
Diligene

Version 1.0-dev12

Main text written by Tal Liron

January 2, 2014

Copyright 2011-2014 by Three Crikets LLC.

This work is liensed under a

Attribution-NonCommerial-ShareAlike 4.0 International Liense.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

Assets Servie 5

Usage . 5

Authentiation Servie 5

Usage . 5

Authorization Servie 6

Usage . 6

Bakup Servie 6

Usage . 7

Douments Servie 7

Usage . 8

Con�guration . 9

Events Servie 9

Usage . 10

Con�guration . 12

Forms Servie 12

Setup . 13

Usage . 17

HTML Servie 22

Usage . 22

Internationalization Servie 22

Setup . 23

Usage . 24

Con�guration . 24

Cahe Servie 25

Usage . 25

Linkbak Servie 26

Usage . 26

Nones Servie 27

Usage . 28

Con�guration . 28

Noti�ation Servie 28

Usage . 29

Con�guration . 29

Progress Servie 30

Usage . 30

REST Servie 32

Setup . 33

Usage . 38

Extension . 41

RPC Servie 41

Setup . 42

Usage . 44

2

Searh Servie 45

Usage . 45

Serials Servie 45

Usage . 46

Syndiation Servie 46

Usage . 46

Links . 46

Gravatar Integration 46

Usage . 46

PayPal Integration 46

Usage . 46

Senha Integration 46

Usage . 47

Senha Integration: Grids 47

Setup . 48

Usage . 48

Senha Integration: Trees 50

Setup . 50

Usage . 52

Senha Integration: Charts 54

Usage . 54

Senha Integration: Forms 54

Setup . 54

Usage . 54

Senha Integration: Ext Diret 57

Setup . 57

Usage . 58

Blog Feature 59

Usage . 59

Console Feature 60

Usage . 60

Contat Us Feature 60

Usage . 60

Disussion Feature 60

Usage . 60

Editable Graph Strutures in MongoDB . 60

Registration Feature 61

Usage . 61

SEO Feature 61

Usage . 61

The Goods . 61

Dynami or Stati? . 62

Instrution Manual . 62

3

Shopping Cart Feature 64

Usage . 64

Wiki Feature 64

Usage . 64

4

Assets Servie

An �asset� is a ommon term for statially served �les, suh as images. Beause assets use a lot of bandwidth to

download, they are often ahed on web browser lients (on�gured via a �aheControl� route type in routing.js).

This servie generates asset URLs, ommonly used in dynamially generated HTML. The URLs are based on a

user-de�ned template, although the default should su�e for most use ases.

The important feature added by this servie is the ability to use the asset's base64-enoded ahed ontent

digest (usually a SHA-1) in the asset's generated URL. By spei�ally using this digest as a query param to the

URL, two things are aomplished: 1) the URL will still be routed to the resoures normally, beause query params

are not use by the �stati� route type, and 2) beause the URL is di�erent, web browsers will use a di�erent ahe

for the asset per lient ontent.

The end result is that you ould ahe assets in lients for as long as you want (using �farFuture� for �aheCon-

trol�) while maintaining the ability to e�etively bypass the ahe for an asset whenever its ontent hanges.

The asset digests are stored in a �digests.onf� �le in the appliation's root subdiretory. It is a JVM properties

�le mathing asset names to their digests. You an generate this �le automatially using the "diligene:digests"

Sinerity ommand.

Usage

Make sure to hek out the API doumentation for Diligene.Assets.

Authentiation Servie

This all-important servie manages a few systems, whih together allow your site to be �logged into� by individual

users.

Usage

Make sure to hek out the API doumentation for Diligene.Authentiation.

Users

Users are maintained in a simple MongoDB olletion. You an easily attah settings to any user doument, whih

an have any struture and depth you need.

Passwords are hashed many times and stored with a random salt. This good pratie makes sure that even if a

haker were to steal your database and hak into a few aounts, they would not be able to use the results of their

work to rak the other passwords.

Users are onsidered �entities� by the authorization servie (page 6), suh that you an attah permissions to

user douments. Users an inherit permissions from groups and from other users.

Though you an maintain the user douments yourself, you an add the registration feature (page 61) to allow

individuals to reate their own users.

Sessions

When users do log in, they get a ookie with a session ID, whih mathes a doument in the sessions olletion.

Thus, every onversation is assoiated with a session. You an store anything you want in the session doument.

The authorization servie (page 6) an hek any operation against the onversation's session to make sure it's

permitted.

The servie omes with a task to make sure to remove sessions that have not been used for a while. It's a good

seurity feature! (People tend to forget to log out, whih an be espeially dangerous in publi plaes.)

Cahing Per User

This very powerful feature uses a ahe key patten handler to injet the urrently logged in user ID into the ahe

key. This lets you ahe any /web/dynami/ or /web/fragment/ resoure per user, whih an do wonders towards

helping your site sale. Of ourse, it does not make sense to ahe every dynami part of a page, but if you an

indetify those fragments that look di�erent only for di�erent users then you've ahieved a lot.

5

http://threecrickets.com/api/javascript/?namespace=Diligence.Assets
http://threecrickets.com/api/javascript/?namespace=Diligence.Authentication

Authentiation Forms

The authentiation servie omes with a bunh of /web/fragments/ that you an easily drop in to any page. They

handle things like logging in, logging out, and showing the urrently logged-in user.

Providers

Using Diligene's plug-ins library, the authentiation servie adds transparent support for 3rd-party authentiation

providers. Currently supported providers are Faebook, Windows Live, Twitter and OpenID (tested with Google,

Yahoo, Myspae, LiveJournal).

Users oming from outside are real users: the �rst time they log in, a user doument is reated for them in the

olletion, and it an join in with settings, permissions, et. Depending on how your appliation works, you an

treat these users as any other user, or use the authorization servie to treat them as �guests� with the ability to do

only ertain tasks. All 3rd-party users are automatially assoiated with an authorization group named after their

provider. So, you an grant speial permissions (or deny permissions) to �faebook.�

This useful feature allows your appliation to be espeially weloming. Studies have shown that typial users

think twie when a site requires registration (page 61). People either don't want to invest the e�ort in registering,

or are anxious about yet another opy of their personal data being stored in somebody's database.

Authorization Servie

When used with the authentiation servie (page 5), this servie lets you seure your site by allowing only authorized

users to aess ertain resoures or perform ertain operations.

Usage

Make sure to hek out the API doumentation for Diligene.Authorization.

Entities and Inheritane

Permissions are assoiated with �entities,� whih ould be either individual user, from the authorization servie

(page 6), or groups, whih are here stores in a simple MongoDB olletion.

Eah entity an inherit permissions from any number of other entities, in order. The ommon use ase is for

a user to �belong� to a few groups, and inherit their permissions. This lets you entrally manage permissions for

large groups of users, and easily hange a user's permission pro�le by hanging their groups. Entities an inherit

from other entities, and so on.

Permissions will be overriden by the inheritor: for example, if you spei�ally grant a user permission to edit a

ertain page, they will have this permission even if the group they inherit from spei�ally forbids it. The order of

inheritane also allows for overriding.

Casading Permissions

The ommon pratie is to name permissions using a hierarhial dot notation, with eah level of depth orresponding

to moving into a spei� setion, resoure or operation in your appliation. In some ases, it may make sense to

treat a permission as if it overs all sub-permissions in a hierarhy. Here we all this �asading permissions.�

Bakup Servie

This servie lets you do a live export of your MongoDB databases and olletions to JSON, optionally gzipping the

output to save spae. You an set up your appliation's �rontab� to have the bakup run regularly.

Bakups are very fast: large databases an be fully exported in durations measured in seonds or minutes.

You might wonder what advantages this servie has over MongoDB's mongodump or mongoexport tools. First,

from our experiene, the admin tools that ome with MongoDB are overly simplisti and unreliable. Otherwise,

Diligene's bakup servie o�ers the following advantages:

• Thoughput: Beause we're using the Java MongoDB driver underneath, with its support for onnetion

pooling, we an ahieve muh higher throughput than the ommand line tools, whih use a single onnetion

and no onurreny. The default is to use 5 threads (and thus 5 onnetions at most) at one.

6

http://threecrickets.com/api/javascript/?namespace=Diligence.Authorizaion
http://www.mongodb.org/display/DOCS/Import+Export+Tools

• True JSON: The mongoexport tool does not export a real JSON array, instead it exports eah doument as

a JSON dit, separating eah doument with a newline. Diligene exports a standard JSON array, readable

from any standard JSON parser.

• Consisteny: Works with the same MongoDB onnetion as your appliation, guaranteeing that you're

baking up exatly the same data your appliation sees. This is espeially important in a sharded or replia

set deployment.

• Operations: You don't have to reate system sripts to bakup your DB. Instead, you an stay in JavaSript

and Diligene. You do not even need MongoDB or its ommand line tools installed.

• Iterators: The bakup servie uses Iterators, so you an transform your data in various ways while baking

up, or even inlude non-MongoDB data.

Usage

Make sure to hek out the API doumentation for Diligene.Bakup.

To export the whole database:

doument . exeuteOne (' / d i l i g e n e / s e r v i e /bakup / ')

D i l i g en e . Bakup . exportMongoDb ({ d i r e t o r y : '/tmp/ d i l i g en e−bakup / '})

The API further lets you selet the MongoDB database and olletions you wish to export, otherwise by default

it uses the urrent default database and goes through all olletions. You an also set �gzip� to true in order to gzip

the resulting �les.

