t i on (value , f i e l d ,
onve r sa t i on) {

va lue = Str ing (va lue) . toLowerCase ()

return (va lue == ' true ') | | (va lue == ' f a l s e ')

}

}

}

f i e l d s : {

enabled : {

type : ' bool ' ,

15

l a b e l : 'Whether the s e r v i
 e i s enabled '

}

. . .

}

. . .

}

Text and Internationalization

If you don't need internationalization, then just use the �label� key in the �eld de�nition to set up the text dire
tly.

If unspe
i�ed, it will default to the �eld name.

Otherwise, read about the Diligen
e Internationalization Servi
e to understand how to set it up. We will use

the �labelKey� key instead of �label�, and also set up the list of other keys we might need using the �textKeys� key:

f i r s t : {

labelKey : 'myapp . myform . f i e l d . f i r s t ' ,

textKeys : ['myapp . myform . va l i d a t i on . i n t e g e r . not ' ℄ ,

r equ i r ed : t rue

va l i d a t o r : f un
 t i on (value , f i e l d ,
onve r sa t i on) {

return va lue % 1 == 0 ? true : t h i s . textPa
k . get ('myapp . myform . va l i d a t i on . i n t e g e r . not ')

}

}

The above
ode will work on both the
lient and the server, be
ause �textKeys� ensures that all those text values

are sent to the
lient.

Pro
essing

Let's look at our pro
essing fun
tion again:

p ro
e s s : f un
 t i on (r e s u l t s) {

i f (r e s u l t s . s u

 e s s) {

r e s u l t s . va lue s . r e s u l t = Number(r e s u l t s . va lue s . f i r s t) Number(r e s u l t s . va lue s . se
ond)

r e s u l t s . msg = '{ f i r s t } t imes { se
ond } equa l s { r e s u l t } ' .
a s t (r e s u l t s . va lue s)

}

e l s e {

r e s u l t s . msg = ' Inva l i d ! '

}

}

The fun
tion will be
alled after validation happens, with �results� being a pre-de�ned di
t, ready for you to

modify, with the following keys:

• results.su

ess: Will be true if the form data is valid. You
an
hange it to false during pro
essing in order

to signify an error to the user. Ex
eptions thrown in this fun
tion will also
ause �results.su

ess� to be false.

• results.values: A di
t of the form values sent from the user. The value keys
orrespond to the �eld keys.

Note that �results.values� will be deleted if �results.su

ess� is true. The reason is that you should only need

the old values if the user needs to
orre
t the form in
ase of an error. If the form was su

essful, the form

values should be reset. (In the example above we are setting �results.values.result� only for the purpose of the

string template
ast.)

• results.msg: A message to be displayed to the user.

• results.errors: A di
t of error messages per �eld, as set by the �eld validator fun
tions. The error keys

orrespond to the �eld keys. This di
t will not exist if �results.su

ess� is true when this fun
tion is
alled.

As stated, you
an modify any of these results as you need, in
luding settings �results.errors� to extra per-�eld error

messages, beyond what was performed in validation.

Indeed, you
an use the pro
essing fun
tion to do extra validation, whi
h might have to take into
onsideration

the form as a whole, rather than individual �elds. For example, what if a start-date �eld in the form is set to be

16

after an end-date �eld? You
an �nd that out here and set �results.su

ess� to false, with �results.errors.endDate�

to a suitable error message.

The return value of this fun
tion is ignored.

Usage

If you've set up the resour
e as instru
ted above, you should be able to a

ess it at the spe
i�ed URI. By default,

it will only support the HTTP POST operation, for whi
h it expe
ts an entity in the �appli
ation/x-www-form-

urlen
oded� media type, as is used by HTML forms.

Later on, we'll show you below how the Forms Servi
e
an help you render an HTML form,
omplete with

validation error messages and internationalization support.

HTML Forms

For now, let's just start with a straightforward, literal HTML example:

<html>

<body>

<form a
t i on="<%=
onver sa t i on . pathToBase + '/ mult ip ly /?mode=red i r e
 t ' %>" method="post">

<p>F i r s t va lue : <input name=" f i r s t " /></p>

<p>Se
ond va lue : <input name="se
ond " /></p>

<p><input type="submit " va lue="Mult iply ! " /></p>

</form>

</body>

</html>

You'll noti
e that added a �mode� query parameter to the a
tion URI. This lets us sele
t one of the following

modes of behavior supported by the resour
e:

• json: This is the mode you'll want to use for AJAX, as it returns the form results in JSON format. JSON

mode additionally supports the �human=true� query parameter to return the JSON in multiline, indented

format. Note that this is the default mode.

• redire
t: After pro
essing, the resour
e will redire
t the
lient to a new URI. The default is the sending URI,

but you
an set up spe
i�
 URIs for su

ess and failure.

•
apture: As an alternative to a redire
t, you
an perform a Pruden
e �
apture� of another internal URI. The

user will see the URI of the form resour
e itself, but the
ontent will
ome from elsewhere. Note that be
ause

apturing happens in the same
onversation, without a round trip to the
lient, you
an use all the data used

during pro
essing. If you do a redire
t, the
lient would be sending a new request and that data would be

gone.

When
reating your resour
e instan
e, you
an
hange the default to be something other than �json� by setting the

�mode� key. JSON was
hosen as a default be
ause it's easiest to test and produ
es the least amount of side-e�e
ts

due to unintentional a

ess to the resour
e.

Testing Your Form Resour
e with
URL

URL is an HTTP
ommand line tool based on the
URL library, available for a great many Unix-like operating

systems as well as Windows. It's espe
ially useful for testing RESTful APIs. Here's a qui
k tutorial to get you

started with using
URL with the Forms Servi
e.

Try this
ommand to send a POST to your form:

u r l −−data−ur len
ode f i r s t =5 −−data−ur len
ode se
ond=6 "http :// l o
 a l h o s t :8080/myapp/mult ip ly /?human=true "

Note that using the �data-urlen
ode� swit
h will automati
ally set the method to POST and the entity type to

�appli
ation/x-www-form-urlen
oded.�

Be
ause the resour
e's default mode is JSON, you should get this result:

17

http://curl.haxx.se/

{

" su

 e s s " : true ,

"msg " : "5 t imes 6 equa l s 30"

}

If you're using AJAX to POST to the resour
e, then you'll have to parse these JSON results a

ordingly. See

�Pro
essing� above for the exa
t format of the results.

Also note that this format is immediately usable by Ext JS forms! See Diligen
e's Ext JS Integration for more

details.

You
an also use
URL to test redire
t mode:

u r l −v −e " http ://my−r e f e r r i n g−u r l " −−data−ur len
ode f i r s t =5 −−data−ur len
ode se
ond=6 "http :// l o
 a l h o s t :8080/myapp/mult ip ly /?mode=r e d i r e
 t "

You should see the redire
ted URL in the �Lo
ation� header, as well as an HTTP status of 303.

Redire
t Mode

Redire
t mode will by default redire
t the
lient to the referring URI, using HTTP status 303 (�See Other�).

But, you
an expli
itly set the redire
tion URI to something spe
i�
 in �/libraries/resour
es.js�:

var multiplyForm = {

. . .

r e d i r e
 tU r i : '/ mult ip ly / r e s u l t s / ' ,

mode : ' r e d i r e
 t ' // we ' l l make t h i s the d e f au l t mode (in s t ead o f ' j son ')

}

You
an also set �redire
tSu

essUri� and �redire
tFailureUri� separately.

Or, you
an set the URI dynami
ally by setting �results.redire
t� in your pro
essing fun
tion.

This should go without saying, but
lient redire
tions means that a whole new HTTP GET request will be sent

by the
lient, su
h that all your
onversation data will be gone. Of
ourse, often the resulting page should depend

on the result of form pro
essing. There are two good strategies for handling this:

• Be
ause you
an set the URI dynami
ally in �results.redire
t�, you
an
reate a spe
ial kind of results view. For

example, let's say you are implementing a sear
h form (like Google's sear
h engine page), whi
h should redire
t

the user to the sear
h results. You
ould redire
t to a URI whi
h in
ludes the sear
h results, for example in

the URI query string. For example, sear
hing for the phrase �
ool apps�
ould end up redire
ting to something

like this: �http://myapp.org/sear
h/?terms=
ool+apps�. In �/mapped/sear
h.d.html� you would then unpa
k

the terms and display the
orre
t results. (You likely want to
a
he the sear
h results for a while for the best

user experien
e!)

• Another option is set a
ookie, using Pruden
e's �
onversation.
reateCookie� API, whi
h you
an then read

in the redire
ted page using �
onversation.
ookies�. Cookies are great if the result is very spe
i�
 to the user,

but note that bookmarks to the result URL would display something di�erent if the
ookie does not exist.

Capture Mode

Capture mode may seem similar to redire
t mode: you supply a new URI whi
h gets displayed to the
lient. The

di�eren
e is that �redire
tion� happens on the server, rather than the
lient. That means that the URI for the
lient

will remain the same. This is more e�
ient in that an extra round trip from the
lient is avoided. However, it

reates serious problems for bookmarking: the result URI ends up being the same as the form URI. Think
arefully

about the pros and
ons of ea
h approa
h in terms of what would provide the best user experien
e. (Also see

manual mode, below, whi
h is similar in behavior to
apture mode.)

You
an a

ess the form and the
aptured page using �Diligen
e.Forms.getCapturedForm� and �Dili-

gen
e.Forms.getCapturedResults�. This API will only work in a
aptured page. Let's see how this works by

reating a �/mapped/multiply/results.d.html� for our results:

<html>

<body>

<%

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / forms / ')

18

var form = Di l i g en
 e . Forms . getCapturedForm (
onver sa t i on)

var r e s u l t s = D i l i g en
 e . Forms . getCapturedResult s (
onve r sa t i on)

i f (r e s u l t s && r e s u l t s . s u

 e s s) {

%>

<p><%= r e s u l t s . msg %></p>

<% } e l s e { %>

<form method="post">

<p>F i r s t va lue : <input name=" f i r s t " /></p>

<p>Se
ond va lue : <input name="se
ond " /></p>

<p><input type="submit " va lue="Mult iply ! " /></p>

</form>

<% } %>

</body>

</html>

We
an spe
ify the
apture URI when we
reate the resour
e, in �/libraries/resour
es.js�:

var multiplyForm = {

. . .

aptureUr i : '/ mult ip ly / r e s u l t s / ' ,

mode : '
apture ' // we ' l l make t h i s the d e f au l t mode (in s t ead o f ' j son ')

}

You
an also set �
aptureSu

essUri� and �
aptureFailureUri� separately.

Or, you
an set the URI dynami
ally by setting �results.
apture� in your pro
essing fun
tion.

Finally, while it's not entirely ne
essary, you
an hide the URI. This will guarantee that it's only available

for
apturing, but the user won't be able to rea
h it by entering the URL in their browser. You do this in your

appli
ation's �routing.js�:

app . route s = {

. . .

'/ mult ip ly / r e s u l t s / ' : ' hidden '

}

Manual Mode

If you go ba
k to the
ode for the simple HTML form we've provided above, you might wonder if having the form

as a separate resour
e is ne
essary. While it does provide a
leaner separation between the form pro
essing resour
e

and the HTML view resour
e, it would be more e�
ient if we
ould avoid that extra
lient redire
t and do the

pro
essing and viewing in the same resour
e.

Before we
onsider if this is a good idea or not, let's see how this would be easily done with Diligen
e:

<html>

<body>

<%

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / forms / ')

var form = Di l i g en
 e . Forms . getForm ('/ mult ip ly / ')

var r e s u l t s = form . handle (
onve r sa t i on)

i f (r e s u l t s && r e s u l t s . s u

 e s s) {

%>

<p><%= r e s u l t s . msg %></p>

<% } e l s e { %>

<form method="post">

<p>F i r s t va lue : <input name=" f i r s t " /></p>

<p>Se
ond va lue : <input name="se
ond " /></p>

<p><input type="submit " va lue="Mult iply ! " /></p>

</form>

19

<% } %>

</body>

</html>

A few points to explain:

• �Diligen
e.Forms.getForm� is a very useful fun
tion. It works by doing an internal GET on the URI to fet
h

the form instan
e. We
ould have also avoided setting up the instan
e in �resour
es.js� as well as routing it in

�routing.js�, and instead simply have
reated the �Diligen
e.Forms.Form� instan
e here. But this lets us use

the instan
e both as a resour
e and in manual mode, as we've done here.

• The �handle� method will validate and pro
ess the form, but only if the
onversation is a POST. If it's not

pro
essed, it will will return null.

• Note how we're displaying di�erent
ontent a

ording to whether the pro
essing was su

essful or not.

So, is manual mode a good idea or not? If
an provide a straightforward, qui
k-and-dirty way to implement a form.

Compa
t, too: you
an
reate the instan
e, do all the pro
essing, and put all the view
ode in a single �le. There's

no need to set up routing for a resour
e.

But, there are a few disadvantages:

• The
ode is not very easy to follow or debug. The same page is doing three di�erent things: 1) displaying the

form, 2) displaying errors, and 3) displaying the results of a su

essful post. (You
ould put ea
h view in a

di�erent in
luded fragment, but would lose the
ompa
tness.)

• This also means that
a
hing logi
 for the page my be di�
ult if not impossible to do e�
iently.

• A single URI with multiple uses
an be
onfusing for users. If they bookmark the result �page,� but try to go

to it again at a later time, it would display an un�lled form, be
ause it's the same page. This is problemati
 for

all POSTed HTML forms: it's always a good idea to redire
t the user to a book-markable URI that responds

orre
tly to an HTTP GET.

You
an mitigate some of these problems by using
apture mode instead. Capture mode will let you use a separate

page for results, whi
h
an be
a
hed (on the server, at least: a POST will never
a
he on the
lient), while keeping

the URI the same.

Low-Level Manual Mode

So, this �mode� a
tually does not use the Diligen
e Forms Servi
e at all, instead it relies dire
tly on the Pruden
e

API. We thought it would be a good idea to in
lude it here for the sake of
ompletion. Sometimes, even manual

mode may not be qui
k-and-dirty enough! Note that validation is very, very basi
: if the value
annot be
onverted,

you will simply get a null.

Here's how it would look:

<html>

<body>

<%

do
ument . exe
uteOn
e (' / pruden
e/ r e s ou r
 e s / ')

do
ument . exe
uteOn
e (' / s i n
 e r i t y / ob j e
 t s / ')

do
ument . exe
uteOn
e (' / s i n
 e r i t y / templates / ')

var form

i f (
onve r sa t i on . r eque s t . method . name == 'POST') {

form = Pruden
e . Resour
es . getForm (
onversat ion , {

f i r s t : ' f l o a t ' ,

se
ond : ' int '

})

}

i f (form && S i n
 e r i t y . Obje
ts . e x i s t s (form . f i r s t) && S i n
 e r i t y . Obje
ts . e x i s t s (form . se
ond)) {

form . r e s u l t = Number(form . f i r s t) Number(form . se
ond)

20

%>

<p><%= '{ f i r s t } t imes { se
ond } equa l s { r e s u l t } ' .
a s t (form) %></p>

<% } e l s e { %>

<form method="post">

<p>F i r s t va lue : <input name=" f i r s t " /></p>

<p>Se
ond va lue : <input name="se
ond " /></p>

<p><input type="submit " va lue="Mult iply ! " /></p>

</form>

<% } %>

</body>

</html>

Rendering an Internationalized HTML Form

In all the above examples, we expli
itly entered the HTML for the form and its �elds. But, Diligen
e Forms

an also generate the HTML for you, and moreover use the Internationalization Servi
e, in
onjun
tion with the

Authorization Servi
e, to render the
orre
t text for the user's preferred language.

The rendered HTML is very straightforward: it's a simple <input> tag when using �htmlText� (or a <textarea>

tag when usng �htmlTextArea�), with a
onne
ted <label> prepended. If the �eld failed validation then an extra

<div> is appended with the validation error message. Furthermore, in
ase of validation error, all tags for the �eld

will get the �error�
lass, allowing you to use CSS in order to stylize validation errors.

You should add the �results� of the form if you have them (they are available in
apture mode and manual mode)

to the method
alls. This will render errors properly, and also set the values of the form to the previous values,

making it easier for the user to
orre
t the form.

Here's an example using manual mode, whi
h also uses CSS to stylize form errors:

<html>

<head>

<sty l e >

form input . e r r o r {

border : 1px s o l i d red ;

}

form div . e r r o r {

 o l o r : red ;

d i s p l ay : i n l i n e ;

padding− l e f t : 5px ;

}

</s ty l e >

</head>

<body>

<%

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / forms / ')

var form = Di l i g en
 e . Forms . getForm ('/ mult ip ly / ')

var r e s u l t s = form . handle (
onve r sa t i on)

%>

<form method="post">

<div><%= form . htmlText ({name : ' f i r s t ' ,
 onve r sa t i on :
onversat ion , r e s u l t s : r e s u l t s }) %></div>

<div><%= form . htmlText ({name : ' se
ond ' ,
onve r sa t i on :
onversat ion , r e s u l t s : r e s u l t s }) %></div>

<div><input type="submit " va lue="Mult iply ! " /></div>

</form>

</body>

</html>

21

HTML Servi
e

This servi
e supports two uses:

1. Generating stru
tured, internationalized, sanitized HTML
ode.

2. Consuming HTML and parsing it using a jQuery-like syntax. For this we rely internally on the jsoup library.

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.HTML. Also useful is the

API do
umentation for Sin
erity.XML.