To shedule the bakup to run every day at 6am, add this to your �rontab�:

6 <% doument . exeuteOne (' / d i l i g e n e / s e r v i e /bakup / ') ; D i l i g en e . Bakup . exportMongoDb ({ d i r e t o r y : '/tmp/ d i l i g en e bakup / ' , gz ip : t rue }) ; %>

To import a olletion:

D i l i g en e . Bakup . importMongoDbColletion({ f i l e : '/tmp/ d i l i g en e−bakup/ use r s . j son ' })

The olletion name will be parsed from the �lename. If the �lename ends with �.gz�, it will be assumed to be

gzipped and unzipped aordingly. (For example �/tmp/diligene-bakup/users.json.gz�.) By default the imported

douments will be merged into the olletion: set the �drop� key true if you want the olletion to be dropped before

importing.

Douments Servie

This servie lets you store versioned HTML douments in MongoDB using your hoie among several markup

languages: Markdown, Textile, Con�uene, MediaWiki, TWiki and Tra. It's thus an essential building blok for

CMS features, suh as wikis and blogs.

Every �doument� in this servie is indeed a single MongoDB doument, but internally it omposed of versioned

�drafts�. The last draft (of the highest revision number) represents the urrent state of the doument. For e�ieny,

the last draft in its own key (�ativeDraft�), allowing you to retrieve it from MongoDB without retrieving the whole

history of drafts, whih is an array. Additionally, eah draft is stored both as markup soure ode and as rendered

result, so that rendering only happens one.

MongoDB atomi operations guarantee that even if more than one person is revising a doument at the same,

no draft will be lost. Only last update to ome in, though, will get to set the �ativeDraft� key.

Douments are assoiated with a �site�, of whih there must be at least one. The Doument Servie an handle

many �sites� at one, eah with its own set of douments. The versioning system is designed to be global per eah

site, meaning that all drafts assoiated with a site will have serial and unique revision numbers per that site. This

allows time travel: you that you an view the entire state of a site at a given time by fething only drafts smaller

than a ertain revision. (This also implies that every draft as its own unique revision number, but there's no easy

way in MongoDB to traverse drafts in this order.)

Note the markup rendering is handled by the HTML servie (page 22), whih you an hoose to use diretly if

you do not need the versioning system.

7

http://threecrickets.com/api/javascript/?namespace=Sincerity.Iterators
http://threecrickets.com/api/javascript/?namespace=Diligence.Backup
http://daringfireball.net/projects/markdown/
http://redcloth.org/textile
http://confluence.atlassian.com/display/DOC/Confluence+Wiki+Markup
http://www.mediawiki.org/wiki/Help:Formatting
http://twiki.org/cgi-bin/view/TWiki/TextFormattingRules
http://trac.edgewall.org/wiki/WikiFormatting

Usage

Make sure to hek out the API doumentation for Diligene.Douments.

The API doesn't atually enourage you to aess �douments� diretly. Instead, you aess �drafts� via the

doument ID and its revision, or simply request the latest draft. As stated above, the API is designed to be very

e�ient in doing this: whether it's the latest draft you need or a spei� older revision, it's a very diret MongoDB

feth.

To feth the latest draft by the doument ID and print out its rendered HTML:

<html>

<%

doument . exeuteOne (' / d i l i g e n e / s e r v i e /douments / ')

var d r a f t = D i l i g en e . Douments . getDra f t (' 4 f4457ae4b0306611072f ')

%>

<body>

<%= dra f t . render () %>

</body>

</html>

E�ieny note: if that partiular draft has already been rendered one, the render() all won't do anything

at all, the rendered version having already been fethed. Other options for fething drafts: you an also all

�getLatestDraft� with a maximum revision number, or just all �getDraft� with a spei� revision number you want.

To revise a draft, meaning that you will add a new revision to the doument:

d r a f t . r e v i s e (' t h i s i s the markup soure ' , ' t e x t i l e ')

Note that after revision, the draft objet is updated with the new information. So you an all

�draft.getRevision()� to see the new revision number if you need it. Again, remember that this partiular revi-

sion number will be unique for the entire �site�: no other doument or draft will have it.

To reate a new doument:

var s i t e = D i l i g en e . Douments . g e tS i t e (' 4 d5595e3f7f2d14d2ab9630f ')

var d r a f t = s i t e . reateDoument (' a new doument ! ' , ' t e x t i l e ')

Note that �reateDoument� returns a draft objet, whih will be the �rst and only draft of the doument.

As you you an see, the usage is simple and e�ient, but the implementation does have some sophistiation.

It's reommended that you look at the MongoDB olletions for �douments� and �sites� to get a sense of how they

work together.

Integration

To integrate the Douments Servie into your appliation, use the doument ID by alled �getDoumentId()� on

a draft objet, and then store that ID in your own struture. For example, if you're writing a wiki, you might

want to assoiate a wiki page with that doument ID. Similarly for a blog entry. And, of ourse, this is shema-

free MongoDB: feel free to add whatever data you need to your �doument� douments. You an also inherit the

Doument Servie lasses and add the neessary funtionality.

An important feature of wiki markup languages is support for speial proessing of wiki page referenes, turning

them into HTML hyperlinks and possibly reating the page in the wiki. The Douments Servie lets you hook in

your ode to support ustom delimiters, so it an output proper links. Example:

var rendered = dra f t . render ({

odes : {

s t a r t : ' {{ ' ,

end : ' }} ' ,

fn : f un t i on (t ex t) {

return '<a h r e f="/ l i n k /{0}">{0} '. a s t (t ex t)

}

}

})

You ould then insert these ustom odes in your markup:

8

http://threecrickets.com/api/javascript/?namespace=Diligence.Documents

This i s a l i n k to {{mywikitopi }} .

The �odes� key an be an array of several suh ode proessors, and the funtion an output anything at all,

not just links, so you an use it to extend the markup language. In fat, the funtion an atually do something

more substantial than output: you ould, for example, save a ross referene to the remote wiki page, or reate an

empty template for a non-existing page.

Note that ustom ode proessing happens only during the �rst render: in subsequent alls to �render()� on this

draft the �odes� argument will be ignored.

Con�guration

If you like, you an avoid speifying the markup language in all the API alls. The default language would then be

�textile�, but you an hange it in your appliation's �settings.js� by adding something like this to your app.globals:

app . g l oba l s = {

. . .

d i l i g e n e : {

s e r v i e : {

douments : {

defaultLanguage : 'markdown '

}

}

}

}

Events Servie

Almost every appliation framework provides some generi way to listen to and �re one-way messages alled �events.�

By deoupling event produer ode from event onsumer ode, you an allow for a looser, more dynami ode

arhiteture.

Some frameworks go a step beyond simple ode deoupling, and treat produers and onsumers as separate

omponents, in whih the produer annot make any assumptions on the onsumer's thread behavior. Consider two

extremes: a onsumer might respond to events immediately, in thread, possibly tying up the produer's thread in

the proess. Or, it might allow for events to be queued up, and poll oasionally to handle them. In the latter highly

abstrated situations, events are alled �messages,� and implementations often involve sophistiated middleware to

queue messages, persist them, reate interdependenies, and make sure they travel from soure to destination via

repeated attempts, bak-o� algorithms, noti�ations to system administrators in ase of failure, et.

One size does not �t all. With Diligene, we wanted to keep events lightweight: we assume that your onsumer

and produer omponents are all running inside a Prudene ontainer: either they are expliit or impliit resoures

running in web request threads, or they are asynhronous tasks. This allows us to optimize for this situation without

having to rely on abstrating middleware. Still, more sophistiated, dediated messaging middleware is out there

and available if you need it. We suggest you try RabbitMQ.

That said, the ombination of Prudene Hazelast lusters, MongoDB, and JavaSript's inherent dynamism

within the Prudene ontainer allows for a truly salable event framework. If what you need is asynhrony and

salable distribution, rather than generi deoupling, then Diligene events might be far more useful and simpler

than deploying omplex middleware.

The point of an event-driven arhiteture is that you're relinquishing some ontrol of your ode-�ow.

It's thus hard to know, simply by looking at the ode, whih parts of it will be triggered when an event

is �red. You also need to know what exatly is subsribing and where that listener ode is. Deoupling

ode is a great way to introdue some really di�ult bugs into your odebase, and vastly redue its

debuggability. We present this servie for your use, but enourage you to think of the osts vs. the

bene�ts in terms of ode larity. Perhaps there is a more straightforward way to solve your problem?

If all you need as asynhroniity, then you an also use the Prudene.Task API more diretly, allowing

you to all spei� listening ode, rather than any generi subsriber. The bottom line is that as great

as this servie is, we reommend using it with disrimination.

9

http://www.rabbitmq.com/
http://threecrickets.com/api/javascript/?namespace=Prudence.Task

Usage

Make sure to hek out the API doumentation for Diligene.Events.

In-Thread Events

First, the basis. Here's our �/libraries/politeness/aknowledgements.js�:

D i l i g en e . Events . s ub s r i b e ({

name : ' payments . s u e s s f u l ' ,

fn : f un t i on (name , ontext) {

l o gg e r . i n f o (' User {0} has paid us {1} ! ' , ontext . username , ontext . amount)

Aknowledgements . sendThankYou(ontext . username)

}

})

Then, to �re the event, somewhere in our payments work�ow:

doument . exeuteOne (' / p o l i t e n e s s /aknowledgements / ')

D i l i g en e . Events . f i r e ({

name : ' payments . s u e s s f u l ' ,

ontext : {

username : user . name ,

id : user . id ,

amount : payment . amount

}

})

For this to work, you have to make sure the �ring ode has already run the ode that hooks up the listeners.

Often, a simple doument.exeute will do the trik, as in this example.

Asynhronous Events

You an easily make the listeners run outside your thread, in fat anywhere in your Prudene luster. This, of

ourse, is ruial for salability, beause you don't want the listeners holding your web request thread.

For this to work, we need to add something small to our subsription:

D i l i g en e . Events . s ub s r i b e ({

name : ' payments . s u e s s f u l ' ,

dependen ies : '/ p o l i t e n e s s /aknowledgements / ' ,

fn : f un t i on (name , ontext) {

l o gg e r . i n f o (' User {0} has paid us {1} ! ' , ontext . username , ontext . amount)

Aknowledgements . sendThankYou(ontext . username)

}

})

Note that we had to add a �dependenies� key to the listener, to allow it to be alled in di�erent ontexts. These

dependenies are doument.exeuteOne'd to make sure the alling thread has aess to all the ode it needs.

Firing it:

doument . exeuteOne (' / p o l i t e n e s s /aknowledgements / ')

D i l i g en e . Events . f i r e ({

name : ' payments . s u e s s f u l ' ,

asyn : true ,

ontext : {

username : user . name ,

id : user . id ,

amount : payment . amount

}

})

10

http://threecrickets.com/api/javascript/?namespace=Diligence.Events

All we did was add �asyn: true�, and. . . that's pretty muh it. Every listener will run in its own thread within

the global pool. You an add a �distributed: true� �ag to ause listeners to be exeuted anywhere in the luster,

and there's where things get really powerful: you an properly sale out your event handling in the luster, with

nothing more than a simple �ag.

How does this magi work? It's JavaSript magi: we're evaluating the serialized listener soure ode. The

ode that �res the event is alled as a Prudene task. The task makes sure to run the dependenies and evaluate

the JavaSript you stored. Voila. (Serialization and eval will only our on asyn events: otherwise, it's a regular

funtion all.)

Conerned about JavaSript eval performane? Generally, it's very fast, and surely whatever overhead is required

to parse the JavaSript grammar would be less than any network I/O that a distributed event would involve. If

you're really worried about performane, make sure to store as little ode as possible in the listener funtion and

quikly delegate to ompiled ode. For example, your listener an simply all a funtion from one of the dependeny

libraries, whih are already ompiled and at their most e�ient.

Stored Listeners

So far so good, but both examples above require you to exeute the ode that subsribes the listeners before �ring

the event. Stored listeners remove this requirement by saving the event and its listeners in one of several storage

implementations.

For example, let's store our listeners in appliation.distributedGlobals, so that we an �re the event anywhere

in the Prudene luster:

var g loba lEvents = new Di l i g en e . Events . Globa l sStore (app l i a t i on . d i s t r ibutedGloba l s , ' myevents . ')

D i l i g en e . Events . s ub s r i b e ({

name : ' payments . s u e s s f u l ' ,

s t o r e s : g lobalEvents ,

id : ' sendThankYou ' ,

dependen ies : '/ p o l i t e n e s s /aknowledgements / ' ,

fn : f un t i on (name , ontext) {

l o gg e r . i n f o (' User {0} has paid us {1} ! ' , ontext . username , ontext . amount)

Aknowledgements . sendThankYou(ontext . username)

}

})

We an also use appliation.globals or appliation.sharedGlobals.

One small issue to note when using stored listeners is that storage must support onurreny. One impliation of

this is that you need to make sure that they are not registered more than one, say by multiple nodes in the luster,

otherwise your listener ode would be alled multiple times. And that's what the listener �id� �eld is for. (In fat,

the �id� �eld an also be used for in-thread listeners.) It also might make sense to set up all your stored listeners

in your �/startup/� task, but it's not a requirement: you an install listeners whenever neessary and relevant.

Beause it's stored, �ring the event does not require us to exeute the listener ode �rst in our thread. We an

remain blissfully unaware of who or what is subsribed to our event:

D i l i g en e . Events . f i r e ({

name : ' payments . s u e s s f u l ' ,

s t o r e s : g lobalEvents ,

asyn : true ,

d i s t r i b u t e d : true ,

ontext : {

username : user . name ,

id : user . id ,

amount : payment . amount

}

})

The �stores� param an also be an array, so you an �re the event on listeners from various stores. The in-thread

store is in �Diligene.Events.defaultStores�, so you an onat that to your ustom store if you want to �re the event

aross all stores. Or, set �Diligene.Events.defaultStore� to your own value.

11

http://threecrickets.com/prudence/manual/tasks/

Persistent Listeners

In the above example, the listeners would have to be re-subsribed when the appliation restarts, beause it annot

guaranteed that appliation.distributedGlobals would keep its value. (Well, you an on�gure Hazelast to persist

the distributedGlobals map. . .)

Let's store our listeners in MongoDB, instead (the default is to use the �events� MongoDB olletion):

D i l i g en e . Events . s ub s r i b e ({

name : ' payments . s u e s s f u l ' ,

s t o r e s : new D i l i g en e . Events . MongoDbColletionStore () ,

id : ' sendThankYou ' ,

dependen ies : '/ p o l i t e n e s s /aknowledgements / ' ,

fn : f un t i on (name , ontext) {

l o gg e r . i n f o (' User {0} has paid us {1} ! ' , ontext . username , ontext . amount)

Aknowledgements . sendThankYou(ontext . username)

}

})

Everything is otherwise the same. Neat!

You an also store events inside a spei�, arbitrary MongoDB doument, using

Diligene.Events.MongoDbDoumentStore. This is a great way to keep events and their listeners (and the

namespae for events) loalized to a spei� objet without adding external mehanisms and storage.

Finally, you an reate your own ustom store lass to store events anywhere else.

Con�guration

You don't have to on�gure the Events Servie, but it is possible to set a few defaults. In your appliation's

�settings.js� add something like this to your app.globals:

app . g l oba l s = {

. . .

d i l i g e n e : {

s e r v i e : {

events : {

de fau l tAsyn : true ,

d e f au l tD i s t r i bu t ed : true ,

d e f au l t S t o r e s : [f un t i on () {

doument . exeuteOne (' / d i l i g e n e / s e r v i e / events / ')

re turn new D i l i g en e . Events . MongoDbColletionStore ()

} ℄

}

}

}

}

Note the use of funtion(): this is required in order to allow the Events Servie to lazily reate the servie

implementations on demand during runtime.

Forms Servie

Forms are an important feature for any GUI appliation. As for web appliations, forms are supported in HTML,

but many web appliations also use JavaSript to send forms to the server in the bakground (�AJAX�). Diligene

goes a long way towards making it easier for you to use both models, eah with its own omplexities and subtleties,

through a uni�ed API. Allowing for both AJAX and HTML lient forms with the same server ode makes it easy

to support �legay� lients that an't use AJAX.

Diligene expliitly supports Ext JS Forms, and reommends Ext JS as a lient-side framework. See the setion

on Senha Integration for full details.

12

http://threecrickets.com/api/javascript/?namespace=Diligence.Events.MongoDbDocumentStore

Client-side Validation vs. Server-side Validation

Like all good form frameworks, Diligene's Form Servie makes it espeially makes it easy to implement form

validation, both on the server and the lient, using an extensible system of �eld types. Due to the fat that

Diligene is a server-side JavaSript framework, you an atually share the exat same validation ode on both the

lient and the server! This marvelous advantage makes using forms in Diligene less umbersome as ompared to

other frameworks.

What are the advantages of eah kind of validation? Why you would want both?

• Server-side validation: You'll at least want this. It protets against user error, and an return friendly error

odes so that the user will know how to orret the form. It's also important for seurity, to make sure that

potentially damaging data will never enter the other parts of your appliation. For example, you an protet

yourself from attaks whih try to over�ow your database with too muh data, or attempts at SQL injetion.

(MongoDB injetion attaks may be possible, too!) Note also that Diligene Forms will automatially ath

server-side exeptions, invalidating the form and returning the error to the user, but obviously relying on

exeptions is not seure enough.

• Client-side validation: Adding this to server-side validation will enhane the user experiene by providing

fast, instant feedbak, thus avoiding an extra round-trip to the server to validate the form data. It will also

save you some bandwidth and help you sale. There are two kinds of lient-side validation supported by

Diligene, whih when used together will o�er the best user experiene:

� Validation: The �eld's whole value will be tested before allowing the form to be submitted.

� Masking: When entering textual data, this loks the user's text �eld to only aept allowed haraters.

For example, if an integer is required, only the haraters �0� to �9� and �-� (for negative integers) will

be allowed.

Setup

Make sure to hek out the API doumentation for Diligene.Forms.

Every form is an instane of �Diligene.Forms.Form� or its sublasses. This lass inherits �Dili-

gene.REST.Resoure,� and thus an immediately be hooked to your URI-spae. Indeed, muh of the Forms

Servie power omes from suh a setup, so we'll go over it here. However, note that is also possible to use the form

instane without hooking it up to a URI, as we'll show in �Usage,� below.

First, let's on�gure the URI-spae in your appliation's �routing.js�. Add the following to app.routes and

app.dispathers:

app . route s = {

. . .

'/ mult ip ly / ' : ' �multiply '

}

app . d i s pa t h e r s = {

. . .

j a v a s r i p t : '/manual−r e s ou r e s / '

}

We an now on�gure our resoures in �/libraries/manual-resoures.js�:

doument . exeuteOne (' / d i l i g e n e / s e r v i e / forms / ')

var multiplyForm = {

f i e l d s : {

f i r s t : {

type : ' number ' ,

l a b e l : 'A number ' ,

r equ i r ed : t rue

} ,

seond : {

13

http://threecrickets.com/api/javascript/?namespace=Diligence.Forms

type : ' i n t ege r ' ,

l a b e l : 'An in t ege r ' ,

r equ i r ed : t rue

}

} ,

p roe s s : f un t i on (r e s u l t s) {

i f (r e s u l t s . s u e s s) {

r e s u l t s . va lue s . r e s u l t = Number(r e s u l t s . va lue s . f i r s t) Number(r e s u l t s . va lue s . seond)

r e s u l t s . msg = '{ f i r s t } t imes { seond } equa l s { r e s u l t } ' . a s t (r e s u l t s . va lue s)

}

e l s e {

r e s u l t s . msg = ' Inva l i d ! '

}

}

}

r e s ou r e s = {

. . .

mult ip ly : new D i l i g en e . Forms . Form(multiplyForm)

}

Let's look more losely at this setup below.