From JSON to HTML

The most general API is �build�, whi
h a

epts a JSON stru
ture and turns it into HTML:

<%

pr in t (D i l i g en
 e .HTML. bu i ld ({

_tag : ' div ' ,

_
hi ldren : [

℄

}))

%>

The generated HTML is:

<div>

</div>

All text is properly es
aped as appropriate for HTML
ontent and HTML tag attributes. Note that keys

beginning with �_� are treated spe
ially, as explained below.

The library also
ontains short
uts for simple HTML elements, like so:

<%= Di l i g en
 e .HTML. img ({ s r
 : ' http : // t h r e e
 r i
 k e t s .
om/media/ three−
 r i
 k e t s /pruden
e−smal l . png ' }) %>

Spe
ial Attributes

Internationalization

Parsing HTML

Other Utilities

Sanitizing

Internationalization Servi
e

This is a straightforward but powerful servi
e that lets you render text by key from �text pa
ks� per lo
ale.

A single appli
ation
an load many text pa
ks simultaneously, su
h that every user
ould see text in their

preferred language, if you support it. Text pa
ks
an be
a
hed in memory (in the appli
ation globals) on
e loaded,

while giving you
ontrol over the
a
he duration in
ase you want to enable on-the-�y editing of text pa
ks.

Importantly, this servi
e supports bi-dire
tionality (left-to-right or right-to-left languages) by keeping tra
k of

the dire
tion of every single key. This is
ru
ial, be
ause you may have to render left-to-right and right-to-left text

on the same page, and you want to make sure that ea
h key is rendered
orre
tly.

Text pa
ks
an inherit ea
h other, making it easy to manage many text pa
ks with a
ommon base, or to merge

text pa
ks from di�erent sour
es into one. For example, you
an you have a general English text pa
k, and the

a British English text pa
k, whi
h inherits the general English text pa
k and only overrides those keys that are

di�erent. Dire
tionality of keys is maintained: if a right-to-left Arabi
 text pa
k inherits an English text pa
k, those

left-to-right keys from the English text pa
k will stay left-to-right.

22

http://jsoup.org/
http://threecrickets.com/api/javascript/?namespace=Diligence.HTML
http://threecrickets.com/api/javascript/?namespace=Sincerity.XML

Setup

Text pa
ks are looked for �rst JSON �les and then in a MongoDB
olle
tion
alled �textpa
ks�. You
an
ombine

text pa
ks from both, and inherit either from the other.

The text pa
k is a di
t that must in
lude at least a �text� key, with a stru
ture of any depth, and optionally

a �dire
tion� key, whi
h
ould be either �ltr� (the default, for left-to-right, the default), or �rtl� (for right-to-left

languages). Additionally, you
an add an �inherits� key, whi
h
an be either a single lo
ale spe
i�
ation or an array

of lo
ale spe
i�
ations, whi
h spe
i�es whi
h text pa
ks should be merged into this one. The values of the inheriting

text pa
k will always override those from the inherited text pa
ks.

Lo
ale Spe
i�
ations

In all the following examples, whenever you need to spe
ify a lo
ale you
an spe
ify it either as a string signifying the

language or in full form, with �language�, �
ountry� and �variant� keys. For example, these two lo
ale spe
i�
ations

would be
onsidered equivalent:

"en" == {" language " : "en"}

But this lo
ale would be di�erent:

{" language " : "en " , "
ountry " : "nz"}

As MongoDB Do
uments

Text pa
ks will be found in the
olle
tion
alled �textpa
ks�. They have the same stru
ture as the JSON �les, but

must also have a �lo
ale� key, with the lo
ale spe
i�
ation as detailed above. Here's an example do
ument:

{

_id : Obje
tId ("4 d6803e6ddfe99e799
7b809 ") ,

" l o
 a l e " : {

" language " : "en " ,

"
ountry " : "nz"

} ,

" d i r e
 t i o n " : " l t r " ,

" i n h e r i t " : "en " ,

" t ex t " : {

" app l i
 a t i on " : {

"myapp" : {

" time " : " I t i s now {now}"

}

}

}

}

Again we'll emphasize: even though this text pa
k is de�ned in MongoDB, it
an inherit the �en� text pa
k

de�ned in the JSON �le.

You'll usually prefer one method or the other, but it might make sense to use both: for example, a default text

pa
k
an be hard-
oded for your appli
ation, to allow it to fun
tion even if MongoDB is not available.

As JSON Files

If stored in �les, the name of the �le must be in the form �[lo
ale℄.json�. For example, for the English lo
ale it

is �en.json�. If the lo
ale has
ountry and variant spe
i�
ations, they are added with unders
ores. For example,

English/New Zealand would be �en_nz.json�.

An example �en.json� �le:

{

" d i r e
 t i o n " : " l t r " ,

" t ex t " : {

" app l i
 a t i on " : {

"myapp" : {

23

"time " : " I t i s now {now}"

}

}

}

}

Per-User Text Pa
ks

See the �Authenti
ation Servi
e.�

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Internationalization.

Here's an example:

<%

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / i n t e r n a t i o n a l i z a t i o n / ')

var textPa
k = Di l i g en
 e . I n t e r n a t i o n a l i z a t i o n . getPa
k (' en ')

%>

<p d i r="<%= textPa
k . g e tD i r e
 t i on (' app l i
 a t i on .myapp . time ') %>">

<%= textPa
k . get (' app l i
 a t i on .myapp . time ' , {now : new Date () }) %>

</p>

var textPa
k = Di l i g en
 e . I n t e r n a t i o n a l i z a t i o n . getCurrentPa
k (
onve r sa t i on)

The �get� method will automati
ally
ast templates. In this
ase, our text is a template in the form of �It is now

{now}�. The �getDire
tion� method will return either �ltr� or �rtl� a

ording to the dire
tionality of that spe
i�

key.

Atta
hing a Text Pa
k to the Conversation

In many
ases, you would not want to spe
ify the lo
ale expli
itly, but instead would want it loaded from, say,

the logged-in user's stored preferen
es. In that
ase, you
an store the sele
ted lo
ale in the
onversation.lo
als as

�diligen
e.servi
e.internationalization.pa
k�, or use this short
ut:

textPa
k . setCurrent (
onve r sa t i on)

And then retrieve it like so:

var textPa
k = Di l i g en
 e . I n t e r n a t i o n a l i z a t i o n . getCurrentPa
k (
onve r sa t i on)

Many of Diligen
e's other servi
es and features rely on this API
all, so make sure to set up the
onversation.lo
al

appropriately if you want them to support internationalization.

Con�guration

In your appli
ation's �settings.js�, add something like this to your app.globals:

app . g l oba l s = {

. . .

d i l i g e n
 e : {

s e r v i
 e : {

i n t e r n a t i o n a l i z a t i o n : {

d e f au l tLo
a l e : ' en ' ,

a
heDurat ion : 10000 , // in m i l l i s e
 o nd s ; i f 0 (the d e f au l t) w i l l never
a
he

path : S i n
 e r i t y . Container . getFileFromHere (' textpa
ks ') // opt i ona l

}

}

}

}

24

http://threecrickets.com/api/javascript/?namespace=Diligence.Internationalization

It would then look for �.json� �les in the �/textpa
ks/� dire
tory under your appli
ation's main dire
tory.

To signify the lo
ale in full form during
on�guration, make sure to use the �.� key to avoid �attening of the

di
t (see Sin
erity.Obje
ts.�atten). For example:

d e f au l tLo
a l e : { . : { language : ' en ' ,
ountry : ' nz ' }}

Ca
he Servi
e

The Pruden
e platform already provides ex
ellent
a
hing for your generated HTML, with a lot of
ontrol over

a
he keys. It also provides you with an API to a

ess the
a
he ba
kend dire
tly. But, that is a very spe
ial

purpose
a
he highly optimized for that parti
ular task.

With the Diligen
e Ca
he Servi
e, we are providing you with a general purpose
a
hing me
hanism, letting you

store anything MongoDB
an take, again with full
ontrol over key generation. Moreover, the Ca
he Servi
e lets

you easily wrap arbitrary JavaS
ript fun
tions, so that you
an transparently
a
he their results.

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Ca
he.

A simple example:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e /
a
he / ')

do
ument . exe
uteOn
e (' / s i n
 e r i t y /jvm/ ')

var
a
he = new Di l i g en
 e . Ca
he (' r e s u l t ')

var ge tResu l t = fun
 t i on (use r Id) {

S i n
 e r i t y .JVM. s l e ep (1000)

return {

use r Id : userId ,

randomValue : Math . random ()

}

}

.
a
he (
a
he , 10000 , ' r e s u l t . ')

var r e s u l t = ge tResu l t (123)

A few notes:

• Our �getResult� fun
tion here is very silly, and purposely delays for 1 se
ond. However, it
ould easily do

very real things: for example, a slow map-redu
e query on MongoDB, fet
hing data from an external servi
e

or site, et
.

• We here
a
he the result for 10 se
onds, meaning that only on
e every 10 se
onds would the fun
tion a
tually

be
alled. In all other
ases, the last
a
hed result will be retrieved from the MongoDB
olle
tion. It should

go without saying, but: this works in high-
on
urren
y, so any number of threads and nodes would be using

the same
a
hed value.

• The data must be
ompatible with MongoDB. This in
ludes anything that works with MongoDB's extended

JSON format.

• We here use a simple string pre�x (�result.�) to generate our
a
he key. The servi
e will automati
ally add

the fun
tion arguments to the
a
he key, so in this
ase our
a
he key will be �result.123�. However, you
an

supply a fun
tion instead of a string, whi
h would return the �nal
a
he key as the string using whatever logi

you need. An impli
ation of this is that you
an use a single
a
he
olle
tion to store results of numerous

fun
tions, as long as you make sure that the �nal
a
he keys don't overlap.

• The library overrides the JavaS
ript fun
tion prototype, adding the �
a
he� method to it. The Diligen
e.Ca
he

API also has methods that o�er more �exibility. For example, it
an let you set advan
ed logging, so that

you
an see how the
a
he is working. See the API do
umentation for full details.

25

http://threecrickets.com/api/javascript/?namespace=Diligence.Cache

• The servi
e removes expired entries only when you try to a

ess them. If it's important for you to save spa
e

and remove all expired
a
he entries, you might want to
all the Diligen
e.Ca
he.prune method regularly.

You
an do this in your �
rontab� �le. Here's an example of doing so every 15 minutes:

/15 <% do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e /
a
he / ') ; new D i l i g en
 e . Ca
he (' r e s u l t ') . prune () ; %>

Linkba
k Servi
e

�Linkba
ks� are a way to add
ross-referen
ing to hyperlinks: if I link to another page on another site, I
an let

that other site know that I am linking to it, and then that other site
an
hoose to display a link ba
k to my site.

This
an be useful for users, as it lets them qui
kly �nd relevant sites. But, it's probably more important in terms

of SEO: the more links you have, the higher your page's rank will be in sear
h engines. And if you
an get a link

to your site on a popular site, all the better.

Be
ause linkba
ks require trust and mutuality, there are espe
ially popular in the blogosphere, where bloggers

often work with ea
h other (sometimes antagonisti
ally!) to
reate more hits, and thus generate more revenue.

Unfortunately, there's no single standard for linba
king, and all of them are rather
umbersome. Lu
kily,

Diligen
e does most of the work for you: it features
lients and servers for both the Tra
kba
k and Pingba
k spe
s.

As a server, it lets you a

ept these linkba
ks from other sites, respond properly to the remote
lients, and register

the linkba
k in a MongoDB
olle
tion. As a
lient, it lets you auto-dis
over tra
kba
k and pingba
k URLs on

remote pages, and do the ne
essary handshaking.

Pingba
k is by far the more
ompli
ated spe
: it requires XML-RPC (we are using Diligen
e's RPC servi
e for

it), and also suggests that you make sure that the other site is indeed linking to you before registering. Tra
kba
k

is more lightweight, but allows telling the target site more information about how you are linking them.

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Linkba
k.

Integrating Linkba
ks into Your Produ
t

Diligen
e does a lot for you, but the burden is still on your to understand these non-trivial te
hnologies well enough

to integrate them properly into your appli
ation. On this page, we're featuring a rather elaborate example of how

linkba
ks work on this page for the purpose of demonstration. Mu
h of this
an be automated for your appli
ation:

for example, in a blogging appli
ation, you might want to go over every new blog post and try out all the links on the

page with Diligen
e.Linkba
k.dis
over to see if they support linkba
ks, and then to do the linkba
k automati
ally

without any user intera
tion. Or, you might prefer to have users expli
itly
li
k on a �linkba
k� feature. Diligen
e

gives you the tools, making it as easy as possible for you to do the rest.

How to Linkba
k from This Page?

1. Link First, we need to make sure that we a
tually have a link to the remote site on our page. Here's a really

simple form that lets you add links to this page:

<form id="add" method="POST">

<p>

<%= Di l i g en
 e .HTML. input ({name : ' addPageUri ' , s i z e : 70} , {_
ontent : ' Page URL: ' }) %>

</p>

<p>

<%= Di l i g en
 e .HTML. submit ({ va lue : 'Add Link ' }) %>

</p>

</form>

<form id="
 l e a r " method="POST">

<input type="hidden" name="
 l ea rPageUr i s" va lue="true " />

<p>

<%= Di l i g en
 e .HTML. submit ({ va lue : ' Clear Link Lis t ' }) %>

</p>

</form>

26

http://www.sixapart.com/pronet/docs/trackback_spec
http://www.hixie.ch/specs/pingback/pingback
http://threecrickets.com/api/javascript/?namespace=Diligence.Linkback

<p>

Current ly l i nked pages :

<% f o r (var i = l i n k s . i t e r a t o r () ; i . hasNext () ;) { var l i n k = i . next () ; %>

<a hr e f="<%= l i n k %>">l ink

<% } %>

</p>

2. Auto-Dis
overy We support auto-dis
overy of tra
kba
k and pingba
k URLs, so you
an �rst try to just enter

the linked URL. Make sure it's one of the links you've added above! Pingba
k will be preferred if both Tra
kba
k

and Pingba
k are supported by the page.

3. Or Use Expli
it Linkba
k URLs In
ase that doesn't work, you might also have to enter an expli
it

tra
kba
k or pingba
k URL posted on that page:

<p>

<%= Di l i g en
 e .HTML. input ({name : ' tra
kba
kUri ' , s i z e : 70} , {_
ontent : ' Tra
kba
k URL: ' }) %>

</p>

(Note that you do <i>not</i> need to enter the page URL with tra
kba
k, but you <i>do</i> need it it with

pingba
k)

<form>

<p>

<%= Di l i g en
 e .HTML. input ({name : ' pingba
kUri ' , s i z e : 70} , {_
ontent : ' Pingba
k URL: ' }) %>

</p>

<p>

<%= Di l i g en
 e .HTML. submit ({ va lue : ' Linkba
k ' }) %>

</p>

</form>

<% i f (message) { %>

<p>

<span s t y l e="
o l o r : red;"><%= message %>

</p>

<% } %>

How to Linkba
k to This Page?

This page
ontains information about its tra
kba
k and pingba
k URLs. In
ase your software doesn't support

auto-dis
overy of these, and you need to enter them expli
itly, they are:

<p>

<%= Di l i g en
 e .HTML. input ({ va lue : D i l i g en
 e . Linkba
k . getTra
kba
kUri (
onve r sa t i on . r e f e r e n
 e) , readonly : ' readonly ' , s i z e : 70} , {_
ontent : ' Tra
kba
k URL: ' }) %>

</p>

<p>

<%= Di l i g en
 e .HTML. input ({ va lue : D i l i g en
 e . Linkba
k . getPingba
kUri () , readonly : ' readonly ' , s i z e : 70} , {_
ontent : ' Pingba
k URL: ' }) %>

</p>

Non
es Servi
e

This is a straightforward implementation of number-used-on
e, or �non
e,� using MongoDB atomi
 operations.

It allows you to issue a unique number, whi
h you
an then �
he
k.� The
he
k will work on
e and only on
e

for any issued non
e, a
ross all nodes a

essing the same MongoDB database. Furthermore, every issued non
e is

given an expiration time, after whi
h it will be
onsidered invalid.

Non
es are often used in authenti
ation s
hemes, where tokens, meant to be used only on
e, are purposely issued

for short time periods in order to minimize se
urity risks.

27

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Non
es.