Fields and Validation

Eah �eld has at least a name (the key in the dit) and a type (defaults to �string�). If that's all the information

you provide, then no validation will our: any value, inluding an empty value, will be aepted.

• required: The �eld annot be empty, neither a null value nor an empty string will be aepted. Note that

the �required� hek happens before the �validator� funtion is alled. [TODO error key℄

• validator: A validating funtion, meant for both lient- and server-side validation. It must return true to

signify that the value valid. Any other return value will signify invalidity. (See �validation funtions,� below.)

• serverValidator: As �validator�, but intended only for server-side validation.

• lientValidator: As �validator�, but intended only for lient-side validation.

• mask: A regular expression used for masking. This ould be JavaSript literal regular expression, a RegExp

objet, or a string.

• serverValidation: Set to false to override the default for the form.

• lientValidation: Set to false to override the default for the form.

• textKeys: An array of text pak keys used by validator funtion. See �Text and Internationalization,� below.

• type: Instead of providing �validator�, �lientValidator�, �serverValidator�, �mask�, �serverValidation�, �lient-

Validation� and �textKeys� for every single �eld, you an speify a �type� from whih these keys will be

inherited. Defaults to �string�. Note that even if you speify �type�, you an override the inherited keys in the

�eld de�nition.

• value: This is a default value assigned to the �eld when the form is initialized.

Validator Funtions

Let's look at suh a funtion in the ontext of a �eld de�nition:

f i r s t : {

r equ i r ed : t rue

va l i d a t o r : f un t i on (value , f i e l d , onve r sa t i on) {

return va lue % 1 == 0 ? true : 'Must be an in t ege r '

14

}

}

The return value, as stated before must be true to signify a valid value. Otherwise, the value will be onsidered

invalid and the return value will be used as the error message.

The arguments are as follows:

• value: The value to be validated, most likely a string.

• �eld: The �eld de�nition. This is useful if you are using the same funtion for multiple �elds, and need to

validate di�erently per �eld. Note that the �eld de�nition is framework-dependent. For example, if you are

on the server, it will look like the examples above, but if you're on an Ext JS lient, then it will use Ext

JS's de�nition. Beause we're not using ��eld� in this example, we supplied just one �validator� funtion for

both the lient and the server. However, if you do need to aess ��eld�, it may be better to have separate

�serverValidator� and �lientValidator� funtions.

• onversation: The Prudene onversation. Only available on the server.

The funtion is alled with an impliit �this� objet, whih obviously refers to di�erent objets on the server and

the lient, but you an expet these �elds:

• form: The form instane. Only available on the server.

• textPak: The urrently used text pak. Always available on the server, and available on some lients, suh

as Ext JS if you use Diligene's Senha Integration. See �Text and Internationalization,� below, for more

information.

Through aessing the ��eld� and �onversation� arguments as well as �this.form�, you an do some very sophis-

tiated server-side validation. For example, you an query MongoDB and hek against data, hek for seurity

authorization, et. And, of ourse, you an use similar sophistiation for lient-side frameworks aording to the

features they provide.

(At this point, you might be wondering how exatly lient-side validator funtions get to be alled on the lient,

sine we are de�ning them on the server. We'll talk about that in �Usage,� below, but the solution is simple: we

send the soure ode diretly as text!)

Types

The Forms Servie omes with a few basi types to get you started, all de�ned under �Diligene.Forms.Types�:

• string: All values are valid. This is the default type.

• number: Valid if the value an be onverted into a JavaSript number. Masked for digits, �-� and �.�.

• integer: Valid if the value an be onverted into a JavaSript integer. Masked for digits and �-�.

• email: Valid if the value is a standard email address. Does no masking.

• reaptha: See reCAPTCHA.

You an also provide your own types:

var servieForm = {

types : {

bool : {

va l i d a t o r : f un t i on (value , f i e l d , onve r sa t i on) {

va lue = Str ing (va lue) . toLowerCase ()

return (va lue == ' true ') | | (va lue == ' f a l s e ')

}

}

}

f i e l d s : {

enabled : {

type : ' bool ' ,

15

l a b e l : 'Whether the s e r v i e i s enabled '

}

. . .

}

. . .

}

Text and Internationalization

If you don't need internationalization, then just use the �label� key in the �eld de�nition to set up the text diretly.

If unspei�ed, it will default to the �eld name.

Otherwise, read about the Diligene Internationalization Servie to understand how to set it up. We will use

the �labelKey� key instead of �label�, and also set up the list of other keys we might need using the �textKeys� key:

f i r s t : {

labelKey : 'myapp . myform . f i e l d . f i r s t ' ,

textKeys : ['myapp . myform . va l i d a t i on . i n t e g e r . not ' ℄ ,

r equ i r ed : t rue

va l i d a t o r : f un t i on (value , f i e l d , onve r sa t i on) {

return va lue % 1 == 0 ? true : t h i s . textPak . get ('myapp . myform . va l i d a t i on . i n t e g e r . not ')

}

}

The above ode will work on both the lient and the server, beause �textKeys� ensures that all those text values

are sent to the lient.

Proessing

Let's look at our proessing funtion again:

p roe s s : f un t i on (r e s u l t s) {

i f (r e s u l t s . s u e s s) {

r e s u l t s . va lue s . r e s u l t = Number(r e s u l t s . va lue s . f i r s t) Number(r e s u l t s . va lue s . seond)

r e s u l t s . msg = '{ f i r s t } t imes { seond } equa l s { r e s u l t } ' . a s t (r e s u l t s . va lue s)

}

e l s e {

r e s u l t s . msg = ' Inva l i d ! '

}

}

The funtion will be alled after validation happens, with �results� being a pre-de�ned dit, ready for you to

modify, with the following keys:

• results.suess: Will be true if the form data is valid. You an hange it to false during proessing in order

to signify an error to the user. Exeptions thrown in this funtion will also ause �results.suess� to be false.

• results.values: A dit of the form values sent from the user. The value keys orrespond to the �eld keys.

Note that �results.values� will be deleted if �results.suess� is true. The reason is that you should only need

the old values if the user needs to orret the form in ase of an error. If the form was suessful, the form

values should be reset. (In the example above we are setting �results.values.result� only for the purpose of the

string template ast.)

• results.msg: A message to be displayed to the user.

• results.errors: A dit of error messages per �eld, as set by the �eld validator funtions. The error keys

orrespond to the �eld keys. This dit will not exist if �results.suess� is true when this funtion is alled.

As stated, you an modify any of these results as you need, inluding settings �results.errors� to extra per-�eld error

messages, beyond what was performed in validation.

Indeed, you an use the proessing funtion to do extra validation, whih might have to take into onsideration

the form as a whole, rather than individual �elds. For example, what if a start-date �eld in the form is set to be

16

after an end-date �eld? You an �nd that out here and set �results.suess� to false, with �results.errors.endDate�

to a suitable error message.

The return value of this funtion is ignored.

Usage

If you've set up the resoure as instruted above, you should be able to aess it at the spei�ed URI. By default,

it will only support the HTTP POST operation, for whih it expets an entity in the �appliation/x-www-form-

urlenoded� media type, as is used by HTML forms.

Later on, we'll show you below how the Forms Servie an help you render an HTML form, omplete with

validation error messages and internationalization support.

HTML Forms

For now, let's just start with a straightforward, literal HTML example:

<html>

<body>

<form at i on="<%= onver sa t i on . pathToBase + '/ mult ip ly /?mode=red i r e t ' %>" method="post">

<p>F i r s t va lue : <input name=" f i r s t " /></p>

<p>Seond va lue : <input name="seond " /></p>

<p><input type="submit " va lue="Mult iply ! " /></p>

</form>

</body>

</html>

You'll notie that added a �mode� query parameter to the ation URI. This lets us selet one of the following

modes of behavior supported by the resoure:

• json: This is the mode you'll want to use for AJAX, as it returns the form results in JSON format. JSON

mode additionally supports the �human=true� query parameter to return the JSON in multiline, indented

format. Note that this is the default mode.

• rediret: After proessing, the resoure will rediret the lient to a new URI. The default is the sending URI,

but you an set up spei� URIs for suess and failure.

• apture: As an alternative to a rediret, you an perform a Prudene �apture� of another internal URI. The

user will see the URI of the form resoure itself, but the ontent will ome from elsewhere. Note that beause

apturing happens in the same onversation, without a round trip to the lient, you an use all the data used

during proessing. If you do a rediret, the lient would be sending a new request and that data would be

gone.

When reating your resoure instane, you an hange the default to be something other than �json� by setting the

�mode� key. JSON was hosen as a default beause it's easiest to test and produes the least amount of side-e�ets

due to unintentional aess to the resoure.

Testing Your Form Resoure with URL

URL is an HTTP ommand line tool based on the URL library, available for a great many Unix-like operating

systems as well as Windows. It's espeially useful for testing RESTful APIs. Here's a quik tutorial to get you

started with using URL with the Forms Servie.

Try this ommand to send a POST to your form:

u r l −−data−ur lenode f i r s t =5 −−data−ur lenode seond=6 "http :// l o a l h o s t :8080/myapp/mult ip ly /?human=true "

Note that using the �data-urlenode� swith will automatially set the method to POST and the entity type to

�appliation/x-www-form-urlenoded.�

Beause the resoure's default mode is JSON, you should get this result:

17

http://curl.haxx.se/

{

" su e s s " : true ,

"msg " : "5 t imes 6 equa l s 30"

}

If you're using AJAX to POST to the resoure, then you'll have to parse these JSON results aordingly. See

�Proessing� above for the exat format of the results.

Also note that this format is immediately usable by Ext JS forms! See Diligene's Ext JS Integration for more

details.

You an also use URL to test rediret mode:

u r l −v −e " http ://my−r e f e r r i n g−u r l " −−data−ur lenode f i r s t =5 −−data−ur lenode seond=6 "http :// l o a l h o s t :8080/myapp/mult ip ly /?mode=r e d i r e t "

You should see the redireted URL in the �Loation� header, as well as an HTTP status of 303.

Rediret Mode

Rediret mode will by default rediret the lient to the referring URI, using HTTP status 303 (�See Other�).

But, you an expliitly set the rediretion URI to something spei� in �/libraries/resoures.js�:

var multiplyForm = {

. . .

r e d i r e tU r i : '/ mult ip ly / r e s u l t s / ' ,

mode : ' r e d i r e t ' // we ' l l make t h i s the d e f au l t mode (in s t ead o f ' j son ')

}

You an also set �rediretSuessUri� and �rediretFailureUri� separately.

Or, you an set the URI dynamially by setting �results.rediret� in your proessing funtion.

This should go without saying, but lient rediretions means that a whole new HTTP GET request will be sent

by the lient, suh that all your onversation data will be gone. Of ourse, often the resulting page should depend

on the result of form proessing. There are two good strategies for handling this:

• Beause you an set the URI dynamially in �results.rediret�, you an reate a speial kind of results view. For

example, let's say you are implementing a searh form (like Google's searh engine page), whih should rediret

the user to the searh results. You ould rediret to a URI whih inludes the searh results, for example in

the URI query string. For example, searhing for the phrase �ool apps� ould end up redireting to something

like this: �http://myapp.org/searh/?terms=ool+apps�. In �/mapped/searh.d.html� you would then unpak

the terms and display the orret results. (You likely want to ahe the searh results for a while for the best

user experiene!)

• Another option is set a ookie, using Prudene's �onversation.reateCookie� API, whih you an then read

in the redireted page using �onversation.ookies�. Cookies are great if the result is very spei� to the user,

but note that bookmarks to the result URL would display something di�erent if the ookie does not exist.

Capture Mode

Capture mode may seem similar to rediret mode: you supply a new URI whih gets displayed to the lient. The

di�erene is that �rediretion� happens on the server, rather than the lient. That means that the URI for the lient

will remain the same. This is more e�ient in that an extra round trip from the lient is avoided. However, it

reates serious problems for bookmarking: the result URI ends up being the same as the form URI. Think arefully

about the pros and ons of eah approah in terms of what would provide the best user experiene. (Also see

manual mode, below, whih is similar in behavior to apture mode.)

You an aess the form and the aptured page using �Diligene.Forms.getCapturedForm� and �Dili-

gene.Forms.getCapturedResults�. This API will only work in a aptured page. Let's see how this works by

reating a �/mapped/multiply/results.d.html� for our results:

<html>

<body>

<%

doument . exeuteOne (' / d i l i g e n e / s e r v i e / forms / ')

18

var form = Di l i g en e . Forms . getCapturedForm (onver sa t i on)

var r e s u l t s = D i l i g en e . Forms . getCapturedResult s (onve r sa t i on)

i f (r e s u l t s && r e s u l t s . s u e s s) {

%>

<p><%= r e s u l t s . msg %></p>

<% } e l s e { %>

<form method="post">

<p>F i r s t va lue : <input name=" f i r s t " /></p>

<p>Seond va lue : <input name="seond " /></p>

<p><input type="submit " va lue="Mult iply ! " /></p>

</form>

<% } %>

</body>

</html>

We an speify the apture URI when we reate the resoure, in �/libraries/resoures.js�:

var multiplyForm = {

. . .

aptureUr i : '/ mult ip ly / r e s u l t s / ' ,

mode : ' apture ' // we ' l l make t h i s the d e f au l t mode (in s t ead o f ' j son ')

}

You an also set �aptureSuessUri� and �aptureFailureUri� separately.

Or, you an set the URI dynamially by setting �results.apture� in your proessing funtion.

Finally, while it's not entirely neessary, you an hide the URI. This will guarantee that it's only available

for apturing, but the user won't be able to reah it by entering the URL in their browser. You do this in your

appliation's �routing.js�:

app . route s = {

. . .

'/ mult ip ly / r e s u l t s / ' : ' hidden '

}

Manual Mode

If you go bak to the ode for the simple HTML form we've provided above, you might wonder if having the form

as a separate resoure is neessary. While it does provide a leaner separation between the form proessing resoure

and the HTML view resoure, it would be more e�ient if we ould avoid that extra lient rediret and do the

proessing and viewing in the same resoure.

Before we onsider if this is a good idea or not, let's see how this would be easily done with Diligene:

<html>

<body>

<%

doument . exeuteOne (' / d i l i g e n e / s e r v i e / forms / ')

var form = Di l i g en e . Forms . getForm ('/ mult ip ly / ')

var r e s u l t s = form . handle (onve r sa t i on)

i f (r e s u l t s && r e s u l t s . s u e s s) {

%>

<p><%= r e s u l t s . msg %></p>

<% } e l s e { %>

<form method="post">

<p>F i r s t va lue : <input name=" f i r s t " /></p>

<p>Seond va lue : <input name="seond " /></p>

<p><input type="submit " va lue="Mult iply ! " /></p>

</form>

19

<% } %>

</body>

</html>

A few points to explain:

• �Diligene.Forms.getForm� is a very useful funtion. It works by doing an internal GET on the URI to feth

the form instane. We ould have also avoided setting up the instane in �resoures.js� as well as routing it in

�routing.js�, and instead simply have reated the �Diligene.Forms.Form� instane here. But this lets us use

the instane both as a resoure and in manual mode, as we've done here.

• The �handle� method will validate and proess the form, but only if the onversation is a POST. If it's not

proessed, it will will return null.

• Note how we're displaying di�erent ontent aording to whether the proessing was suessful or not.

So, is manual mode a good idea or not? If an provide a straightforward, quik-and-dirty way to implement a form.

Compat, too: you an reate the instane, do all the proessing, and put all the view ode in a single �le. There's

no need to set up routing for a resoure.

But, there are a few disadvantages:

• The ode is not very easy to follow or debug. The same page is doing three di�erent things: 1) displaying the

form, 2) displaying errors, and 3) displaying the results of a suessful post. (You ould put eah view in a

di�erent inluded fragment, but would lose the ompatness.)

• This also means that ahing logi for the page my be di�ult if not impossible to do e�iently.

• A single URI with multiple uses an be onfusing for users. If they bookmark the result �page,� but try to go

to it again at a later time, it would display an un�lled form, beause it's the same page. This is problemati for

all POSTed HTML forms: it's always a good idea to rediret the user to a book-markable URI that responds

orretly to an HTTP GET.

You an mitigate some of these problems by using apture mode instead. Capture mode will let you use a separate

page for results, whih an be ahed (on the server, at least: a POST will never ahe on the lient), while keeping

the URI the same.

Low-Level Manual Mode

So, this �mode� atually does not use the Diligene Forms Servie at all, instead it relies diretly on the Prudene

API. We thought it would be a good idea to inlude it here for the sake of ompletion. Sometimes, even manual

mode may not be quik-and-dirty enough! Note that validation is very, very basi: if the value annot be onverted,

you will simply get a null.

Here's how it would look:

<html>

<body>

<%

doument . exeuteOne (' / prudene/ r e s ou r e s / ')

doument . exeuteOne (' / s i n e r i t y / ob j e t s / ')

doument . exeuteOne (' / s i n e r i t y / templates / ')

var form

i f (onve r sa t i on . r eque s t . method . name == 'POST') {

form = Prudene . Resoures . getForm (onversat ion , {

f i r s t : ' f l o a t ' ,

seond : ' int '

})

}

i f (form && S i n e r i t y . Objets . e x i s t s (form . f i r s t) && S i n e r i t y . Objets . e x i s t s (form . seond)) {

form . r e s u l t = Number(form . f i r s t) Number(form . seond)

20

%>

<p><%= '{ f i r s t } t imes { seond } equa l s { r e s u l t } ' . a s t (form) %></p>

<% } e l s e { %>

<form method="post">

<p>F i r s t va lue : <input name=" f i r s t " /></p>

<p>Seond va lue : <input name="seond " /></p>

<p><input type="submit " va lue="Mult iply ! " /></p>

</form>

<% } %>

</body>

</html>

Rendering an Internationalized HTML Form

In all the above examples, we expliitly entered the HTML for the form and its �elds. But, Diligene Forms

an also generate the HTML for you, and moreover use the Internationalization Servie, in onjuntion with the

Authorization Servie, to render the orret text for the user's preferred language.

The rendered HTML is very straightforward: it's a simple <input> tag when using �htmlText� (or a <textarea>

tag when usng �htmlTextArea�), with a onneted <label> prepended. If the �eld failed validation then an extra

<div> is appended with the validation error message. Furthermore, in ase of validation error, all tags for the �eld

will get the �error� lass, allowing you to use CSS in order to stylize validation errors.