The API is very simple. To issue a 60-se
ond non
e:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e /non
es / ')

var non
e = Di l i g en
 e . Non
es .
 r e a t e (60 1000)

To
he
k a non
e:

i f (! D i l i g en
 e . Non
es .
he
k (non
e)) {

pr in t (' Your token i s i n v a l i d ! Perhaps i t was exp i red ? Try logg ing in again . ')

}

Note that the non
es used in the API are strings, whi
h are hexade
imal representations of big integers. Strings

are preferable in this use
ase, be
ause you
an be
ertain that pre
ision will not be lost a
ross various
onversions

and serializations. If you really need a non-hexade
imal representation, you
an
onvert it a non
e using the

following:

var non
eInteger = new java . math . B ig In t ege r (non
e , 16)

pr in t (non
eInteger) // t h i s w i l l p r in t a de
imal r ep r e s en t a t i on o f the non
e

Con�guration

The servi
e removes expired non
es only when you
he
k them. If it's important for you to save spa
e and remove

all expired non
es, you might want to
all the Diligen
e.Non
es.prune method regularly. You
an do this in your

�
rontab� �le. Here's an example of doing so every 15 minutes:

/15 <% do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e /non
es / ') ; D i l i g en
 e . Non
es . prune () ; %>

Noti�
ation Servi
e

Sending out email from your appli
ation
an qui
kly be
ome di�
ult to manage when you have hundreds of thou-

sands of emails to send out. But Diligen
e's Noti�
ation Servi
e is here to help! Some key features:

• The implementation is optimized for high
on
urren
y, making good use of MongoDB's atomi
 update features.

This means that it's easy to s
ale: you
an have many nodes all sending queued noti
es at the same time.

They won't interfere with ea
h other and there's no fear of having the same email sent more than on
e.

• It supports subs
ription
hannels: you
an send a noti
e to the
hannel, and it would then be sent to all

subs
ribers. This greatly minimizes the load on MongoDB. Moreover, you
an use a noti
e template su
h that

ea
h subs
riber gets a personalized email. Of
ourse, you
an also send dire
t noti
es to a single addressee.

• Automati
 handling of daily and weekly digests for subs
ribers who prefer not to get individual emails. This

works by merging noti
es into a digest do
ument at s
heduled times.

• You don't have to use email: the servi
e implementation is pluggable, allowing you support other kinds of

mailboxes if they make sense. For example, you might want to have an internal messaging feature for your

appli
ation. The implementation is
on�gured per subs
riber, so you
an support di�erent kinds of mailboxes

quite transparently.

• Supports both plain text and mixed-media HTML email.

Note that Diligen
e
onne
ts to but is not itself an SMTP server. SMTP servers are
omplex beasts in their own

right: they must handle errors and retries, queuing of outgoing messages, as well as in
oming ones if they are

on�gured for relaying or for mailboxes. It's a good idea to keep that separate from your main appli
ation. We like

Post�x, a mature SMTP server that o�ers ex
ellent s
alability and se
urity.

If you want your appli
ation to re
eive email, whi
h is quite a di�erent task than relaying it onward, then we

an re
ommend the SubEtha SMTP library. If there's interest, we may in
orporate it into Diligen
e dire
tly in the

future.

28

http://threecrickets.com/api/javascript/?namespace=Diligence.Nonces
http://www.postfix.org/
http://code.google.com/p/subethasmtp/

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Noti�
ation.

Here's an example of two ways for queuing a noti
e, the �rst by a dire
t address, and the se
ond to all subs
ribers

of a
hannel:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / n o t i f i
 a t i o n / ')

D i l i g en
 e . No t i f i
 a t i o n . queueForAddress (' Email ' , ' email�myorg . org ' , { s ub j e
 t : 'The Subje
t ' , t ex t : 'The
ontent . })

D i l i g en
 e . No t i f i
 a t i o n . queueForChannel (' main ' , { s ub j e
 t : 'The Subje
t ' , t ex t : 'The
ontent . ' })

The �rst option doesn't require any subs
ription: it uses �Email� as the implementation (see �
on�guration,�

below), with the se
ond argument being an identi�er for that implementation (in this
ase, simply an email address).

The se
ond option queues the noti
e on the
hannel named �main�. To add a subs
ription, you
an do the following:

D i l i g en
 e . No t i f i
 a t i o n . s ub s
 r i b e ('main ' , { s e r v i
 e : ' Email ' , address : ' email�myorg . org ' , mode : ' da i ly ' })

The �mode� key
an be �immediate�, �daily� or �weekly�, with the latter two modes for digests. You don't need

to
reate the
hannel itself: adding at least one subs
ription will automati
ally do that.

In the above examples we've sent plain text emails. To add HTML, add an �html� key. Note that if you use

�html� you need to also add �text� to spe
ify the plain text version. This is very good pra
ti
e: not all email
lients

support HTML, and if they don't your HTML will be unreadable without a plain text fallba
k.

It might be useful to make use of the Sin
erity.Mail.MessageTemplate
lass, whi
h lets you store messages in

text pa
ks. For more information on text pa
ks, see the Internationalization Servi
e.

Con�guration

In your appli
ation's �settings.js� you want to make sure to enable lazy
on�guration:

do
ument . exe
uteOn
e (' / pruden
e/ lazy / ')

And then add something like this to your app.globals:

app . g l oba l s = {

. . .

d i l i g e n
 e : {

s e r v i
 e : {

n o t i f i
 a t i o n : {

s e r v i
 e s : {

' . ' : Pruden
e . Lazy . bu i ld ({

Email : {

dependen
 ies : '/ d i l i g e n
 e / s e r v i
 e / n o t i f i
 a t i o n / s e r v i
 e / emai l / ' ,

name : ' D i l i g en
 e . No t i f i
 a t i o n . Emai lServi
e ' ,

 on f i g : {

from : 'myaddress�mymail . org ' ,

s i t e : ' D i l i g en
 e Example '

}

}

})

}

}

}

}

}

Note the use of Pruden
e.Lazy.build: this allows the Noti�
ation Servi
e to lazily
reate the email implementation

on demand during runtime. The key, �Email�, will be used in subs
riptions, as in the examples above. Note that it

is
ase-sensitive. Within the lazy
on�guration, the �name� key is the
lass to instantiate, the �
on�g� is sent to the

lass
onstru
tor, and values in the �dependen
ies� key are used for �do
ument.exe
uteOn
e�. Also note the use of

the �.� key to avoid �attening of the resulting lazy build (see Sin
erity.Obje
ts.�atten).

If you want to write your own servi
e implementations, see the sour
e
ode for the Dili-

gen
e.Noti�
ation.EmailServi
e.

29

http://threecrickets.com/api/javascript/?namespace=Diligence.Notification

To set up the ba
kground tasks for sending out queued noti
es, add something like the following to your

appli
ation's �
rontab�:

<% do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / n o t i f i
 a t i o n / ') ; D i l i g en
 e . No t i f i
 a t i o n . sendQueuedNoti
es () ; %>

4 <% do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / n o t i f i
 a t i o n / ') ; D i l i g en
 e . No t i f i
 a t i o n . sendQueuedDigests (' da i ly ') ; %>

5 0 <% do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / n o t i f i
 a t i o n / ') ; D i l i g en
 e . No t i f i
 a t i o n . sendQueuedDigests (' weekly ') ; %>

The above will
he
k for and send regular noti
es every minute, send daily digests at 4am, and send weekly

digests every Sunday at 5am. As stated above, you
an have this same �
rontab� running on many nodes. Be
ause

the implementation relies on MongoDB's atomi
 updates, you
an be sure that noti
es will not be sent more than

on
e.

Progress Servi
e

If you've read Pruden
e's S
aling Tips arti
le, you know that for potentially long-running tasks you want to release

web request threads as soon as possible, and notify the user in some way as to when the task is �nished. This

servi
e helps you do exa
tly that.

For a use
ase example,
onsider an appli
ation that sear
hes for �ight information using several databases and

servi
es. The sear
h
an take many se
onds, if not minutes! Of
ourse, you do not want to hold up a web request

thread and have the browser spin while the sear
h is going on, so you turn to Diligen
e's Progress Servi
e.

It works like this: you
reate a �pro
ess,� whi
h is stored in a MongoDB do
ument, and you
an asyn
hronously

mark when
ertain �milestones� are
ompleted, in
luding the �nal
ompletion of the whole pro
ess. Pro
esses
an

be asso
iated with a user, whi
h allows you to use the authorization servi
e (page 6) to allow only that user a

ess

to the pro
ess' status, and also to allow the user to query all pro
esses asso
iated with them.

The servi
e supports two ways of letting the user know the status of the pro
ess. The �rst is for short-term

pro
esses: a drop-in fragment that simply shows the
urrent status of the pro
ess and uses browser JavaS
ript to

refresh the page every few se
onds. The user would see milestones along the way to
ompletion, if there are any,

and eventually be redire
ted to another page when the pro
ess
ompletes (or fails!).

For longer running pro
esses, you
annot expe
t the user to wait in front of the web browsers. In these
ases,

the Progress Servi
e uses the noti�
ation servi
e (page 28) to notify the user about milestones, su

ess and failure.

Additionally, we provide a drop-in fragment that would allow the user to see the
urrent state of the pro
ess on the

web, and another one that lets the user a

ess all pro
esses asso
iated with them.

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Progress.

Trivial Example

This fake pro
ess will simply do nothing until its expiration:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / progre s s / ')

var pro
e s s = D i l i g en
 e . Progress . s t a r tP ro
 e s s ({

d e s
 r i p t i o n : ' Sear
h ing f o r your f l i g h t s . . . ' ,

maxDuration : 20 1000 ,

r e d i r e
 t :
onve r sa t i on . r e f e r e n
 e

})

pro
e s s . r ed i r e
 tWai t (
onversat ion , app l i
 a t i on)

That �nal redire
tWait
all will send the user to a �please wait� page whi
h will show �Sear
hing for your

�ights. . . � as the text, and have a progress bar. The page will automati
ally refresh and show ongoing progress.

After 20 se
onds of this, it will redire
t ba
k to this page. Note that you
an spe
ify di�erent redire
t URIs for

su

ess, error, timeouts, et
.

The �please wait� page is in �/diligen
e/servi
e/progress/wait/�. If you don't have it in your �/fragments/� then

a default page will be used, whi
h is in your
ontainer's �/libraries/pruden
e/� dire
tory. You
an use that as a

template for your own
ustom page.

30

http://threecrickets.com/prudence/scaling/
http://threecrickets.com/api/javascript/?namespace=Diligence.Progress

Example with Milestones

You
an laun
h a task from within startPro
ess, whi
h in turns
all the Pruden
e.Tasks API:

var s ea r
hSt r ing = ' f l i g h t #1234 '

var pro
e s s = D i l i g en
 e . Progress . s t a r tP ro
 e s s ({

d e s
 r i p t i o n : ' Sear
h ing f o r your f l i g h t s . . . ' ,

maxDuration : 60 1000 ,

r e d i r e
 t : '/ f l i g h t / r e s u l t s / ' ,

task : {

name : '/ f l i g h t / sear
h / ' ,

s ea r
hSt r ing : s ea r
hSt r ing , // t h i s i s our
ustom f i e l d

d i s t r i b u t e d : t rue

}

})

Our �/libraries/�ights/sear
h.js� would look like this:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / p r o
 e s s i n g / ')

var pro
e s s = D i l i g en
 e . Progress . g e tPro
e s s ()

i f (p ro
e s s && pro
e s s . i sA
 t i v e ()) {

var task = pro
e s s . getTask ()

var mi l e s tone = pro
e s s . g e tLas tMi l e s tone ()

swit
h (mi l e s tone . name) {

ase ' s tarted ' :

p ro
e s s . addMilestone ({name : ' ours ' , d e s
 r i p t i o n : ' Sear
h ing our f l i g h t database ' })

var found = sear
hOurDatabase (task . s ea r
hSt r ing)

i f (found) {

pro
e s s . addMilestone ({name : ' done ' })

} e l s e {

Pruden
e . Tasks . task (task)

}

break

ase ' ours ' :

p ro
e s s . addMilestone ({name : ' partners ' , d e s
 r i p t i o n : ' Sear
h ing our partner databases ' }

var found = sear
hPartnerDatabases (task . s ea r
hSt r ing)

i f (found) {

pro
e s s . addMilestone ({name : ' done ' })

} e l s e {

pro
e s s . addMilestone ({name : ' f a i l e d ' })

}

break

}

}

Notes:

• The �Diligen
e.Progress.getPro
ess()� API works here only be
ause we laun
hed the task from within start-

Pro
ess. (It works by putting the pro
ess ID in the task
ontext.)

• The �rst milestone is always �started�, and the last one is always �done�. The name �failed� is reserved for

failed pro
esses, and like �done� will mark the pro
ess as ina
tive. Otherwise, you
an set any milestone name

you wish.

• You'll also see that we've handled ea
h milestone as a new exe
ution of the task. �pro
ess.getTask()� returns

a
opy of the arguments sent to the last Pruden
e.Tasks.task
all, so we
an simply
all it again with the same

arguments.

• Breaking up our work into separate tasks allows for better
on
urren
y: we're not holding on the thread at

on
e longer than makes sense. Also note that if the task is distributed, ea
h milestone
ould be exe
uted in

a di�erent node in the
luster.

31

http://threecrickets.com/api/javascript/?namespace=Prudence.Tasks

• This method and also makes sure that a milestone will not be exe
uted if a pro
ess expires (isA
tive would

return false).

Reattempts

A
ommon use
ase for the pro
essing servi
e is in dealing with an unreliable a
tion that might a
tually su

eed

after a few attempts. You'd thus want to let the user wait until a
ertain maximum duration, and keep retrying

every few se
onds in the ba
kground until the a
tion su

eeds.

The Progress Servi
e automates mu
h of this using the �maxAttempts� key in �task�:

var ipAddressOfRemoteLo
ation = ' 1 . 2 . 3 . 4 '

var pro
e s s = D i l i g en
 e . Progress . s t a r tP ro
 e s s ({

d e s
 r i p t i o n : ' Attemping to
onne
t you to remote l o
 a t i o n { 0 } . . . ' .
 a s t (ipAddressOfRemoteLo
ation) ,

maxDuration : 5 60 1000 ,

r e d i r e
 t : '/ remote/
onne
ted / ' ,

task : {

name : '/ remote/
onne
t / ' ,

maxAttempts : 10 , // f o r reattempts

de lay : 5000 , // between reattempts

remoteLo
at ion : ipAddressOfRemoteLo
ation // t h i s i s our
ustom f i e l d

}

})

Our �/libraries/remote/
onne
t.js� would look something like this:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / progre s s / ')

var pro
e s s = D i l i g en
 e . Progress . g e tPro
e s s ()

i f (p ro
e s s) {

pro
e s s . attempt (fun
 t i on (pro
e s s) {

do
ument . exe
uteOn
e (' / myl ibrary /
onne
 t i ons / ')

re turn
onne
tRemote(pro
e s s . getTask () . remoteLo
at ion)

})

}

Notes:

• The pro
ess.attempt
all doest most of the work: it makes sure to
all the task again if there's still time before

the pro
ess expires and the maximum number of attempts has not been ex
eeded, waiting the appropriate

delay before ea
h attempt. Your fun
tion just has to make sure to return true if the attempt has su

eeded.

• Ea
h attempt will get a milestone name in the form of �attempt #X� where X starts at 1.

• If the maximum number of attempts has been rea
hed, the milestone will be set to �failed�.

• Reattempts are logged, to help you debug problems.

REST Servi
e

The REST Servi
e makes it easy to
reate a RESTful API layer over your MongoDB database. It's powerful enough

that it may be in itself the primary reason why you wish to use Diligen
e.

While there are tools to do this automati
ally�and the REST Servi
e does have an automati
 mode, too�the

true power of this servi
e is in its
ustomizability. You
an insert your own
ode anywhere in the resour
es to do

spe
ial pro
essing, for anything from data validation, through
onstraint enfor
ement, to se
urity authorization and

high-level business logi
.

Moreover, the Pruden
e platform lets you a

ess this RESTful layer internally, without any HTTP
ommuni-

ation or serialization, so that you
an use this layer as your primary data a

ess layer API, both internally and

for other servi
es. There's no reason to
reate a separate API for internal vs. external use. This ar
hite
ture also

makes it trivial to separate your data pro
essing nodes from your appli
ation logi
 nodes, should you ever want to

do so.

Even without
ustomization via
ode, out of the box you get the following features:

32

• The default format immediately supports Ext JS's RESTful data stores. Atta
h any MongoDB
olle
tion to

an editable grid widget in a web browser! See the Sen
ha Integration manual for more information.

• Automati

ontent negotiation with support for JSON and XML formats, as well as a human-readable HTML

format perfe
t for debugging via browsers. The HTML format even allows simple editing of your
ontent.

(Note, though, that if you want a full-�edged web frontend for your MongoDB data, you're better o� with

MongoVision, whi
h is easily installable side-by-side with your Diligen
e appli
ation.)

• Pagination for traversing
olle
tions of any size.

• Choose whi
h do
ument �elds you want to expose, and extra
t sub-do
uments from your main do
ument.

• Apply straightforward �modes,� whi
h let you transform MongoDB's extended JSON format into simpler

primitives. For example, �{$date: 1234}� would be
ome �1234�.