You should add the �results� of the form if you have them (they are available in apture mode and manual mode)

to the method alls. This will render errors properly, and also set the values of the form to the previous values,

making it easier for the user to orret the form.

Here's an example using manual mode, whih also uses CSS to stylize form errors:

<html>

<head>

<sty l e >

form input . e r r o r {

border : 1px s o l i d red ;

}

form div . e r r o r {

 o l o r : red ;

d i s p l ay : i n l i n e ;

padding− l e f t : 5px ;

}

</s ty l e >

</head>

<body>

<%

doument . exeuteOne (' / d i l i g e n e / s e r v i e / forms / ')

var form = Di l i g en e . Forms . getForm ('/ mult ip ly / ')

var r e s u l t s = form . handle (onve r sa t i on)

%>

<form method="post">

<div><%= form . htmlText ({name : ' f i r s t ' , onve r sa t i on : onversat ion , r e s u l t s : r e s u l t s }) %></div>

<div><%= form . htmlText ({name : ' seond ' , onve r sa t i on : onversat ion , r e s u l t s : r e s u l t s }) %></div>

<div><input type="submit " va lue="Mult iply ! " /></div>

</form>

</body>

</html>

21

HTML Servie

This servie supports two uses:

1. Generating strutured, internationalized, sanitized HTML ode.

2. Consuming HTML and parsing it using a jQuery-like syntax. For this we rely internally on the jsoup library.

Usage

Make sure to hek out the API doumentation for Diligene.HTML. Also useful is the

API doumentation for Sinerity.XML.

From JSON to HTML

The most general API is �build�, whih aepts a JSON struture and turns it into HTML:

<%

pr in t (D i l i g en e .HTML. bu i ld ({

_tag : ' div ' ,

_hi ldren : [

℄

}))

%>

The generated HTML is:

<div>

</div>

All text is properly esaped as appropriate for HTML ontent and HTML tag attributes. Note that keys

beginning with �_� are treated speially, as explained below.

The library also ontains shortuts for simple HTML elements, like so:

<%= Di l i g en e .HTML. img ({ s r : ' http : // t h r e e r i k e t s . om/media/ three− r i k e t s /prudene−smal l . png ' }) %>

Speial Attributes

Internationalization

Parsing HTML

Other Utilities

Sanitizing

Internationalization Servie

This is a straightforward but powerful servie that lets you render text by key from �text paks� per loale.

A single appliation an load many text paks simultaneously, suh that every user ould see text in their

preferred language, if you support it. Text paks an be ahed in memory (in the appliation globals) one loaded,

while giving you ontrol over the ahe duration in ase you want to enable on-the-�y editing of text paks.

Importantly, this servie supports bi-diretionality (left-to-right or right-to-left languages) by keeping trak of

the diretion of every single key. This is ruial, beause you may have to render left-to-right and right-to-left text

on the same page, and you want to make sure that eah key is rendered orretly.

Text paks an inherit eah other, making it easy to manage many text paks with a ommon base, or to merge

text paks from di�erent soures into one. For example, you an you have a general English text pak, and the

a British English text pak, whih inherits the general English text pak and only overrides those keys that are

di�erent. Diretionality of keys is maintained: if a right-to-left Arabi text pak inherits an English text pak, those

left-to-right keys from the English text pak will stay left-to-right.

22

http://jsoup.org/
http://threecrickets.com/api/javascript/?namespace=Diligence.HTML
http://threecrickets.com/api/javascript/?namespace=Sincerity.XML

Setup

Text paks are looked for �rst JSON �les and then in a MongoDB olletion alled �textpaks�. You an ombine

text paks from both, and inherit either from the other.

The text pak is a dit that must inlude at least a �text� key, with a struture of any depth, and optionally

a �diretion� key, whih ould be either �ltr� (the default, for left-to-right, the default), or �rtl� (for right-to-left

languages). Additionally, you an add an �inherits� key, whih an be either a single loale spei�ation or an array

of loale spei�ations, whih spei�es whih text paks should be merged into this one. The values of the inheriting

text pak will always override those from the inherited text paks.

Loale Spei�ations

In all the following examples, whenever you need to speify a loale you an speify it either as a string signifying the

language or in full form, with �language�, �ountry� and �variant� keys. For example, these two loale spei�ations

would be onsidered equivalent:

"en" == {" language " : "en"}

But this loale would be di�erent:

{" language " : "en " , " ountry " : "nz"}

As MongoDB Douments

Text paks will be found in the olletion alled �textpaks�. They have the same struture as the JSON �les, but

must also have a �loale� key, with the loale spei�ation as detailed above. Here's an example doument:

{

_id : ObjetId ("4 d6803e6ddfe99e7997b809 ") ,

" l o a l e " : {

" language " : "en " ,

" ountry " : "nz"

} ,

" d i r e t i o n " : " l t r " ,

" i n h e r i t " : "en " ,

" t ex t " : {

" app l i a t i on " : {

"myapp" : {

" time " : " I t i s now {now}"

}

}

}

}

Again we'll emphasize: even though this text pak is de�ned in MongoDB, it an inherit the �en� text pak

de�ned in the JSON �le.

You'll usually prefer one method or the other, but it might make sense to use both: for example, a default text

pak an be hard-oded for your appliation, to allow it to funtion even if MongoDB is not available.

As JSON Files

If stored in �les, the name of the �le must be in the form �[loale℄.json�. For example, for the English loale it

is �en.json�. If the loale has ountry and variant spei�ations, they are added with undersores. For example,

English/New Zealand would be �en_nz.json�.

An example �en.json� �le:

{

" d i r e t i o n " : " l t r " ,

" t ex t " : {

" app l i a t i on " : {

"myapp" : {

23

"time " : " I t i s now {now}"

}

}

}

}

Per-User Text Paks

See the �Authentiation Servie.�

Usage

Make sure to hek out the API doumentation for Diligene.Internationalization.

Here's an example:

<%

doument . exeuteOne (' / d i l i g e n e / s e r v i e / i n t e r n a t i o n a l i z a t i o n / ')

var textPak = Di l i g en e . I n t e r n a t i o n a l i z a t i o n . getPak (' en ')

%>

<p d i r="<%= textPak . g e tD i r e t i on (' app l i a t i on .myapp . time ') %>">

<%= textPak . get (' app l i a t i on .myapp . time ' , {now : new Date () }) %>

</p>

var textPak = Di l i g en e . I n t e r n a t i o n a l i z a t i o n . getCurrentPak (onve r sa t i on)

The �get� method will automatially ast templates. In this ase, our text is a template in the form of �It is now

{now}�. The �getDiretion� method will return either �ltr� or �rtl� aording to the diretionality of that spei�

key.

Attahing a Text Pak to the Conversation

In many ases, you would not want to speify the loale expliitly, but instead would want it loaded from, say,

the logged-in user's stored preferenes. In that ase, you an store the seleted loale in the onversation.loals as

�diligene.servie.internationalization.pak�, or use this shortut:

textPak . setCurrent (onve r sa t i on)

And then retrieve it like so:

var textPak = Di l i g en e . I n t e r n a t i o n a l i z a t i o n . getCurrentPak (onve r sa t i on)

Many of Diligene's other servies and features rely on this API all, so make sure to set up the onversation.loal

appropriately if you want them to support internationalization.

Con�guration

In your appliation's �settings.js�, add something like this to your app.globals:

app . g l oba l s = {

. . .

d i l i g e n e : {

s e r v i e : {

i n t e r n a t i o n a l i z a t i o n : {

d e f au l tLo a l e : ' en ' ,

aheDurat ion : 10000 , // in m i l l i s e o nd s ; i f 0 (the d e f au l t) w i l l never ahe

path : S i n e r i t y . Container . getFileFromHere (' textpaks ') // opt i ona l

}

}

}

}

24

http://threecrickets.com/api/javascript/?namespace=Diligence.Internationalization

It would then look for �.json� �les in the �/textpaks/� diretory under your appliation's main diretory.

To signify the loale in full form during on�guration, make sure to use the �.� key to avoid �attening of the

dit (see Sinerity.Objets.�atten). For example:

d e f au l tLo a l e : { . : { language : ' en ' , ountry : ' nz ' }}

Cahe Servie

The Prudene platform already provides exellent ahing for your generated HTML, with a lot of ontrol over

ahe keys. It also provides you with an API to aess the ahe bakend diretly. But, that is a very speial

purpose ahe highly optimized for that partiular task.

With the Diligene Cahe Servie, we are providing you with a general purpose ahing mehanism, letting you

store anything MongoDB an take, again with full ontrol over key generation. Moreover, the Cahe Servie lets

you easily wrap arbitrary JavaSript funtions, so that you an transparently ahe their results.

Usage

Make sure to hek out the API doumentation for Diligene.Cahe.

A simple example:

doument . exeuteOne (' / d i l i g e n e / s e r v i e / ahe / ')

doument . exeuteOne (' / s i n e r i t y /jvm/ ')

var ahe = new Di l i g en e . Cahe (' r e s u l t ')

var ge tResu l t = fun t i on (use r Id) {

S i n e r i t y .JVM. s l e ep (1000)

return {

use r Id : userId ,

randomValue : Math . random ()

}

}

. ahe (ahe , 10000 , ' r e s u l t . ')

var r e s u l t = ge tResu l t (123)

A few notes:

• Our �getResult� funtion here is very silly, and purposely delays for 1 seond. However, it ould easily do

very real things: for example, a slow map-redue query on MongoDB, fething data from an external servie

or site, et.

• We here ahe the result for 10 seonds, meaning that only one every 10 seonds would the funtion atually

be alled. In all other ases, the last ahed result will be retrieved from the MongoDB olletion. It should

go without saying, but: this works in high-onurreny, so any number of threads and nodes would be using

the same ahed value.

• The data must be ompatible with MongoDB. This inludes anything that works with MongoDB's extended

JSON format.

• We here use a simple string pre�x (�result.�) to generate our ahe key. The servie will automatially add

the funtion arguments to the ahe key, so in this ase our ahe key will be �result.123�. However, you an

supply a funtion instead of a string, whih would return the �nal ahe key as the string using whatever logi

you need. An impliation of this is that you an use a single ahe olletion to store results of numerous

funtions, as long as you make sure that the �nal ahe keys don't overlap.

• The library overrides the JavaSript funtion prototype, adding the �ahe� method to it. The Diligene.Cahe

API also has methods that o�er more �exibility. For example, it an let you set advaned logging, so that

you an see how the ahe is working. See the API doumentation for full details.

25

http://threecrickets.com/api/javascript/?namespace=Diligence.Cache

• The servie removes expired entries only when you try to aess them. If it's important for you to save spae

and remove all expired ahe entries, you might want to all the Diligene.Cahe.prune method regularly.

You an do this in your �rontab� �le. Here's an example of doing so every 15 minutes:

/15 <% doument . exeuteOne (' / d i l i g e n e / s e r v i e / ahe / ') ; new D i l i g en e . Cahe (' r e s u l t ') . prune () ; %>

Linkbak Servie

�Linkbaks� are a way to add ross-referening to hyperlinks: if I link to another page on another site, I an let

that other site know that I am linking to it, and then that other site an hoose to display a link bak to my site.

This an be useful for users, as it lets them quikly �nd relevant sites. But, it's probably more important in terms

of SEO: the more links you have, the higher your page's rank will be in searh engines. And if you an get a link

to your site on a popular site, all the better.

Beause linkbaks require trust and mutuality, there are espeially popular in the blogosphere, where bloggers

often work with eah other (sometimes antagonistially!) to reate more hits, and thus generate more revenue.

Unfortunately, there's no single standard for linbaking, and all of them are rather umbersome. Lukily,

Diligene does most of the work for you: it features lients and servers for both the Trakbak and Pingbak spes.

As a server, it lets you aept these linkbaks from other sites, respond properly to the remote lients, and register

the linkbak in a MongoDB olletion. As a lient, it lets you auto-disover trakbak and pingbak URLs on

remote pages, and do the neessary handshaking.

Pingbak is by far the more ompliated spe: it requires XML-RPC (we are using Diligene's RPC servie for

it), and also suggests that you make sure that the other site is indeed linking to you before registering. Trakbak

is more lightweight, but allows telling the target site more information about how you are linking them.

Usage

Make sure to hek out the API doumentation for Diligene.Linkbak.

Integrating Linkbaks into Your Produt

Diligene does a lot for you, but the burden is still on your to understand these non-trivial tehnologies well enough

to integrate them properly into your appliation. On this page, we're featuring a rather elaborate example of how

linkbaks work on this page for the purpose of demonstration. Muh of this an be automated for your appliation:

for example, in a blogging appliation, you might want to go over every new blog post and try out all the links on the

page with Diligene.Linkbak.disover to see if they support linkbaks, and then to do the linkbak automatially

without any user interation. Or, you might prefer to have users expliitly lik on a �linkbak� feature. Diligene

gives you the tools, making it as easy as possible for you to do the rest.

How to Linkbak from This Page?

1. Link First, we need to make sure that we atually have a link to the remote site on our page. Here's a really

simple form that lets you add links to this page:

<form id="add" method="POST">

<p>

<%= Di l i g en e .HTML. input ({name : ' addPageUri ' , s i z e : 70} , {_ontent : ' Page URL: ' }) %>

</p>

<p>

<%= Di l i g en e .HTML. submit ({ va lue : 'Add Link ' }) %>

</p>

</form>

<form id=" l e a r " method="POST">

<input type="hidden" name=" l ea rPageUr i s" va lue="true " />

<p>

<%= Di l i g en e .HTML. submit ({ va lue : ' Clear Link Lis t ' }) %>

</p>

</form>

26

http://www.sixapart.com/pronet/docs/trackback_spec
http://www.hixie.ch/specs/pingback/pingback
http://threecrickets.com/api/javascript/?namespace=Diligence.Linkback

<p>

Current ly l i nked pages :

<% f o r (var i = l i n k s . i t e r a t o r () ; i . hasNext () ;) { var l i n k = i . next () ; %>

<a hr e f="<%= l i n k %>">l ink

<% } %>

</p>

2. Auto-Disovery We support auto-disovery of trakbak and pingbak URLs, so you an �rst try to just enter

the linked URL. Make sure it's one of the links you've added above! Pingbak will be preferred if both Trakbak

and Pingbak are supported by the page.

3. Or Use Expliit Linkbak URLs In ase that doesn't work, you might also have to enter an expliit

trakbak or pingbak URL posted on that page:

<p>

<%= Di l i g en e .HTML. input ({name : ' trakbakUri ' , s i z e : 70} , {_ontent : ' Trakbak URL: ' }) %>

</p>

(Note that you do <i>not</i> need to enter the page URL with trakbak, but you <i>do</i> need it it with

pingbak)

<form>

<p>

<%= Di l i g en e .HTML. input ({name : ' pingbakUri ' , s i z e : 70} , {_ontent : ' Pingbak URL: ' }) %>

</p>

<p>

<%= Di l i g en e .HTML. submit ({ va lue : ' Linkbak ' }) %>

</p>

</form>

<% i f (message) { %>

<p>

<%= message %>

</p>

<% } %>

How to Linkbak to This Page?

This page ontains information about its trakbak and pingbak URLs. In ase your software doesn't support

auto-disovery of these, and you need to enter them expliitly, they are:

<p>

<%= Di l i g en e .HTML. input ({ va lue : D i l i g en e . Linkbak . getTrakbakUri (onve r sa t i on . r e f e r e n e) , readonly : ' readonly ' , s i z e : 70} , {_ontent : ' Trakbak URL: ' }) %>

</p>

<p>

<%= Di l i g en e .HTML. input ({ va lue : D i l i g en e . Linkbak . getPingbakUri () , readonly : ' readonly ' , s i z e : 70} , {_ontent : ' Pingbak URL: ' }) %>

</p>

Nones Servie

This is a straightforward implementation of number-used-one, or �none,� using MongoDB atomi operations.

It allows you to issue a unique number, whih you an then �hek.� The hek will work one and only one

for any issued none, aross all nodes aessing the same MongoDB database. Furthermore, every issued none is

given an expiration time, after whih it will be onsidered invalid.

Nones are often used in authentiation shemes, where tokens, meant to be used only one, are purposely issued

for short time periods in order to minimize seurity risks.

27

Usage

Make sure to hek out the API doumentation for Diligene.Nones.

The API is very simple. To issue a 60-seond none:

doument . exeuteOne (' / d i l i g e n e / s e r v i e /nones / ')

var none = Di l i g en e . Nones . r e a t e (60 1000)

To hek a none:

i f (! D i l i g en e . Nones . hek (none)) {

pr in t (' Your token i s i n v a l i d ! Perhaps i t was exp i red ? Try logg ing in again . ')

}

Note that the nones used in the API are strings, whih are hexadeimal representations of big integers. Strings

are preferable in this use ase, beause you an be ertain that preision will not be lost aross various onversions

and serializations. If you really need a non-hexadeimal representation, you an onvert it a none using the

following:

var noneInteger = new java . math . B ig In t ege r (none , 16)

pr in t (noneInteger) // t h i s w i l l p r in t a deimal r ep r e s en t a t i on o f the none

Con�guration

The servie removes expired nones only when you hek them. If it's important for you to save spae and remove

all expired nones, you might want to all the Diligene.Nones.prune method regularly. You an do this in your

�rontab� �le. Here's an example of doing so every 15 minutes:

/15 <% doument . exeuteOne (' / d i l i g e n e / s e r v i e /nones / ') ; D i l i g en e . Nones . prune () ; %>

Noti�ation Servie

Sending out email from your appliation an quikly beome di�ult to manage when you have hundreds of thou-

sands of emails to send out. But Diligene's Noti�ation Servie is here to help! Some key features:

• The implementation is optimized for high onurreny, making good use of MongoDB's atomi update features.

This means that it's easy to sale: you an have many nodes all sending queued noties at the same time.

They won't interfere with eah other and there's no fear of having the same email sent more than one.

• It supports subsription hannels: you an send a notie to the hannel, and it would then be sent to all

subsribers. This greatly minimizes the load on MongoDB. Moreover, you an use a notie template suh that

eah subsriber gets a personalized email. Of ourse, you an also send diret noties to a single addressee.

• Automati handling of daily and weekly digests for subsribers who prefer not to get individual emails. This

works by merging noties into a digest doument at sheduled times.

• You don't have to use email: the servie implementation is pluggable, allowing you support other kinds of

mailboxes if they make sense. For example, you might want to have an internal messaging feature for your

appliation. The implementation is on�gured per subsriber, so you an support di�erent kinds of mailboxes

quite transparently.

• Supports both plain text and mixed-media HTML email.

Note that Diligene onnets to but is not itself an SMTP server. SMTP servers are omplex beasts in their own

right: they must handle errors and retries, queuing of outgoing messages, as well as inoming ones if they are

on�gured for relaying or for mailboxes. It's a good idea to keep that separate from your main appliation. We like

Post�x, a mature SMTP server that o�ers exellent salability and seurity.

If you want your appliation to reeive email, whih is quite a di�erent task than relaying it onward, then we

an reommend the SubEtha SMTP library. If there's interest, we may inorporate it into Diligene diretly in the

future.