There are a lot of details below, but you shouldn't be intimidated by them. You do not have to learn every single

feature of the REST Servi
e in order to use it. In just a few lines of
ode, you
an setup a whole RESTful layer

automati
ally that will �just work� for many use
ases.

Setup

Make sure to
he
k out the API do
umentation for Diligen
e.REST.

Manual Setup

We'll start with manual
on�guration, be
ause it will help you better understand how the REST Servi
e works.

First, let's
on�gure the URI-spa
e in your appli
ation's �routing.js�. Add the following to app.routes and

app.dispat
hers:

app . route s = {

. . .

'/ data/ use r s /{ id }/ ' : ' �users ' ,

'/ data/ use r s / ' : ' �users . p lu ra l '

}

app . d i s pa t
h e r s = {

. . .

j a v a s
 r i p t : '/manual−r e s ou r
 e s / '

}

We
an now
on�gure our resour
es in �/libraries/manual-resour
es.js�:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / r e s t / ')

r e s ou r
 e s = {

. . .

u s e r s : new D i l i g en
 e .REST. MongoDbResour
e ({name : ' users ' }) ,

' u s e r s . p lu ra l ' : new D i l i g en
 e .REST. MongoDbResour
e ({name : ' users ' , p l u r a l : t rue })

}

Automati
 Setup

The REST Servi
e
an do all the above automati
ally for you, whi
h is espe
ially useful if you have lots of
olle
tions,

or if you keep adding
olle
tions and want resour
es for them to be added automati
ally. Note that this automation

does not o

ur dynami
ally while your appli
ation is running: you have to restart for this to work.

In your appli
ation's �routing.js�.

MongoDB = nu l l

do
ument . exe
ute (' /mongo−db / ')

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / r e s t / ')

33

http://code.google.com/p/mongo-vision/
http://threecrickets.com/api/javascript/?namespace=Diligence.REST

app . route s = {

. . .

}

S i n
 e r i t y . Obje
ts . merge (app . routes , D i l i g en
 e .REST.
reateMongoDbRoutes ({ p r e f i x : '/ data / '}))

Important! The �rst two lines of
ode make sure that MongoDB is re-initialized before pro
eeding, so

that we
an be sure to avoid using the default MongoDB initialization in other appli
ations. This is

good pra
ti
e when using Diligen
e in any initialization s
ript.

In �/libraries/resour
es.js�, we just need this:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / r e s t / ')

r e s ou r
 e s = {

. . .

}

S i n
 e r i t y . Obje
ts . merge (r e sour
e s , D i l i g en
 e .REST.
reateMongoDbResour
es ())

You
an also spe
ify exa
tly whi
h
olle
tions you want
reated:

D i l i g en
 e .REST.
reateMongoDbResour
es ({
 o l l e
 t i o n s : [' users ' , ' no t i
 e s ' , ' do
uments ' ℄ })

Custom Queries

Sometimes you may be using a single MongoDB
olle
tion as a
ontainer for do
uments of several di�erent types,

and you would want them exposed as a separate URI-spa
e.

The REST Servi
e allows for this via a simple querying language. To illustrate it, lets �rst look at what the

default query is for singular resour
es, if no query is provided by you:

r e s ou r
 e s = {

. . .

u s e r s : new D i l i g en
 e .REST. MongoDbResour
e ({

name : ' users ' ,

query : {_id : { $oid : '{ id } '}}

})

}

app . route s = {

. . .

'/ data/ use r s /{ id }/ ' : { type : ' imp l i
 i t ' , id : ' users ' }

}

The �query� key is in MongoDB's extended JSON format, and is used for the MongoDB ��nd� operation. The

values are all
ast using the
onversation.lo
als, whi
h, if you remember how to do Pruden
e routing, are extra
ted

from the URI template. Let's look at this slowly:

1. If a �/data/users/123/� URI is a

essed with a GET operation, the �123� will be extra
ted from the URI

template. The e�e
t will be as if we
alled:

onve r sa t i on . l o
 a l s . put (' id ' , ' 123 ')

2. All the values in our resour
e's �query� value are
ast using
onversation.lo
als. So, our �nal query will be:

{_id : { $oid : '123 '}}

34

3. The REST Servi
e will use the above query for a ��nd� operation:

var data =
 o l l e
 t i o n . f indOne ({_id : { $oid : '123 '}})

(Note that the �$oid� in MongoDB's extended JSON be
omes an Obje
tId in BSON.)

Knowing this, you
an then set the �query� any way you like. You
an use values extra
ted from
onversation.lo
als,

or any literal value. For example, let's
reate a URI-spa
e for users of type �admin�, to be a

essed :

r e s ou r
 e s = {

. . .

admins : new D i l i g en
 e .REST. MongoDbResour
e ({

name : ' users ' ,

query : {name : '{name} '} , { type : ' admin '}}

}) ,

' admins . p lu ra l ' : new D i l i g en
 e .REST. MongoDbResour
e ({

name : ' users ' ,

query : { type : ' admin ' } ,

p l u r a l : t rue

})

}

app . route s = {

. . .

'/ data/admins/{name}/ ' : { type : ' imp l i
 i t ' , id : ' admins ' } ,

'/ data/admins / ' : { type : ' imp l i
 i t ' , id : ' admins . p lu ra l ' }

}

As a
onvenien
e, you
an also add
ustom values to be
ast using the �values� key. These will be merged with

values from
onversation.lo
als:

new D i l i g en
 e .REST. MongoDbResour
e ({

name : ' users ' ,

query : {name : '{name} '} , { type : '{ type } '}} ,

va lue s : { type : ' admin ' }

})

This allows for ni
e reusability when you
reate your own extended
lasses: you
an share one query among

many sub
lasses.

Custom Extra
tion

By default, the REST Servi
e will extra
t and return the entire MongoDB do
ument, but you
an
ustomize this

quite powerfully, even to allow you to a

ess sub-do
uments inside a do
ument.

First o�, you
an simply
hoose the �elds you want:

new D i l i g en
 e .REST. MongoDbResour
e ({

name : ' users ' ,

f i e l d s : [' name ' , ' email ' , ' address ' ℄

})

The ��elds� key will be used at the level of MongoDB's driver, so that unused data won't even be retrieved from

the database.

You
an go further and extra
t sub-�elds:

r e s ou r
 e s = {

. . .

' u s e r s . email ' : new D i l i g en
 e .REST.MongoDbResour
e ({

name : ' users ' ,

f i e l d s : ' email ' ,

e x t r a
 t : ' email '

}

35

})

app . route s = {

. . .

'/ data/ use r s /{ id }/ email ' : { type : ' imp l i
 i t ' , id : ' u s e r s . email ' } ,

}

The result of a GET would be only a string of the email address. An example in JSON:

"myemail�mail . org "

Without the �extra
t�, the representation would be this:

{

"_id " : {

" $oid " : "4 e057e94e799a23b0f581d7d"

} ,

" emai l " : "myemail�mail . org "

}

Important! Not all
lient JSON parsers
an deal with JSON data that is not a di
t or an array. If you

are extra
ting data that is not a di
t or an array, you may need to implement your own spe
ial parsing.

With �extra
t� you
an go further and even provide an array that will be extra
ted in order. For example:

r e s ou r
 e s = {

. . .

' u s e r s . groups ' : new D i l i g en
 e .REST. MongoDbResour
e ({

name : ' users ' ,

f i e l d s : ' au thor i za t i on ' ,

e x t r a
 t : [' au thor i za t i on ' , ' e n t i t i e s ' ℄

}

})

app . route s = {

. . .

'/ data/ use r s /{ id }/groups ' : { type : ' imp l i
 i t ' , id : ' u s e r s . groups ' } ,

}

The above a
tually uses the data stru
ture used by Diligen
e's Authorization Servi
e to retrieve the se
urity

groups. The result of a GET would be an array. An example in JSON:

[" use r s " , "admins " ℄

Finally, you
an do your own
ustom extra
tion, by providing a fun
tion:

new D i l i g en
 e .REST. MongoDbResour
e ({

name : ' users ' ,

f i e l d s : ' au thor i za t i on ' ,

e x t r a
 t : f un
 t i on (do
) {

return do
 . au tho r i z a t i on . e n t i t i e s . j o i n (' , ')

}

})

Custom Modes

You
an set up your own
ustom modes like so:

new D i l i g en
 e .REST. MongoDbResour
e ({

name : ' users ' ,

modes : {

f l a t : f un
 t i on (data) {

36

return S i n
 e r i t y . Obje
ts . f l a t t e n (data)

}

}

})

See �Usage� below for information on how to use modes.

Overriding

There are two ways to override the default behavior: 1) inherit the Diligen
e.MongoDbResour
e
lass using the

Sin
erity.Classes API, or 2) monkey-pat
h the instan
es. The former method is more reusable, but the latter method

works just as well and is easier if you just need to
ustomize a single resour
e. Example of monkey-pat
hing:

r e s ou r
 e s = {

. . .

u s e r s : new D i l i g en
 e .REST. MongoDbResour
e ({name : ' users ' })

}

r e s ou r
 e s . u s e r s . doDelete = fun
 t i on (
onve r sa t i on) {

. . .

// Cal l overr idden method

arguments .
 a l l e e . overr idden .
 a l l (th i s ,
onve r sa t i on)

}

Using this method you
an even monkey-pat
h instan
es
reated automati
ally after a
all to �Dili-

gen
e.REST.
reateMongoDbResour
es()�.

In-Memory Data

The REST Servi
e does not have to use MongoDB to store data: it also supports storing data in memory, even

shared memory distributed in the Pruden
e
luster.

This is useful if you don't need persistent storage in MongoDB (the data is
onsidered volatile) and is also useful

for
reating mo
k data for testing. The URI-spa
e otherwise behaves exa
tly the same as if it were atta
hed to

MongoDB
olle
tions. Performan
e, of
ourse, should be better than if you were a

essing MongoDB. On the other,

your storage size is limited to your RAM. So, while this feature is not a repla
ement for using MongoDB, it
an be

quite useful in various s
enarios.

Let's modify our example from above to use in-memory resour
es:

do
ument . exe
uteOn
e (' / s i n
 e r i t y /jvm/ ')

var use r s = {

'4 e057e94e799a23b0f581d7d ' : {

_id : '4 e057e94e799a23b0f581d7d ' ,

name : ' newton ' ,

l a s tSeen : new Date ()

} ,

'4 e057e94e799a23b0f581d7e ' : {

_id : '4 e057e94e799a23b0f581d7e ' ,

name : ' sagan ' ,

l a s tSeen : new Date ()

}

}

var usersMap = S i n
 e r i t y .JVM. toMap(users , t rue)

r e s ou r
 e s = {

. . .

u s e r s : new D i l i g en
 e .REST. InMemoryResour
e({name : ' users ' , do
uments : usersMap }) ,

' u s e r s . p lu ra l ' : new D i l i g en
 e .REST. InMemoryResour
e({name : ' users ' , do
uments : usersMap , p l u r a l : t rue })

}

37

http://threecrickets.com/api/javascript/?namespace=Sincerity.Classes

Note that we translated the �users� di
t into a thread-safe JVM map. We
ould have also just sent the �users�

di
t dire
tly to the �InMemoryResour
e�
onstru
tor, whi
h
an
reate the map for us. But, sin
e we have two

resour
es, the singular and the plural, and we want them to share the same map, we have
reated this map ourselves.

What if you're in a Pruden
e
luster, and want all nodes to share the same in-memory data? Let's modify our

ode:

r e s ou r
 e s = {

. . .

u s e r s : new D i l i g en
 e .REST. Dist r ibutedResour
e ({name : ' users ' , do
uments : u s e r s }) ,

' u s e r s . p lu ra l ' : new D i l i g en
 e .REST. Dist r ibutedResour
e ({name : ' users ' , do
uments : users , p l u r a l : t rue })

}

The
ode is even simpler than the �InMemoryResour
e�
ode (no need to
reate �usersMap�), but requires some

explanation:

• The �name� �eld will be used as the name of the Hazel
ast map. You
an
on�gure this map by name in the

Hazel
ast
on�guration, otherwise it will use the Hazel
ast defaults for new maps.

• The data from the �do
uments� �eld will be
opied into the Hazel
ast only on
e and only if the map is already

empty. Thus, it should be thought of as your initialization data: the �rst time a resour
e is set up for that

map, from anywhere in the
luster, this data will be
opied in. From then on, for the life of the
luster,

�do
uments� will be ignored. Thus, if you want to re-initialize the map, you will need to either restart your

whole
luster, or programmati
ally set the data. (The Diligen
e Console would be very useful for that.)

• Note that we are serializing data using JSON into the distributed map. The performan
e hit should be

minimal, but it's important to remember that only your data must be extended-JSON-
ompatible. (The

�InMemoryResour
e� doesn't have this restri
tion.)

Usage

Resour
e Chara
teristi
s

All resour
es support the following URI query parameters:

• format: You
an use this to spe
ify the exa
t format you want, overriding any HTTP
ontent negotiation.

This is useful for testing and debugging, but
an also help you in dealing with HTTP
lients that
an't easily

set headers. A

epted values are �json�, �xml� and �html�. Note that when a

essing resour
es internally, no

serialization happens, and �format� is unne
essary.

• human: Setting this to �true� will further help your debugging, as it will return ni
ely indented, multiline

JSON or XML representations.

• mode: �Modes� are simple fun
tions that are applied to all do
uments in order to transform the �nal repre-

sentation. The REST Servi
e
omes with a few useful modes, but you
an easily
reate your own, just make

sure to hook them to the instan
e using the �modes� key. The query parameter value will be mapped to a

key in this di
t. Note that you
an provide multiple �mode� values, in whi
h
ase all mode fun
tions will be

alled in order. Provided modes:

� primitive: This
onverts MongoDB extended values into simpler JSON stru
tures. For example,

�{timestamp: {$date: 12345}}� will be
ome �{timestamp: 12345}�.

� string: This
onverts all JSON values into strings. It's a good way to over
ome various number a

ura
y

issues, espe
ially when dealing with PHP
lients.

� stringid: Converts only the �_id� �eld to a string, in
ase it's a BSON Obje
tId. Some
lients, su
h as

Ext JS,
annot deal with ID values that are di
ts.

An example URI with all the above parameters:

/data/ use r s /4 e057e94e799a23b0f581d7d/? format=j son&human=true&mode=pr im i t i v e&mode=s t r i n g

As for payloads, in POST and PUT operations, note that by default they must be in JSON, even if you are

representing the result in XML or HTML. The reason is that there is no obvious way to translate XML to the �nal

JSON format needed by MongoDB. If you do need to support XML payloads, you
an override �handlePost� and

�handlePut� to do this yourself a

ording to your spe
i�
ations.

38

Singular Resour
es

The REST Servi
e will by default extra
t the �{id}� pattern in the URI into a MongoDB Obje
tID for the do
ument

�_id� �eld. For example, if your route is �/data/users/{id}/�, then �/data/users/4e057e94e799a23b0f581d7d/�

would refer to the user do
ument with that �_id.�

Requests to the URI always return 404 if the do
ument does not exist. Further notes:

• POST: All keys of the payload will be used for a �$set� in a MongoDB ��ndAndModify� operation, and the

modi�ed do
ument will be returned. If you in
lude an �_id� key in the payload it will be removed, be
ause

the ID in the URI takes pre
eden
e.

• PUT: The payload will be
ome a simple MongoDB �save� operation, whi
h is an upsert, meaning it would

either
reate a new resour
e or repla
e the existing one. If you in
lude an �_id� key in the payload it will be

removed, be
ause the ID in the URI takes pre
eden
e. Note that if you want to
reate a new resour
e, it's

up to you to make sure the the id is unique, otherwise you will get an HTTP 409 error (
on�i
t). You
an

generate a unique ID by
alling MongoDB.newId(). Example for generating a unique URI using templates:

'/ data/ use r s /{0}/ ' .
a s t (MongoDB . newId ())

Plural Resour
es

The plural resour
e is a bit more
omplex. The returned representations in
lude a �total� key,
ounting the size of

the
olle
tion, and a �do
uments� key,
ontaining an array of spe
i�
 do
uments. For example:

{

" t o t a l " : 1092 ,

"do
uments " : [

{"_id " : {" $oid " : "4 e057 f2ae799a23b0f581d7f" } , . . . }

. . .

℄

}

The following additional query parameters are supported for pagination,
ontrolling whi
h do
uments are in-

luded in the �do
uments� array:

• start: The index from whi
h to start
olle
ting do
uments. By default it will be 0.

• limit: The maximum number of do
uments to return.

The �do
uments� array
an de�nitely be empty if your �start� and �limit� values are not satis�ed.

Further notes:

• POST: This lets you update many do
uments at on
e. Your payload should be an array of values that would

be sent via the singular resour
e POST, as des
ribed above, however you must also in
lude an �_id� for ea
h

value. The response will in
lude all do
uments after their modi�
ation.

• PUT: This is how you add do
uments to your MongoDB
olle
tion. Simply provide an array of values, and

they will be
ome MongoDB �insert� operations. The response will in
lude �_id� �elds on all your do
uments,

if you did not set them yourself.

• DELETE: This is a MongoDB �remove� operation, not a �drop�.

A

essing Your Resour
es over the Web

All your resour
es support the HTML format, so you
an easily a

ess them via a web browser. For example, this

link: http://lo
alhost:8080/diligen
e-example/data/users/4e057e94e799a23b0f581d7d/.

This view supports simple editing of your resour
es: you
an POST, PUT any resour
e using JSON or XML

payloads, or DELETE them. It's a great way to test and debug your resour
es.

You
an
ustomize this view as you please: just
reate �/diligen
e/servi
e/rest/singular.html� and �/dili-

gen
e/servi
e/rest/plural.html� �les in your �/fragments/� dire
tory. You
an start with the default �les under

your
ontainer's �/libraries/pruden
e/� dire
tory as a template.

39

http://localhost:8080/diligence-example/data/users/4e057e94e799a23b0f581d7d/

A

essing Your Resour
es with the API

The Pruden
e.Resour
es API makes it very easy to a

ess your resour
es, whether internally or on a di�erent node.

See the API do
umentation for full details, otherwise here we'll provide you with a qui
k tutorial for using it with

the REST Servi
e.

Let's start with the internal use
ase:

do
ument . exe
uteOn
e (' / pruden
e/ r e s ou r
 e s / ')

var user = Pruden
e . Resour
es . r eque s t ({

u r i : '/ data/ use r s /4 e057e94e799a23b0f581d7d / ' ,

i n t e r n a l : t rue

})

pr in t (user . name)

Again, we'll emphasize that when a

essing the API internally neither HTTP nor serialization are

involved. The data is never
onverted to JSON, instead it's extra
ted dire
tly from MongoDB's BSON

to JavaS
ript's internal data stru
ture, exa
tly as if you were using the MongoDB API dire
tly. There's

obviously some overhead added by the Pruden
e platform and the REST Servi
e, but it should be very

minimal, espe
ially when
ompared to the network fet
h from MongoDB. In short, performan
e
on
erns

should not stop you from using the REST Servi
e in this fashion.

A

essing remote resour
es is almost identi
al, though obviously HTTP and JSON (or XML) are involved. As an

example, we
an try to a

ess our lo
al resour
e via HTTP:

var user = Pruden
e . Resour
es . r eque s t ({

u r i : ' http : // l o
 a l h o s t :8080/myapp/data/ use r s /4 e057e94e799a23b0f581d7d / ' ,

mediaType : ' app l i
 a t i on / json '

})

p r in t (user . name)

Of
ourse, the URI
an point to anywhere on the network, or the Internet. Note that we had to expli
itly spe
ify

our preferred media type, be
ause our resour
e supports several di�erent formats.

The API
an be used for all REST methods:

var user = Pruden
e . Resour
es . r eque s t ({

u r i : '/ data/ use r s /4 e057e94e799a23b0f581d7d / ' ,

i n t e r n a l : true ,

method : ' post ' ,

payload : {

va lue : { emai l : ' newemail�mysite . org ' }

}

})

Remotely, the REST methods are a
tual HTTP verbs:

var user = Pruden
e . Resour
es . r eque s t ({

u r i : ' http : // l o
 a l h o s t :8080/myapp/data/ use r s /4 e057e94e799a23b0f581d7d / ' ,

mediaType : ' app l i
 a t i on / json '

method : ' post ' ,

payload : {

type : ' j son ' ,

va lue : { emai l : ' newemail�mysite . org ' }

}

})

We'll �nish o� this short tutorial by showing you that for every request you
an also set query params:

var use r s = Pruden
e . Resour
es . r eque s t ({

u r i : '/ data/ use r s / ' ,

i n t e r n a l : true ,

query : {

40

http://threecrickets.com/api/javascript/?namespace=Prudence.Resources
http://threecrickets.com/api/javascript/?namespace=MongoDB

s t a r t : 5 ,

l im i t : 3

}

})

pr in t (u se r s [0 ℄ . name)

A

essing Your Resour
es with
URL

URL is an HTTP
ommand line tool based on the
URL library, available for a great many Unix-like operating

systems as well as Windows. It's espe
ially useful for testing RESTful APIs. Here's a qui
k tutorial to get you

started with using
URL with the REST Servi
e.

First, a few GET
ommands to try:

u r l "http :// l o
 a l h o s t :8080/myapp/data/ use r s /4 e057e94e799a23b0f581d7d/?human=true "

u r l "http :// l o
 a l h o s t :8080/myapp/data/ use r s /4 e057e94e799a23b0f581d7d/? format=xml&human=true "

u r l "http :// l o
 a l h o s t :8080/myapp/data/ use r s /? l im i t=3&human=true "

You
an send a payload using the �-d� swit
h, whi
h also sets the HTTP verb to POST. For example, this will

modify the email of a user:

 u r l −d '{" emai l " : " newemail�mysite . org "} ' "http :// l o
 a l h o s t :8080/myapp/data/ use r s /4 e057e94e799a23b0f581d7d/?human=true "

When using �-d�, you
an also start your payload with ��� to signify that you want to send the
ontents of a

�le, in this
ase �data.json�:

 u r l −d �data . j s on "http :// l o
 a l h o s t :8080/myapp/data/ use r s /4 e057e94e799a23b0f581d7d/?human=true "

To set the HTTP verb expli
itly, use �-X�. Here we'll
reate a new user:

 u r l −X PUT −d �data . j s on "http :// l o
 a l h o s t :8080/myapp/data/ use r s /?human=true "

And now we'll delete a user:

 u r l −X DELETE "http :// l o
 a l h o s t :8080/myapp/data/ use r s /4 e057e94e799a23b0f581d7d/"

With the �-h� swit
h, you
an also send HTTP headers in raw form:

u r l −H "A

ept : app l i
 a t i on /xml" "http :// l o
 a l h o s t :8080/myapp/data/ use r s /4 e057e94e799a23b0f581d7d/?human=true "

Finally, add the �-v� swit
h to print out the outgoing and in
oming headers.

Extension

TODO

Extended MongoDbResour
e

Extending IterableResour
e

RPC Servi
e

The RPC (Remote Pro
edure Call) Servi
e provides robust, elegant support for various versions of the JSON-RPC

and XML-RPC spe
i�
ations, in
luding support for bat
h pro
essing for JSON-RPC 2.0. It's powerful enough that

it may be in itself the primary reason why you wish to use Diligen
e.

In most
ases, all you need to do is hookup your JavaS
ript fun
tions to a URI, and let the RPC Servi
e do the

rest. All error
odes, system APIs and type
onversions will be properly handled.

As a bonus, the RPC Servi
e also in
ludes a ni
e
lient utility for
alling JSON-RPC and XML-RPC.

Is RPC a good idea? We're in
lined to say: no. REST is a mu
h more s
alable and robust pattern, all

things
onsidered. REST uses all the power of HTTP to provide
lient-
a
heable representations. RPC,

on the other hand, supports only HTTP POST, the only non-idempotent HTTP operation, whi
h
an

never be
a
hed. However, RPC may be ne
essary for
ommuni
ation with other servi
es and
lients,

so you might not have a
hoi
e. And, sometimes, it's just the most straightforward, qui
k-and-dirty

solution to a problem. Espe
ially with the Diligen
e RPC Servi
e, it's so easy to just allow
lients to

all fun
tions on the server, that sometimes you might prefer it to designing a RESTful URI-spa
e. So

be it! Just make sure you understand the pros and
ons of you
hoi
e.

41

http://curl.haxx.se/
http://json-rpc.org/
http://xmlrpc.scripting.com/

Setup

Make sure to
he
k out the API do
umentation for Diligen
e.RPC.

First, let's
on�gure the URI-spa
e in your appli
ation's �routing.js�. Add the following to app.routes and

app.dispat
hers:

app . route s = {

. . .

'/
 a l
 / ' : ' �
al
 '

}

app . d i s pa t
h e r s = {

. . .

j a v a s
 r i p t : '/manual−r e s ou r
 e s / '

}

We
an now
on�gure our resour
es in �/libraries/manual-resour
es.js�:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / rp
 / ')

var Cal
 = {

mult ip ly : fun
 t i on (x , y) {

return x y

}

}

r e s ou r
 e s = {

. . .

 a l
 : new D i l i g en
 e .RPC. Resour
e ({ namespa
es : {Cal
 : Cal
 }})

}

And. . . that's pretty mu
h it! You
an now
all your methods using JSON-RPC or XML-RPC.

Namespa
es

The key of the namespa
e is pre�xed with a period before all method identi�ers. So, our method above would be

identi�ed as �Cal
.multiply�.

However, if you do not want this pre�x, you
an use the spe
ial �.� key, whi
h here means the root namespa
e:

r e s ou r
 e s = {

. . .

 a l
 : new D i l i g en
 e .RPC. Resour
e ({ ' . ' : Cal
 })

}

The method would now be identi�ed simply as �multiply�.

If you don't need the namespa
es feature at all, you
an use the following short
ut (note the �namespa
e� key,

singular):

r e s ou r
 e s = {

. . .

 a l
 : new D i l i g en
 e .RPC. Resour
e ({ namespa
e : Cal
 })

}

Long Form

You have some more
ontrol over the exported fun
tions, should you need it. The long form of
reating namespa
es

is like so:

var Cal
 = {

mult ip ly : {

fn : fun
 t i on (x , y) {

42

http://threecrickets.com/api/javascript/?namespace=Diligence.RPC

return x y

} ,

a r i t y : 2

}

}

The �artity� key
ounts how many arguments the fun
tion requires. If it's not there, the RPC Servi
e will
ount

them from the fun
tion spe
. However, this won't work if you a

ess JavaS
ript �arguments� dire
tly, hen
e this

long form exists.

System Namespa
e

The �system� namespa
e is reserved for parts of the RPC proto
ols. The RPC Servi
e implements these for you:

• system.getCapabilities

• system.listMethods

• system.methodSignature

• system.methodHelp: By default, this will just show the method name, but in the long form de�nition you

an add a �help� key to set this as you need.

S
ope

When your fun
tion is
alled, the �this� will be automati
ally populated with the following keys:

• de�nition: Your long-form fun
tion de�nition (short-form fun
tion de�nitions will be expanded into the long

form)

• namespa
e: The original namespa
e obje
t you supplied

• resour
e: The Diligen
e.RPC.Resour
e instan
e

•
onversation: The Pruden
e
onversation of the
all

•
all: The RPC
all obje
t, as sent from the
lient

The �method� key is useful in that you
an add anything you want to the method obje
t. For a rather silly example:

var Cal
 = {

mult ip ly : {

fn : fun
 t i on (x , y) {

return x y t h i s . d e f i n i t i o n . mu l t ip lyA l l

} ,

mu l t ip lyA l l : 100

}

}

One spe
ial key is reserved: �s
ope�. Use it to override �this� to be any value you desire:

var Cal
 = {

mult ip ly : {

fn : fun
 t i on (x , y) {

return x y t h i s

} ,

s
ope : 100

}

}

If you are using JavaS
ript obje
t oriented programming, you might want �this� to always just be the namespa
e

obje
t itself. In that
ase, you
an use the �obje
ts� key instead of the �namespa
es� key when
reating your

Diligen
e.RPC.Resour
e
onstru
tor. It works the same way as a namespa
e ex
ept that the s
ope will be the

obje
t itself for all method
alls:

43

// This i s a
 l a s s

var Cal
 = fun
 t i on (mu l t ip lyA l l) {

t h i s . mu l t ip lyA l l = mul t ip lyA l l

t h i s . mult ip ly = fun
 t i on (x , y) {

return x y t h i s . mu l t ip lyA l l

}

}

r e s ou r
 e s = {

. . .

 a l
 : new D i l i g en
 e .RPC. Resour
e ({ ob j e
 t s : {Cal
 : new Cal
 (100)}})

}

You
an mix �namespa
es� and �obje
ts� in the same
onstru
tor. Also note that you
an also use �obje
t�

(singular) in the same way as �namespa
e� (singular).

Fault Codes

If your fun
tion throws an ex
eption, the RPC Servi
e will return a ServerError fault
ode with the ex
eption string

as the message.

However, you
an also return spe
i�
 XML-RPC fault
odes (the same
ode numbers are used by JSON-RPC):

• By throwing a number (all fault
odes are negative numbers). You
an use the
onvenient
onstants in

�Diligen
e.Fault�. For example:

throw D i l i g en
 e . Fault . Inval idParams

• By throwing a di
t with both the fault
ode and the message. For example:

throw {
ode : D i l i g en
 e . Fault . InvalidParams , message : ' Cannot d iv ide by 0 ! ' }

Usage

URI Query Parameters

• type: The resour
e will automati
ally determine whether it should work in JSON-RPC or XML-RPC a
-

ording to the media type of the in
oming payload, or if that's not available, the preferred media type for the

returned representation. Unfortunately, some
lients don't or
an't set either. In that
ase, you
an set the

type expli
itly in the URI, with either �json� or �xml� as values.

• human: Set this to �true� to generate multiline, indented human-readable results (both for JSON and XML).

Great for debugging.

Calling RPC with the API

The RPC Servi
e in
ludes a useful RPC
lient fun
tion, �Diligen
e.RPC.request�. It's essentially a wrapper over

the Pruden
e.Resour
es API that builds the payload for you and ni
ely unpa
ks the results. The results will always

be in JSON-RPC's format, even if you are using XML-RPC. This allows for uniform pro
essing on your end.

Here's an example of an internal
all using JSON-RPC:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / rp
 / ')

var r e s u l t = D i l i g en
 e .RPC. r eque s t ({

u r i : '/
 a l
 / ' ,

i n t e r n a l : true ,

name : ' Cal
 . mult iply ' ,

params : [5 , 6 ℄ ,

id : ' ab
 ' ,

p ro to
o l : ' j son '

44

http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php
http://threecrickets.com/api/javascript/?namespace=Prudence.Resources

})

i f (r e s u l t . e r r o r) {

pr in t (' Error : ' + r e s u l t . e r r o r . message)

}

e l s e {

pr in t (r e s u l t . r e s u l t)

}

For XML-RPC, simply set �proto
ol� to �xml�. If not provided, it defaults to �json�. Note that the result will

also in
lude that �proto
ol� key you provided, in
ase you need to know whi
h proto
ol was used.

Generally, if you have the option to use JSON-RPC, you should prefer it. XML serialization in
urs an extra

overhead in JavaS
ript.

Calling RPC with
URL

URL is an HTTP
ommand line tool based on the
URL library, available for a great many Unix-like operating

systems as well as Windows. It's espe
ially useful for testing RESTful APIs. Here's a qui
k tutorial to get you

started with using
URL with the RPC Servi
e.

First, let's
reate our payload. With a text editor,
reate a �le named �rp
.json� and paste this:

{

" j sonrp
 " : "2 . 0" ,

"method " : "Cal
 . mult ip ly " ,

"params " : [2 , 3 ℄ ,

" id " : "ab
"

}

You
an send a payload using the �-d� swit
h, whi
h also sets the HTTP verb to POST. When using �-d�, you

an also start your payload with ��� to signify that you want to send the
ontents of a �le:

 u r l −d �rp
 . j s on "http :// l o
 a l h o s t :8080/myapp/
a l
 /? type=j son&human=true "

You should get this result:

{

" id " : "ab
 " ,

" r e s u l t " : "6" ,

" e r r o r " : nu l l ,

" j s onrp
 " : "2 .0"

}

Calling RPC from Web Browsers

Many
lient-side JavaS
ript frameworks in
lude support for RPC, but if all you need is a straightforward, self-

ontained library, we re
ommend jsonrp
js.

Sear
h Servi
e

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Sear
h.

Serials Servi
e

This straightforward servi
e generates unique integers in a series, using MongoDB atomi
 operations. No number

in a spe
i�
 series will ever be generated again. This servi
e is thus useful for generating integer IDs.

Note that uniqueness is only guaranteed by the inta
tness of the MongoDB database. If you somehow lose it

and have to start over, there's a
han
e you would regenerate IDs that have already been used. If you need unique

IDs that don't have this limitation, you'll want to use GUIDs instead.

45

http://curl.haxx.se/
https://github.com/gimmi/jsonrpcjs
http://threecrickets.com/api/javascript/?namespace=Diligence.Search

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Serials.

Usage is very simple:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / s e r i a l s / ')

var id = Di l i g en
 e . S e r i a l s . next (' person ')

Ea
h series is stored as a single do
ument in the �serials� MongoDB
olle
tion. By default, the method will

reate the series do
ument if it does not yet exist, initializing it with the number 1.

Syndi
ation Servi
e

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Syndi
ation.

Links

The module
ontains a simple /web/fragments/ drop-in that adds links re
ognizes by all major browsers, and

another drop-in for the �syndi
ation� button, using the de fa
to standard i
on.

Gravatar Integration

Gravatar is a popular servi
e for managing user avatars and simple pro�le pages by asso
iating them with email

addresses.

It makes users happy, be
ause they
an manage their avatars for many, many servi
es in one pla
e. The user's

email is hashed so that it is not made publi
ly available, unless the user
hooses to put them expli
itly on their

pro�le.

It makes site owners happy, be
ause they
an display avatars for users without having to store them or otherwise

manage them. Additionally, new users would have their avatar immediately displayed without any e�ort on their

part, and users do not like e�ort. If you're using the authenti
ation servi
e (page 5) in asso
iation with the

registration feature (page 61), then you already have an email address for the user, and
an immediately fet
h their

avatar from Gravatar.

Worried about for
ing users to use an external servi
e? Then make Gravatar an optional fallba
k. Provide users

with a way to manage avatars on your site dire
tly, and only default to Gravatar.

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Gravatar.

Just enter an email address, and let the Diligen
e magi
 happen.

The avatar above is hyperlinked to their Gravatar pro�le page. And here's the
omplete JSON dump of their

pro�le:

PayPal Integration

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.PayPal.

Sen
ha Integration

Ext JS and Sen
ha Tou
h are both large JavaS
ript frameworks in their own right, and Diligen
e supports many

of their features. For this reason, we've divided the se
tion for Sen
ha Integration into several sub-se
tions. Still,

you'll want to start here, where we go over some general usage appli
able to all features.

After that, go ahead and read the se
tions for the following integration features:

46

http://threecrickets.com/api/javascript/?namespace=Diligence.Serials
http://threecrickets.com/api/javascript/?namespace=Diligence.Syndication
http://en.gravatar.com/
http://threecrickets.com/api/javascript/?namespace=Diligence.Gravatar
http://threecrickets.com/api/javascript/?namespace=Diligence.PayPal

• Grids

• Trees

• Charts

• Forms

• Ext Dire
t

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Sen
ha.

To in
lude Ext JS in your HTML page, you'll want to insert a s
riptlet, resulting in a page template similar to

this:

<html>

<head>

. . .

<%

do
ument . exe
uteOn
e (' / d i l i g e n
 e / i n t e g r a t i o n/ f rontend / sen
ha / ')

D i l i g en
 e . Sen
ha . extJsHead (
onversat ion , ' ext−a l l−gray ')

%>

</head>

<body>

. . .

</body>

<s
 r i p t type="tex t / j a v a s
 r i p t">

Ext . onReady(fun
 t i on () {

. . .

}) ;

</s
 r i p t >

</html>

Notes:

• The �extJsHead� method uses �
onversation.pathToBase� to make sure that the
orre
t relative URL is in-

serted. Be aware of this if you intend to
a
he that fragment for all URLs.

• The se
ond argument is the theme: it will be �ext-all� if not provided.

• This also in
ludes Diligen
e's Ext JS
lient-side helper library. You don't have to use it, but it
an make your

life easier. You
an �nd it under �/libraries/web/s
ripts/diligen
e/integration/ext-js.js�. The library enhan
es

Ext JS via:

� JSON Readers and Writers that support MongoDB's extended JSON format. This will allow you to

automati
ally translate $date, $long and other JSON extensions. Even without using MongoDB, this is

a very useful format.

� A data Proxy that automati
ally uses the extended JSON Reader and Writer, and builds URLs in

Diligen
e's default stru
ture.

Sen
ha Integration: Grids

Ext JS's grid widget may be its most powerful feature. It supports editing, paging and endless s
rolling, with lots

of room for
ustomization. Grids o�er a familiar and powerful UI for traversing large amounts of stru
tured data.

Diligen
e o�ers ex
ellent server-side support for this astounding
lient widget: in a few lines of
ode, you
an hook

up an editable grid widget to a MongoDB
olle
tion.

Despite being one of Diligen
e's most immediately impressive features, this is going to be a rather short manual

hapter! The reason is that the heavy lifting is done by the REST Servi
e. The URI-spa
e
reated by the REST

47

http://threecrickets.com/api/javascript/?namespace=Diligence.Sencha

Servi
e is
ompatible with Ext JS, so there's not mu
h more to do other than hook up the grid using
lient-side

JavaS
ript.

What we're going to do here is give a qui
k tutorial for using Ext JS grids with Diligen
e.

Setup

See the REST Servi
e. Resour
es
reated there are immediately atta
hable to Ext JS grids.

Usage

Make sure to
he
k out the server-side API do
umentation for Diligen
e.Sen
ha and the

lient-side API do
umentation for Ext JS.

A full tutorial of Ext JS grids is beyond what we
an do in this Manual, but here are is a qui
k overview of the

omponents as they apply to Diligen
e:

• You start by
reating a �Model�
lass, whi
h is a template for your �re
ords,� represented by your grid rows.

Ea
h model has a list of typed �elds (the default is a plain string) whi
h imply
lient-side translation and

validation. You
an further
reate your
ustom �elds. For Diligen
e, it's important that you in
lude the �_id�

�eld and also set �idProperty� to be that �eld. If you don't expli
itly set �idProperty,� Ext JS will not be

able to save individual re
ords. Also not that Ext JS requires the idProperty to be a primitive, so we are

using the �stringid� mode for the Diligen
e REST Servi
e in order to make sure we get strings, not MongoDB

Obje
tIds.

• The model also de�nes a �Proxy,� whi
h is Ext JS's extensible
onne
tor
lass. Proxies are in
harge of loading

and saving the data. In this
ase, we are using a �diligen
e� proxy type. This is a
ustom type that we have

de�ned in Diligen
e's Ext JS helper library. It's rather simple, and you are free to use the �ajax� proxy type

instead with the modi�
ations we've made there. The �diligen
e� proxy is
on�gured to automati
ally support

MongoDB's extended JSON notation and also use Diligen
e's URL style. We've additionally set the �root�

property for the reader to �do
uments�.

• The �Store� is an intermediary
lass between the model and the grid. It handles
a
hing of model instan
es

(�re
ords�) in memory, paging, pre-fet
hing, et
. By default it will use the proxy we de�ned in our model.

• Finally, there's the grid panel. Though we've de�ned ��elds� in our model, we must de�ne �
olumns� in our

grid that map onto the �elds. In many
ases we'll be doing a one-to-one mapping, but you
an
reate
ustom

olumns that transform the model in various ways, for example
ombining �elds into a single
olumn, or

having a
olumn that is derived from other �elds. You do not have to have a
olumn for every �eld. (Indeed,

you'd likely not want to have the �_id� �eld visible.)

• By default, the grid is not editable, but we
an add the �CellEditing� plugin to handle that. Every
olumn

an de�ne its own editor, whi
h
an handle user-side validation beyond what is o�ered by the model. Ext JS

omes with many powerful editing widgets, and of
ourse you
an
reate your own.

• In this example, we've also added a paging toolbar to the grid, and hooked it up to use the same store as the

grid. As the store is paged by the toolbar, it �res events that update the
urrent grid view.

That should be enough to get you started. Here's how the
ode looks:

<html>

<head>

<%

do
ument . exe
uteOn
e (' / d i l i g e n
 e / i n t e g r a t i o n/ f rontend / sen
ha / ')

D i l i g en
 e . Sen
ha . extJsHead (
onve r sa t i on)

%>

</head>

<body>

<div id="gr id"></div>

</body>

<s
 r i p t type="tex t / j a v a s
 r i p t">

Ext . onReady(fun
 t i on () {

48

http://threecrickets.com/api/javascript/?namespace=Diligence.Sencha
http://docs.sencha.com/ext-js/4-1/
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.data.Model
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.data.proxy.Proxy
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.data.Store
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.grid.Panel
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.grid.plugin.CellEditing
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.toolbar.Paging

var pageS ize = 15 ;

Ext . d e f i n e (' User ' , {

extend : ' Ext . data . Model ' ,

f i e l d s : [

'_id ' ,

'name ' ,

{name : ' las tSeen ' , type : ' date ' }

℄ ,

idProperty : '_id ' ,

proxy : {

type : ' d i l i g en
 e ' ,

u r l : '<%=
onver sa t i on . pathToBase %>/data/ use r s / '

}

}) ;

var s t o r e = Ext .
 r e a t e (' Ext . data . Store ' , {

model : ' User ' ,

pageS ize : pageSize ,

autoSyn
 : true ,

autoLoad : t rue

}) ;

Ext .
 r e a t e (' Ext . g r id . Panel ' , {

s t o r e : s tore ,

olumns : [{

dataIndex : 'name ' ,

header : 'Name' ,

e d i t o r : ' t e x t f i e l d '

} , {

dataIndex : ' las tSeen ' ,

xtype : ' date
olumn ' ,

format : 'm/d/y , H: i ' ,

header : ' Last Seen ' ,

e d i t o r : {

xtype : ' d a t e f i e l d ' ,

format : 'm/d/y , H: i '

}

} ℄ ,

f o r
 eF i t : true ,

se lType : '
e l lmode l ' ,

p lug in s : [

Ext .
 r e a t e (' Ext . g r id . p lug in . Ce l lEdi t ing ' , {
 l i
k sToEd i t : 2})

℄ ,

do
kedItems : [{

do
k : ' bottom ' ,

xtype : ' pag ingtoo lbar ' ,

s t o r e : s tore ,

} ℄ ,

renderTo : ' gr id ' ,

s t y l e : {

margin : ' auto '

} ,

width : 500 ,

he ight : 370

}) ;

49

}) ;

</s
 r i p t >

</html>

Sen
ha Integration: Trees

Ext JS's tree widget is quite powerful, and gives you a lot of
ontrol over the visual presentation, supporting
omplex

nodes and multi-
olumn displays. Though it's not in itself editable, it integrates with Ext JS's drag-and-drop model,

whi
h you
an hook up into your
ustom editing model. Diligen
e o�ers ex
ellent server-side support for it: in a

few lines of
ode, you
an hook up a tree widget to a do
ument MongoDB
olle
tion, and use MongoDB DBRefs

to expand the tree into other do
uments.

Setup

Make sure to
he
k out the server-side API do
umentation for Diligen
e.Sen
ha and the

lient-side API do
umentation for Ext JS.

The Ext JS's tree requires a rather spe
i�
 JSON data representation, so we've inherited the re-

sour
e
lass in the REST Servi
e to support it, with
lasses �Diligen
e.Sen
ha.TreeResour
e� and �Dili-

gen
e.Sen
ha.MongoDbTreeResour
e.� You might want to start by reading the REST Servi
e manual
hapter.

In your �/routing.js�, add the following to app.routes and app.dispat
hers:

app . route s = {

. . .

'/ data/ textpa
k /{ id }/ ' : ' �textpa
k '

}

app . d i s pa t
h e r s = {

. . .

j a v a s
 r i p t : '/manual−r e s ou r
 e s / '

}

Note the �{id}� variable in the URI pattern: the resour
e expe
ts the node ID to appear there.

Now add a �MongoDbTreeResour
e� to your �/libraries/manual-resour
es.js�:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / i n t e g r a t i o n/ f rontend / sen
ha / ')

r e s ou r
 e s = {

. . .

textpa
k : new D i l i g en
 e . Sen
ha . MongoDbTreeResour
e({
 o l l e
 t i o n : ' textpa
ks ' })

}

Custom Queries

In the above example, the �id� segment in the URI will be used for a MongoDB ��ndOne� operation in the
olle
tion

for the do
ument �_id�, and the entire do
ument (minus the �_id� �eld) will be used for the tree data. However,

Diligen
e allows you to
ustomize this data sear
h and extra
tion:

r e s ou r
 e s = {

. . .

textpa
k : new D i l i g en
 e . Sen
ha . MongoDbTreeResour
e({
 o l l e
 t i o n : ' textpa
ks ' , query : { l o
 a l e : ' en ' } , f i e l d : ' text ' })

}

The �query� key will be used for the MongoDB ��ndOne� operation, and the ��eld� key spe
i�es whi
h �eld in

the do
ument
ontains the tree data.

50

http://docs.mongodb.org/manual/applications/database-references/
http://threecrickets.com/api/javascript/?namespace=Diligence.Sencha
http://docs.sencha.com/ext-js/4-1/

Custom Text

By default, the text for ea
h node will be the key for tree folders and the stringi�ed value for tree leaves. But, you

an
ustomize this by overriding the �getNodeText� method:

r e s ou r
 e s = {

. . .

textpa
k : new D i l i g en
 e . Sen
ha . MongoDbTreeResour
e({

 o l l e
 t i o n : ' textpa
ks ' ,

query : { l o
 a l e : ' en ' } ,

f i e l d : ' text ' ,

getNodeText : fun
 t i on (id , node) {

return typeo f node == ' s t r ing ' ? id + ' : ' + node : id

}

})

}

The �id� argument is the key, while the �node� argument is null for tree folders or the value for tree leaves.

Data Stru
ture

The expe
ted do
ument data stru
ture is quite straightforward: a series of nested di
ts, for whi
h non-di
t keys

be
ome tree leaves. For example:

{

"_id " : {

" $oid " : "4 d474457f9e399e7e05e1269"

} ,

" t ex t " : {

" app l i
 a t i on " : {

" t i t l e " : "MyApp" ,

" d e s
 r i p t i o n " : "This i s an important app l i
 a t i on "

}

} ,

" l o
 a l e " : "en"

}

Here, �text� and �appli
ation� will both be
ome tree folders, while �title�, �des
ription� and �lo
ale� will be
ome

tree leaves. The �_id� �eld will be ignored by �MongoDbTreeResour
e�.

Multi-Do
ument Data Stru
ture

The tree data
an be split among several do
uments using MongoDB DBRefs. Diligen
e will fet
h the referred

do
ument and use the ��eld� key, if it was set, to retrieve a spe
i�
 �eld. This
an
ontinue re
ursively to any

depth.

Let's add a DBRef (using MongoDB's extended JSON notation, via the �$ref� key) to another do
ument in our

olle
tion:

{

"_id " : {

" $oid " : "4 d474457f9e399e7e05e1269"

} ,

" t ex t " : {

" app l i
 a t i on " : {

" t i t l e " : "MyApp" ,

" d e s
 r i p t i o n " : "This i s an important app l i
 a t i on " ,

"more " : {

" $ r e f " : " textpa
ks " ,

" $ id " : "4 d6831f97
6
99e71b8eaf0e"

}

51

http://docs.mongodb.org/manual/applications/database-references/

}

} ,

" l o
 a l e " : "en"

}

The DBRef node will appear in the tree as a non-expanded folder so that the user will have to expli
itly expand

it in order to fet
h the nodes underneath. If you require all nodes to be expanded, you
an
all �expandAll� on the

tree after it is loaded.

In-Memory Data

As with the REST Servi
e, you
an also avoid MongoDB and
reate an in-memory tree resour
e:

var textpa
k = {

app l i
 a t i on : {

t i t l e : 'MyApp' ,

d e s
 r i p t i o n : ' This i s an important app l i
a t i on '

}

}

r e s ou r
 e s = {

. . .

textpa
k : new D i l i g en
 e . Sen
ha . InMemroyTreeResour
e ({ t r e e : textpa
k })

}

Note that there is no distributed version of this, be
ause it's unne
essary: the tree data is read-only, so there's

no reason to syn
hronize the data a
ross the
luster.

Usage

URI-spa
e

Tree widgets are read-only, so the �MongoDbTreeResour
e� is signi�
antly simpler to implement than �MongoD-

bResour
e�. It only handles HTTP GET. Moreover, sin
e this resour
e is designed for Ext JS, it only supports

JSON, not XML. The only URI query parameter supported is �human=true�, to return multiline, indented JSON

representations.

What is a bit more
ompli
ated here is the node ID pattern. To support the re
ursive nature of the tree, the

node ID is
onstru
ted using the path of the node starting at the root, with �/� as a separator. The root node is

simply �/�. (These
onstants are
on�gurable.)

To show how this works, let's lay out all the node IDs from the example data stru
ture provided above:

/

/ t ex t

/ t ex t / app l i
 a t i on

/ tex t / app l i
 a t i on / t i t l e

/ t ex t / app l i
 a t i on / d e s
 r i p t i o n

/ l o
 a l e

Note that when in
lude the node ID in the URI, you have to URI-en
ode it. The URI-
ode for a �/� is �%2f�.

As an example, let's fet
h a node using
URL in the
ommand line:

 u r l "http :// l o
 a l h o s t :8080/myapp/data/ textpa
k/%2 f t e x t%2f a pp l i
 a t i o n /?human=true "

If you are using Apa
he to reverse-proxy to your server, you may �nd that it does not proxy URLs with a

�%2f�. To solve this problem, you need to add the �AllowEn
odedSlashes NoDe
ode� dire
tive, and also

add the �no
anon� attribute to your �ProxyPass� dire
tive. For more information, see this dis
ussion.

52

http://stackoverflow.com/questions/4390436/need-to-allow-encoded-slashes-on-apache

Tree Widget

A full tutorial of Ext JS trees is beyond what we
an do in this Manual, but here are is a qui
k overview of the

omponents as they apply to Diligen
e:

• The �TreeStore� is manages data for the tree. It handles
a
hing of tree node instan
es in memory. Note that

we've set �defaultRootId� to �/�, instead of the default �root�. This is to mat
h Diligen
e's path-based node

ID pattern (see above).

• The store also de�nes a �Proxy,� whi
h is Ext JS's extensible
onne
tor
lass. Proxies are in
harge of loading

the data. In this
ase, we are using a �diligen
e� proxy type. This is a
ustom type that we have de�ned in

Diligen
e's Ext JS helper library. It's rather simple, and you are free to use the �ajax� proxy type instead with

the modi�
ations we've made there. The �diligen
e� proxy is
on�gured to automati
ally support MongoDB's

extended JSON notation and also use Diligen
e's URL style. We've additionally set the �root� property for

the reader to �do
uments� (where the node's
hildren will be found).

• Finally, there's the tree panel, whi
h is linked to the store.

That should be enough to get you started. Here's how the
ode looks:

<html>

<head>

<%

do
ument . exe
uteOn
e (' / d i l i g e n
 e / i n t e g r a t i o n/ f rontend / sen
ha / ')

D i l i g en
 e . Sen
ha . extJsHead (
onve r sa t i on)

%>

</head>

<body>

<div id="t r e e"></div>

</body>

<s
 r i p t type="tex t / j a v a s
 r i p t">

Ext . onReady(fun
 t i on () {

var s t o r e = Ext .
 r e a t e (' Ext . data . TreeStore ' , {

proxy : {

type : ' d i l i g en
 e ' ,

u r l : '<%=
onver sa t i on . pathToBase %>/data/ textpa
k / '

} ,

de fau l tRootId : ' / ' ,

autoLoad : t rue

}) ;

Ext .
 r e a t e (' Ext . t r e e . Panel ' , {

s t o r e : s tore ,

au t oS
 r o l l : true ,

useArrows : true ,

r o o tV i s i b l e : f a l s e ,

renderTo : ' t ree ' ,

s t y l e : {

margin : ' auto '

} ,

width : 500 ,

he ight : 400

}) ;

}) ;

</s
 r i p t >

</html>

53

http://docs.sencha.com/ext-js/4-1/#!/api/Ext.data.TreeStore
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.data.proxy.Proxy
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.tree.Panel

Sen
ha Integration: Charts

TODO

Usage

TODO

Sen
ha Integration: Forms

Setup

We're using the Diligen
e Forms Servi
e, so follow the instru
tions there.

The di�erent is that you should use the �Diligen
e.Sen
ha.Form�
lass instead of �Diligen
e.Forms.Form�. The

former
lass extends the latter
lass with an extra method to better integrate with Ext JS.

So, in �/libraries/resour
es.js�:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / i n t e g r a t i o n/ f rontend / sen
ha / ')

. . .

r e s ou r
 e s = {

. . .

mult ip ly : new D i l i g en
 e . Sen
ha . Form(multiplyForm)

}

Usage

Con�guring the Form Fields

The �toExtJs� method lets you generate the
orre
t
lient-side sour
e
ode for
on�guring �elds for the Ext JS

form:

<%

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / forms / ')

var form = Di l i g en
 e . Forms . getForm ('/ mult ip ly / ')

%>

<s
 r i p t type="tex t / j a v a s
 r i p t">

var f i e l d s = <%= form . toExtJs (
onve r sa t i on) %>;

. . .

</s
 r i p t >

Note the di�eren
e between server-side and
lient-side JavaS
ript here!

The �eld
on�gurations in
lude the following, if they were set up for the �eld:

• The masking regular expression.

• The
lient-side validation fun
tion.

• Internationalization text strings for �eld labels and possible
lient-side validation error messages.

You
an expli
itly disable these like so:

var f i e l d s = <%= form . toExtJs (
onversat ion , {
 l i e n tVa l i d a t i o n : f a l s e ,
 l i entMask ing : f a l s e }) %>;

Internationalization will use text pa
k stored in the
onversation, or you
an set one expli
itly:

<%

var textPa
k = Di l i g en
 e . I n t e r n a t i o n a l i z a t i o n . getPa
k (' f r ')

%>

var f i e l d s = <%= form . toExtJs (
onversat ion , { textPa
k : textPa
k }) %>;

54

AJAX Forms

A full tutorial of Ext JS forms is beyond what we
an do in this Manual, but here are is a qui
k example of how

you
ould
reate an AJAX form to use with Diligen
e:

<html>

<head>

<%

do
ument . exe
uteOn
e (' / d i l i g e n
 e / i n t e g r a t i o n/ f rontend / sen
ha / ')

D i l i g en
 e . Sen
ha . extJsHead (
onve r sa t i on)

%>

</head>

<body>

</body>

<s
 r i p t type="tex t / j a v a s
 r i p t">

<%

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / forms / ')

var form = Di l i g en
 e . Forms . getForm ('/ mult ip ly / ')

%>

var f i e l d s = <%= form . toExtJs (
onve r sa t i on) %>;

Ext . onReady(fun
 t i on () {

Ext .
 r e a t e (' Ext . window .Window' , {

t i t l e : 'MyForm' ,

width : 350 ,

i tems : {

xtype : ' form ' ,

u r l : '<%=
onver sa t i on . pathToBase %>/mult ip ly /?mode=json ' ,

border : f a l s e ,

bodyCls : ' x−border−layout−
t ' , // Uses the neut ra l ba
kground
o l o r

bodyPadding : 10 ,

layout : ' an
hor ' ,

d e f a u l t s : {

an
hor : '100% '

} ,

defaultType : ' t e x t f i e l d ' ,

i tems : f i e l d s ,

buttons : [{

t ex t : ' Submit ' ,

d i s ab l ed : true ,

formBind : true ,

handler : f un
 t i on () {

var form = th i s . up (' form ') . getForm () ;

i f (form . i sVa l i d ()) {

form . submit ({

su

 e s s : f un
 t i on (form , a
 t i on) {

Ext .Msg . a l e r t (' Su

ess ! ' , a
 t i on . r e s u l t . msg) ;

} ,

f a i l u r e : f un
 t i on (form , a
 t i on) {

Ext .Msg . a l e r t (' Fa i lu r e ! ' , a
 t i on . r e s u l t . msg) ;

}

}) ;

}

}

} ℄

}) . show () ;

}) ;

</s
 r i p t >

55

</html>

Standard Forms

Ext JS
an also perform a standard submission instead of using AJAX. The result is that you get the ni
e GUI

of Ext JS, in
luding
lient-side validation, but as far as the server is
on
erned, the behavior is like the standard

HTML <form> me
hanism.

Why would want to do this? Honestly, with Diligen
e handling AJAX forms for you, it's hard to imagine a use

ase. Nevertheless, we'll tell you how to do this, for
ompletion's sake.

Let's use the Diligen
e Form Servi
e's manual mode:

<s
 r i p t type="tex t / j a v a s
 r i p t">

<%

do
ument . exe
uteOn
e (' / d i l i g e n
 e / s e r v i
 e / forms / ')

var form = Di l i g en
 e . Forms . getForm ('/ mult ip ly / ')

var r e s u l t s = form . handle (
onve r sa t i on)

%>

var f i e l d s = <%= form . toExtJs (
onversat ion , { r e s u l t s : r e s u l t s }) %>;

. . .

</s
 r i p t >

Note how we added �results� to �toExtJs�. This makes sure that the �elds will be initialized with the previous

form submission values, and also the
orre
t error
odes for �eld validation.

Ext Dire
t Forms

Finally, Ext JS forms
an also use Ext Dire
t, Sen
ha's RPC me
hanism, whi
h is ni
ely supported by Diligen
e,

instead of the regular AJAX mode. Going this route means that you will not use the Diligen
e Forms Servi
e at

all, and use the Diligen
e RPC Servi
e instead.

We re
ommend using the Diligen
e Forms Servi
e if you
an, be
ause it will give you fuller
ontrol over �eld

validation. However, Ext Dire
t might be ni
e to use if you already are using it a lot and have everything set up

for it. In any
ase, Ext Dire
t is fully supported, and sin
e it's also based on AJAX, the user experien
e is pretty

mu
h the same.

You will need to add an extra attribute when setting up Ext Dire
t, to make sure that it supports form

submission, and also return the results in the appropriate format. Here's an example �/libraries/resour
es.js�,

similar to the one for the RPC Servi
e:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / i n t e g r a t i o n/ f rontend / sen
ha / ')

var Cal
 = {

mult ip ly : {

fn : fun
 t i on (x , y) {

return {

su

 e s s : true ,

msg : '{0} t imes {1} i s {2} ' .
a s t (x , y , x y)

}

} ,

ex tD i r e
 t : {

formHandler : t rue

}

}

}

r e s ou r
 e s = {

. . .

 a l
 : new D i l i g en
 e . Sen
ha . Dire
tResour
e ({name : 'MyApp' , namespa
es : {Cal
 : Cal
 }})

}

Then, on the
lient you would
reate your form after initializing Ext Dire
t like so:

56

<s
 r i p t type="tex t / j a v a s
 r i p t">

fun
 t i on openForm () {

Ext .
 r e a t e (' Ext . window .Window' , {

t i t l e : 'MyForm' ,

width : 350 ,

i tems : {

xtype : ' form ' ,

ap i : {

submit : MyApp. Cal
 . mult ip ly

} ,

. . .

}

}) . show () ;

}

Ext . onReady(fun
 t i on () {

Ext . Ajax . r eque s t ({

u r l : '<%=
onver sa t i on . pathToBase %>/
a l
 / ' ,

method : 'GET' ,

d i sab leCa
h ing : f a l s e ,

s u

 e s s : f un
 t i on (response) {

var prov ide r = Ext . de
ode (response . responseText) ;

Ext . D i r e
 t . addProvider (p rov ide r) ;

openForm () ;

} ,

}) ;

}) ;

</s
 r i p t >

Note that instead of supplying a �url� key to the form
on�guration, we use �api� and hook the �submit� key to

our Ext Dire
t method. Ext JS will take
are of the rest.

Sen
ha Integration: Ext Dire
t

Diligen
e makes it trivial to support Ext Dire
t, Sen
ha's straightforward RPC proto
ol. Ext Dire
t it has ex
ellent

support in Ext JS and Sen
ha Tou
h: the frameworks generate a
lient-side namespa
e for you with asyn
hronous

methods equivalent to those on the server. All you have to do is
all them! Operations are bat
hed for maximum

e�
ien
y, and errors are handled as elegantly as
an be.

Diligen
e a
tually takes Ext Dire
t one step ahead in letting you automati
ally generate the API
on�guration

on the server. A �GET� to the resour
e will retrieve the JSON needed to
on�gure the
lient-side provider. We

show this in detail under �Usage,� below.

Ext Dire
t's fun
tionality is pra
ti
ally identi
al to that JSON-RPC, but the proto
ol is in
ompatible. It may

be unfortunate that Sen
ha de
ided not to use that better-known proto
ol, but in any
ase Diligen
e supports both.

Setup

Make sure to
he
k out the server-side API do
umentation for Diligen
e.Sen
ha and Diligen
e.RPC, as well as the

lient-side API do
umentation for Ext Dire
t.

Ext Dire
t setup is almost identi
al to RPC Servi
e setup, so make sure you read the se
tion there.

One small di�eren
e is in how Ext Dire
t handles namespa
es. First of all, you
annot have an empty namespa
e

(the �.� namespa
e in JSON-RPC). And, se
ond, you
an optionally set up a
lient-side namespa
e, using the �name�

key. Here's an example �/libraries/resour
es.js�, similar to the one for the RPC Servi
e:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / i n t e g r a t i o n/ f rontend / sen
ha / ')

var Cal
 = {

mult ip ly : fun
 t i on (x , y) {

57

http://www.sencha.com/products/extjs/extdirect
http://json-rpc.org/
http://threecrickets.com/api/javascript/?namespace=Diligence.Sencha
http://threecrickets.com/api/javascript/?namespace=Diligence.RPC
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.direct.Manager

return x y

}

}

r e s ou r
 e s = {

. . .

 a l
 : new D i l i g en
 e . Sen
ha . Dire
tResour
e ({name : 'MyApp' , namespa
es : {Cal
 : Cal
 }})

}

It is also possible to set Ext Dire
t method attributes using the long-form method de�nition with the �extDire
t�

key.

Ext JS Forms

Ext Dire
t
an be used to respond to Ext JS form submissions. To do so, we need to set the �formHandler� attribute

and also return an appropriate response:

var Cal
 = {

mult ip ly : {

fn : fun
 t i on (x , y) {

return {

su

 e s s : true ,

msg : '{0} t imes {1} i s {2} ' .
a s t (x , y , x y)

}

} ,

ex tD i r e
 t : {

formHandler : t rue

}

}

}

See the se
tion on Ext JS Forms for more information on usage. Note furthermore that Diligen
e supports all

of Ext JS's form submission me
hanisms.

Usage

See the Ext JS do
umentation for full details on the
lient-side API. Otherwise, here's a qui
k tutorial, whi
h also

shows you how to fet
h the provider
on�guration from the resour
e.

Here's an example of a dynami
 web page, say �dire
t.d.html�:

<html>

<head>

<%

do
ument . exe
uteOn
e (' / d i l i g e n
 e / i n t e g r a t i o n/ f rontend / sen
ha / ')

D i l i g en
 e . Sen
ha . extJsHead (
onve r sa t i on)

%>

</head>

<body>

</body>

<s
 r i p t >

fun
 t i on i n i t () {

MyApp. Cal
 . mult ip ly (2 , 3 , fun
 t i on (prov ider , response) {

i f (response . type == ' ex
ept ion ') {

Ext .Msg . a l e r t (' Mu l t ip l i
a t i on ' , ' Ex
eption : ' + response . message) ;

}

e l s e {

Ext .Msg . a l e r t (' Mu l t ip l i
a t i on ' , re sponse . r e s u l t) ;

}

}) ;

58

}

Ext . Ajax . r eque s t ({

u r l : '<%=
onver sa t i on . pathToBase %>/
a l
 / ' ,

method : 'GET' ,

d i sab leCa
h ing : f a l s e ,

s u

 e s s : f un
 t i on (response) {

var prov ide r = Ext . de
ode (response . responseText) ;

Ext . D i r e
 t . addProvider (p rov ide r) ;

i n i t () ;

} ,

f a i l u r e : f un
 t i on (response) {

onso l e . l og (response) ;

}

}) ;

</s
 r i p t >

</html>

Some notes:

• Make sure you understand the di�eren
e between the server -side JavaS
ript (between the �<%� and �%>�

delimiters) and the
lient-side JavaS
ript (between the �<s
ript>� and �</s
ript>� delimiters)!

• We are using �Ext.Ajax.request� to do a �GET� on our resour
e. It will return the JSON needed for the
all

to �Ext.Dire
t.addProvider�. Here's how it would look in our example:

{

" a
 t i on s " : {

"Cal
 " : [{

"name" : "mult ip ly " ,

" l en " : 2

} ℄

} ,

"namespa
e " : "MyApp"

}

You
an avoid that �Ext.Ajax.request�
all by simply
opying and pasting that JSON into your
lient-side

sour
e
ode. This extra
all is simply a
onvenien
e allowing you to modify the server-side
ode without

worrying about also having to update the
lient-side
ode a

ordingly. You might prefer to keep this extra

all during development, and then freeze it for produ
tion
ode.

• We are disabling the default �disableCa
hing� mode in �Ext.Ajax.request�. Ext JS disabled
a
hing by default

in order to better deal with servers that do not handle REST properly. Sin
e Pruden
e does this for us, there's

no reason to avoid
lient-side
a
hing if it's possible.

• The last argument for any Ext Dire
t method is a
allba
k that is
alled when the server returns a response.

It's
umbersome, but that's the pri
e you pay for asyn
hronous remote
alls! Also note that you want to

properly handle server and network failures.

Blog Feature

TODO

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Blog.

59

http://threecrickets.com/api/javascript/?namespace=Diligence.Blog

Console Feature

TODO

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Console.

Conta
t Us Feature

This simple feature
ontains a /web/fragment/ that displays an HTML form with a CAPTCHA that allows users

to send a message on a spe
i�
 noti�
ation servi
e (page 28)
hannel. System administrators or others subs
ribing

to the
hannel would then re
eive it. Straightforward!

Note that a di�erent form is displayed depending on whether the user is logged in. Logged-in users will not have

to enter their email address or pass the CAPTCHA. We already know they are legit, by virtue of having logged in!

The originating IP address is in
luded in the email.

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Conta
tUs.

Dis
ussion Feature

This feature lets you atta
h a �forum� to any MongoDB do
ument. It
ould be a Page from the Wiki Feature, a

blog post, or just anything in your appli
ation. Of
ourse, permissions apply, and you
an allow, for example, for

registered users to post new threads and have �visitor� users (Fa
ebook, Twitter, et
.) only the right to
omment.

The dis
ussion is threaded, in that
omments
an have any level of depth. It's very easy to drop in, and makes a

lot of web appli
ation features instantly so
iable.

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Dis
ussion.

Editable Graph Stru
tures in MongoDB

If you'll take a look at Diligen
e's Ext JS tree integration, you'll see it's pretty neat. It's literally neat be
ause

the trees for Ext-JS are immutable, and easily stored in a MongoDB do
ument, whi
h
an hold a stru
ture of

arbitrary depth. However, if you want your tree to
hange by multiple users and threads, do
ument databases su
h

as MongoDB begin to show some of their limitations. (Graph databases, su
h as neo4j, are of
ourse perfe
t for

this use
ase.)

Nevertheless, it's not impossible, and
an get ex
ellent all-around performan
e for mutability. How is this solved

for the Dis
ussion Feature? MongoDB's atomi
 operations do not support su
h re
ursion, so we needed a di�erent

method. You
an see ideas on the MongoDB trees page.

After some
onsideration, we used a variation of the �materialized paths� pattern. We have the forum posts

stored as plain array, with ea
h having a path as well as a parent �eld. We parse this do
ument on load, to give

it a tree-like stru
ture more amenable to work with. The �at storage stru
ture, however, allows for easy use of

MongoDB's atomi
 update operation. For ea
h post, we store a �nextResponse� running serial. We update it

atomi
ally with $in
 for ea
h new post, to make sure it's unique, and append that number to the parent's path to

reate the new path. We then add the new response using MongoDB's $push. The result is that any number of users

an respond at the same time to the same forum, and ea
h response takes only two MongoDB write operations,

only one of whi
h waits for the response. We're guaranteed atomi
ity and uniqueness of ea
h path ID.

A graph DB would do this better, but the real
omparison would be to a relational database. Just two writes,

but the whole forum is read with one read. We think this
ounts as a smashing su

ess!

You'll noti
e a rule of thumb we've applied here, useful in general when working with MongoDB: if in relational

database you always want your tables to be normalized, in do
ument databases your goal is to use as few do
uments

as possible. In this
ase, the entire forum is embedded into one do
ument (together with the do
ument's other

60

http://threecrickets.com/api/javascript/?namespace=Diligence.Console
http://threecrickets.com/api/javascript/?namespace=Diligence.ContactUs
http://threecrickets.com/api/javascript/?namespace=Diligence.Discussion
http://www.mongodb.org/display/DOCS/Trees+in+MongoDB

data, if there is any). The do
ument limit in MongoDB is 4MB, easily adequate for su
h dis
ussions. But, what if

you want a more open forum, with no limitations on size? Well, the Dis
ussion Feature also
omes with a forum

implementation that stores ea
h thread in post in its own do
ument, or even ea
h post in its own do
ument. All

use the same API. Mix and mat
h for the best performan
e and growth ability suitable for your needs.

Registration Feature

This
omplement to the authenti
ation servi
e (page 5) uses a two-step pro
ess to allow new users to register to

your appli
ation. As is
ommon, it expe
ts users to have a personal email address, whi
h will be used to both

on�rm the identity of the user and to
ommuni
ate with the user when they are not logged in.

The feature
ontains a /web/fragment/ HTML form with a CAPTCHA, whi
h
olle
ts the user's email, user-

name, password and possibly some personal information. The form will be valid only of the username is not already

in use.

If the form is valid, the user is
reated but not yet a
tivated. An email is sent to the user with a unique,

impossible-to-guess URL, whi
h
an be used only on
e. If they
li
k on that link, the user is a
tivated.

The feature allows for not-yet-a
tivated users to be automati
ally deleted after a
ertain time. This would

release the username for others to use.

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Registration.

SEO Feature

This feature helps you
omply with a few de fa
to sear
h engine standards to improve your intera
tion with them,

spe
i�
ally robots.txt and sitemap.xml.

At �rst glan
e, there's nothing very sophisti
ated about these standards, and you might be tempted to
reate

the required text �les manually and then serve them stati
ally. However, large appli
ations with many URLs
an

easily have unwieldy site maps. This Diligen
e feature helps you
reate them and manage them fairly automati
ally.

It supports very, very large site maps.

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.SEO.

The Goods

robots.txt

Sear
h engines expe
t to �nd this resour
e right at the root of your domain. Its plain text
ontent tells them where

to �nd your sitemap URL, and
an also
ontrol the
rawling of your domain.

Your robots.txt will likely not be very dynami
. Be
ause it mat
hes URLs starting with stated URLs, it
an

easily
over large se
tions of your site, and require infrequent tweaking.

When would you need a lot of robots.txt tweaking? A
ommon
ase for large sites is that publi
 resour
es

are depre
ated or otherwise
an
elled. In su
h
ases you still want to keep them up for referen
e, and to allow

hyperlinks elsewhere on the web to still be able to rea
h them�there's SEO value in that. But, you do not want

these resour
es to appear in sear
h engines and
onfuse users (you want them to �nd the new, better resour
es). A

robots.txt ex
lusion would do the tri
k.

sitemap.xml

If your robots.txt doesn't state otherwise, then this resour
e will also be at the root of your domain. Its XML
ontent

an either list URLs dire
tly, or, more
ommonly, a
t as the primary index of other XML �les
alled URL sets.

Sear
h engines do take site maps seriously. A
arefully maintained site map would help them keep up to date

with your dynami
 site, in turn helping to get human sear
hers to the page they want (or the page you want them

to want. . .). It's likely this would indire
tly and dire
tly improve your ranking, too.

61

http://threecrickets.com/api/javascript/?namespace=Diligence.Registration
http://threecrickets.com/api/javascript/?namespace=Diligence.SEO
http://www.robotstxt.org/robotstxt.html
http://sitemaps.org/protocol.php

Dynami
 or Stati
?

URL sets
an grow to be very large (think: Wikipedia), so sear
h engines have put limits on �le size: 50,000 URLs

per �le and 10MB, un
ompressed. That's right, you're allowed to
ompress your site map �les with gzip to save

bandwidth. There doesn't seem to be a limit on the number of �les you
an serve, so potentially your site map
an

be as big as needed.

Diligen
e supports two ways of generating site map resour
es: dynami
 (via /web/fragments/) and stati

(via /web/stati
/). Dynami
 is the default, and should be �ne for small web sites. It generates robots.txt and

sitemap.xml on demand, using Pruden
e's standard
a
hing to keep things smooth and fast.

But, dynami
 mode does not support more than 50,000 URLs per URL set. What's more, it generates these

within the HTTP request thread. So, you de�nitely do not want to use dynami
 mode for large sites, or sites whi
h

are slow to generate the URL sets! If you do, ea
h time you get hit by a sear
h engine for the site map (
an happen

several times a day for �hot� sites!) a web request thread will be tied up for the length of time it takes to generate

the huge URL set. There are two problems for this: �rst and worst, the sear
h engine may penalize you for being

so slow, and se
ond, even if you are
a
hing aggressively, it means that you will o

asionally have one very heavy

request, breaking the iron
lad rules laid out in Pruden
e's S
aling Tips arti
le.

Stati
 mode
an support URL sets of any size: it works by generating all required �les in an asyn
hronous

Pruden
e task so that they
an take as mu
h time as ne
essary, without tying up any user thread. You
an set the

task to run via Pruden
e's
rontab: on
e a day, twi
e a day, et
. The task makes sure to split URL sets into �pages�

of 50,000 URLs max, and to gzip
ompress them. It even makes sure to generate them in a separate spool dire
tory,

and then swap them all at on
e, so that sear
h engines hitting your site exa
tly during site map generation don't

see a partial, in
onsistent pi
ture. And it all happens asyn
hronously, using Diligen
e tasks, so that multiple URL

sets
an be generated simultaneously. And, of
ourse, sin
e they are plain old �les, you
an also host them outside

of Pruden
e.

Note that robots.txt is always generated dynami
ally: its size limit is 100KB, whi
h should be manageable. The

impli
ation is that you
an't go
razy with very large lists of ex
lusions/in
lusions. If this is an issue, you
an use

meta tags instead.

Instru
tion Manual

Every appli
ation in your Pruden
e instan
e
an have its own URL sets, but it only makes sense for the root

appli
ation to have both robots.txt and sitemap.xml. We'll start our guide with an appli
ation that is not the at

root, be
ause it's simpler.

From our settings.js:

p r ede f inedGloba l s = S i n
 e r i t y . Obje
ts . f l a t t e n ({

d i l i g e n
 e : {

f e a tu r e : {

seo : {

domains : [{

rootUr i : ' http : // l o
 a l h o s t : 8080 '

} , {

rootUr i : ' http : // t h r e e
 r i
 k e t s .
om '

} ℄ ,

l o
 a t i o n s : [{

name : ' the−r ea l−thing ' ,

domains : [' http : // l o
 a l h o s t : 8080 ' , ' http : // t h r e e
 r i
 k e t s .
om ' ℄ ,

l o
 a t i o n s : [' / happy / ' , '/ t h i s / ' , '/ i s / ' , '/ working / ' ℄ ,

e x
 l u s i on s : [' / d i l i g e n
 e /media / ' , '/ d i l i g e n
 e / s t y l e / ' , '/ d i l i g e n
 e / s
 r i p t / ' ℄ ,

i n
 l u s i o n s : [' / d i l i g e n
 e /media/name / ' ℄ ,

f a
 t o r y : ' Exp l i
 i t '

} , {

name : ' t e s t ' ,

domains : [' http : // l o
 a l h o s t : 8 0 8 0 ' ℄ ,

f a
 t o r y : 'Fake ' ,

dependen
y : '/ about/ f e a tu r e / seo/ fake−l o
 a t i o n s / '

} ℄

}

62

http://threecrickets.com/prudence/scaling/
http://www.robotstxt.org/meta.html

}

}

})

Note the two arrays: domains and lo
ations. There is a many-to-many
onne
tion between them, su
h your

appli
ation
an support many domains, many lo
ation groups, and apply di�erent lo
ations groups to di�erent

domains. This is be
ause Pruden
e allows for multiple virtual hosting, so that ea
h appli
ation may very well be

running on di�erent domains at the same time, and may want to present itself di�erently to sear
h engines on ea
h

domain.

If you don't need to support virtual hosting, ignore the domains array and domains parameters: it will be

assumed that your lo
ations are to be applied to all domains.

You then route the SEO resour
es for the appli
ation in its routing.js:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / f e a tu r e / seo / ')

D i l i g en
 e .SEO. rout ing ()

Lo
ations

Lo
ations are
on�gured using Diligen
e's plug-in library, whi
h uses the fa
tory pattern to generate plug-ins. In

our �rst lo
ations
on�g, we used the �Expli
it� fa
tory, whi
h is built-in to the SEO feature. This lets use expli
itly

list our lo
ations as arrays within the
on�g. Obviously, this is useful only for very small sites with a known list of

URLs.

The �name� �eld is important: this be
omes exa
tly the name of the URL set as it appears in the site map. As

for ex
lusions and in
lusions: they are lumped into robots.txt.

More interesting is our se
ond lo
ations
on�g: it uses our own fa
tory, whi
h we
alled �Fake�. This fa
tory

generates lots and lots (300,000) fake lo
ations, and is useful for testing out very large site maps. (Bottom line: it

takes about 7 se
onds to generate the
omplete, gzip-
ompressed 7-page site map for that many URLs.) It's also a

good example for you to use to
reate your own lo
ation fa
tories.

The key to fa
tory su

ess is understanding Iterators: as long as you keep your iterator properly fed, you should

be able to s
ale to site maps of s
ary sizes.

One more thing to note is that ea
h lo
ations
on�g will be exe
uted simultaneously on its own tasks thread,

and this is true for all lo
ations
on�gs on all appli
ations whi
h you in
lude in your root appli
ation, as detailed

below.

The Root Appli
ation

At minimum, the settings.js of the root appli
ation should look something like this:

p r ede f inedGloba l s = S i n
 e r i t y . Obje
ts . f l a t t e n ({

d i l i g e n
 e : {

f e a tu r e : {

seo : {

domains : [{

rootUr i : ' http : // l o
 a l h o s t : 8080 ' ,

a p p l i
 a t i o n s : [{

name : 'My Appl i
at ion ' ,

internalName : 'myapp '

} ℄ ,

de laySe
onds : 100 ,

dynami
 : f a l s e ,

s t a t i
Re l a t i v ePa th : ' sitemap−l o
 a l ' ,

workRelativePath : ' sitemap−l o
 a l '

} ℄

}

}

}

})

63

http://threecrickets.com/api/javascript/?namespace=Sincerity.Iterators

You'll see that we added a few more �elds to our domain
on�g: beyond the root URI, we are also
on�guring

our robots.txt here, whi
h we will be hosting, and
on�guring the paths to use for stati
 generation. The stati
 path

is relative to the appli
ation's /web/stati
/ dire
tory, while the work path will be under your appli
ation's root

dire
tory's �work� subdire
tory. Alternatively, you
an use �stati
Path� or �workPath� to provide absolute paths.

For example, you might prefer to use �workPath: '/tmp/sitemap�'.

Note that these paths are per domain: if you hosting multiple domains via virtual hosting, ea
h site map should

go to a di�erent path. Via a simple �lter we make sure that ea
h domain gets it
orre
t site map. Thus, the outside

world doesn't a
tually see these stati
 subdire
tories: the URI spa
e for the site map all appears, publi
ly, at the

root.

The truly magi
al �eld is �appli
ations�: this is an array of appli
ation names for whi
h lo
ations will be

added to this domain. The URL sets for ea
h appli
ation for this will be merged into the main site map, and its

ex
lusions/in
lusions will be merged into robots.txt. It's up to you to make sure that URL set names from all

appli
ations don't overlap, sin
e their �les are all moved into the same stati
 dire
tory.

The root appli
ation
an also have its own �lo
ations� �eld, whi
h will also be merged in. We omitted it in this

example for simpli
ity.

To have your site map generated regularly, put something like the following in your appli
ation's
rontab (as a

single line). In this example, we're having our site map generator run every day at 4:00AM:

0 4 / d i l i g e n
 e / eva l / do
ument . exe
uteOn
e (' / d i l i g e n
 e / f e a tu r e / seo / ') ; SEO. getDomain (' http :// l o
 a l h o s t : 8 0 8 0 ') . g en e r a t eS t a t i
 () ;

You then route the SEO resour
es for the root appli
ation in its routing.js:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / f e a tu r e / seo / ')

D i l i g en
 e .SEO. rout ing (true)

Well, one tiny little
onvenien
e here: though you do need to install the routes in your root appli-

ation, you are free to host the SEO resour
es on another app (works via the magi
 of Pruden
e's <a

href="http://three
ri
kets.
om/pruden
e/manual/routing/#to
-Subsubse
tion-100">router.
aptureOther).

So, we
an
all SEO.install(true, 'myapp').

. . . And do all of the SEO stu� on myapp, even though it's not at root. The root appli
ation really doesn't have

to do anything else.

Optionally, you
an also <a href="http://three
ri
kets.
om/pruden
e/manual/stati
-web/#to
-Subse
tion-

55">register the �.gz� extension to serve the gzip MIME type. Sear
h engines would not really
are, but

it makes your URI-spa
e more
orre
t and debuggable. Do this in the appli
ation's default.js:

do
ument . exe
uteOn
e (' / d i l i g e n
 e / f e a tu r e / seo / ')

D i l i g en
 e .SEO. r e g i s t e rEx t en s i on s ()

And that's pretty mu
h it!

Shopping Cart Feature

TODO

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.ShoppingCart.

Wiki Feature

TODO

Usage

Make sure to
he
k out the API do
umentation for Diligen
e.Wiki.

64

http://threecrickets.com/prudence/manual/filtering/
http://threecrickets.com/prudence/manual/tasks/#crontab
http://threecrickets.com/api/javascript/?namespace=Diligence.ShoppingCart
http://threecrickets.com/api/javascript/?namespace=Diligence.Wiki

	Assets Service
	Usage

	Authentication Service
	Usage

	Authorization Service
	Usage

	Backup Service
	Usage

	Documents Service
	Usage
	Configuration

	Events Service
	Usage
	Configuration

	Forms Service
	Setup
	Usage

	HTML Service
	Usage

	Internationalization Service
	Setup
	Usage
	Configuration

	Cache Service
	Usage

	Linkback Service
	Usage

	Nonces Service
	Usage
	Configuration

	Notification Service
	Usage
	Configuration

	Progress Service
	Usage

	REST Service
	Setup
	Usage
	Extension

	RPC Service
	Setup
	Usage

	Search Service
	Usage

	Serials Service
	Usage

	Syndication Service
	Usage
	Links

	Gravatar Integration
	Usage

	PayPal Integration
	Usage

	Sencha Integration
	Usage

	Sencha Integration: Grids
	Setup
	Usage

	Sencha Integration: Trees
	Setup
	Usage

	Sencha Integration: Charts
	Usage

	Sencha Integration: Forms
	Setup
	Usage

	Sencha Integration: Ext Direct
	Setup
	Usage

	Blog Feature
	Usage

	Console Feature
	Usage

	Contact Us Feature
	Usage

	Discussion Feature
	Usage
	Editable Graph Structures in MongoDB

	Registration Feature
	Usage

	SEO Feature
	Usage
	The Goods
	Dynamic or Static?
	Instruction Manual

	Shopping Cart Feature
	Usage

	Wiki Feature
	Usage