28

http://threecrickets.com/api/javascript/?namespace=Diligence.Nonces
http://www.postfix.org/
http://code.google.com/p/subethasmtp/

Usage

Make sure to hek out the API doumentation for Diligene.Noti�ation.

Here's an example of two ways for queuing a notie, the �rst by a diret address, and the seond to all subsribers

of a hannel:

doument . exeuteOne (' / d i l i g e n e / s e r v i e / n o t i f i a t i o n / ')

D i l i g en e . No t i f i a t i o n . queueForAddress (' Email ' , ' email�myorg . org ' , { s ub j e t : 'The Subjet ' , t ex t : 'The ontent . })

D i l i g en e . No t i f i a t i o n . queueForChannel (' main ' , { s ub j e t : 'The Subjet ' , t ex t : 'The ontent . ' })

The �rst option doesn't require any subsription: it uses �Email� as the implementation (see �on�guration,�

below), with the seond argument being an identi�er for that implementation (in this ase, simply an email address).

The seond option queues the notie on the hannel named �main�. To add a subsription, you an do the following:

D i l i g en e . No t i f i a t i o n . s ub s r i b e ('main ' , { s e r v i e : ' Email ' , address : ' email�myorg . org ' , mode : ' da i ly ' })

The �mode� key an be �immediate�, �daily� or �weekly�, with the latter two modes for digests. You don't need

to reate the hannel itself: adding at least one subsription will automatially do that.

In the above examples we've sent plain text emails. To add HTML, add an �html� key. Note that if you use

�html� you need to also add �text� to speify the plain text version. This is very good pratie: not all email lients

support HTML, and if they don't your HTML will be unreadable without a plain text fallbak.

It might be useful to make use of the Sinerity.Mail.MessageTemplate lass, whih lets you store messages in

text paks. For more information on text paks, see the Internationalization Servie.

Con�guration

In your appliation's �settings.js� you want to make sure to enable lazy on�guration:

doument . exeuteOne (' / prudene/ lazy / ')

And then add something like this to your app.globals:

app . g l oba l s = {

. . .

d i l i g e n e : {

s e r v i e : {

n o t i f i a t i o n : {

s e r v i e s : {

' . ' : Prudene . Lazy . bu i ld ({

Email : {

dependen ies : '/ d i l i g e n e / s e r v i e / n o t i f i a t i o n / s e r v i e / emai l / ' ,

name : ' D i l i g en e . No t i f i a t i o n . Emai lServie ' ,

 on f i g : {

from : 'myaddress�mymail . org ' ,

s i t e : ' D i l i g en e Example '

}

}

})

}

}

}

}

}

Note the use of Prudene.Lazy.build: this allows the Noti�ation Servie to lazily reate the email implementation

on demand during runtime. The key, �Email�, will be used in subsriptions, as in the examples above. Note that it

is ase-sensitive. Within the lazy on�guration, the �name� key is the lass to instantiate, the �on�g� is sent to the

lass onstrutor, and values in the �dependenies� key are used for �doument.exeuteOne�. Also note the use of

the �.� key to avoid �attening of the resulting lazy build (see Sinerity.Objets.�atten).

If you want to write your own servie implementations, see the soure ode for the Dili-

gene.Noti�ation.EmailServie.

29

http://threecrickets.com/api/javascript/?namespace=Diligence.Notification

To set up the bakground tasks for sending out queued noties, add something like the following to your

appliation's �rontab�:

<% doument . exeuteOne (' / d i l i g e n e / s e r v i e / n o t i f i a t i o n / ') ; D i l i g en e . No t i f i a t i o n . sendQueuedNoties () ; %>

4 <% doument . exeuteOne (' / d i l i g e n e / s e r v i e / n o t i f i a t i o n / ') ; D i l i g en e . No t i f i a t i o n . sendQueuedDigests (' da i ly ') ; %>

5 0 <% doument . exeuteOne (' / d i l i g e n e / s e r v i e / n o t i f i a t i o n / ') ; D i l i g en e . No t i f i a t i o n . sendQueuedDigests (' weekly ') ; %>

The above will hek for and send regular noties every minute, send daily digests at 4am, and send weekly

digests every Sunday at 5am. As stated above, you an have this same �rontab� running on many nodes. Beause

the implementation relies on MongoDB's atomi updates, you an be sure that noties will not be sent more than

one.

Progress Servie

If you've read Prudene's Saling Tips artile, you know that for potentially long-running tasks you want to release

web request threads as soon as possible, and notify the user in some way as to when the task is �nished. This

servie helps you do exatly that.

For a use ase example, onsider an appliation that searhes for �ight information using several databases and

servies. The searh an take many seonds, if not minutes! Of ourse, you do not want to hold up a web request

thread and have the browser spin while the searh is going on, so you turn to Diligene's Progress Servie.

It works like this: you reate a �proess,� whih is stored in a MongoDB doument, and you an asynhronously

mark when ertain �milestones� are ompleted, inluding the �nal ompletion of the whole proess. Proesses an

be assoiated with a user, whih allows you to use the authorization servie (page 6) to allow only that user aess

to the proess' status, and also to allow the user to query all proesses assoiated with them.

The servie supports two ways of letting the user know the status of the proess. The �rst is for short-term

proesses: a drop-in fragment that simply shows the urrent status of the proess and uses browser JavaSript to

refresh the page every few seonds. The user would see milestones along the way to ompletion, if there are any,

and eventually be redireted to another page when the proess ompletes (or fails!).

For longer running proesses, you annot expet the user to wait in front of the web browsers. In these ases,

the Progress Servie uses the noti�ation servie (page 28) to notify the user about milestones, suess and failure.

Additionally, we provide a drop-in fragment that would allow the user to see the urrent state of the proess on the

web, and another one that lets the user aess all proesses assoiated with them.

Usage

Make sure to hek out the API doumentation for Diligene.Progress.

Trivial Example

This fake proess will simply do nothing until its expiration:

doument . exeuteOne (' / d i l i g e n e / s e r v i e / progre s s / ')

var proe s s = D i l i g en e . Progress . s t a r tP ro e s s ({

d e s r i p t i o n : ' Searh ing f o r your f l i g h t s . . . ' ,

maxDuration : 20 1000 ,

r e d i r e t : onve r sa t i on . r e f e r e n e

})

proe s s . r ed i r e tWai t (onversat ion , app l i a t i on)

That �nal rediretWait all will send the user to a �please wait� page whih will show �Searhing for your

�ights. . . � as the text, and have a progress bar. The page will automatially refresh and show ongoing progress.

After 20 seonds of this, it will rediret bak to this page. Note that you an speify di�erent rediret URIs for

suess, error, timeouts, et.

The �please wait� page is in �/diligene/servie/progress/wait/�. If you don't have it in your �/fragments/� then

a default page will be used, whih is in your ontainer's �/libraries/prudene/� diretory. You an use that as a

template for your own ustom page.

30

http://threecrickets.com/prudence/scaling/
http://threecrickets.com/api/javascript/?namespace=Diligence.Progress

Example with Milestones

You an launh a task from within startProess, whih in turns all the Prudene.Tasks API:

var s ea r hSt r ing = ' f l i g h t #1234 '

var proe s s = D i l i g en e . Progress . s t a r tP ro e s s ({

d e s r i p t i o n : ' Searh ing f o r your f l i g h t s . . . ' ,

maxDuration : 60 1000 ,

r e d i r e t : '/ f l i g h t / r e s u l t s / ' ,

task : {

name : '/ f l i g h t / searh / ' ,

s ea r hSt r ing : s ea r hSt r ing , // t h i s i s our ustom f i e l d

d i s t r i b u t e d : t rue

}

})

Our �/libraries/�ights/searh.js� would look like this:

doument . exeuteOne (' / d i l i g e n e / s e r v i e / p r o e s s i n g / ')

var proe s s = D i l i g en e . Progress . g e tProe s s ()

i f (p roe s s && proe s s . i sA t i v e ()) {

var task = proe s s . getTask ()

var mi l e s tone = proe s s . g e tLas tMi l e s tone ()

swith (mi l e s tone . name) {

ase ' s tarted ' :

p roe s s . addMilestone ({name : ' ours ' , d e s r i p t i o n : ' Searh ing our f l i g h t database ' })

var found = searhOurDatabase (task . s ea r hSt r ing)

i f (found) {

proe s s . addMilestone ({name : ' done ' })

} e l s e {

Prudene . Tasks . task (task)

}

break

ase ' ours ' :

p roe s s . addMilestone ({name : ' partners ' , d e s r i p t i o n : ' Searh ing our partner databases ' }

var found = searhPartnerDatabases (task . s ea r hSt r ing)

i f (found) {

proe s s . addMilestone ({name : ' done ' })

} e l s e {

proe s s . addMilestone ({name : ' f a i l e d ' })

}

break

}

}

Notes:

• The �Diligene.Progress.getProess()� API works here only beause we launhed the task from within start-

Proess. (It works by putting the proess ID in the task ontext.)

• The �rst milestone is always �started�, and the last one is always �done�. The name �failed� is reserved for

failed proesses, and like �done� will mark the proess as inative. Otherwise, you an set any milestone name

you wish.

• You'll also see that we've handled eah milestone as a new exeution of the task. �proess.getTask()� returns

a opy of the arguments sent to the last Prudene.Tasks.task all, so we an simply all it again with the same

arguments.

• Breaking up our work into separate tasks allows for better onurreny: we're not holding on the thread at

one longer than makes sense. Also note that if the task is distributed, eah milestone ould be exeuted in

a di�erent node in the luster.

31

http://threecrickets.com/api/javascript/?namespace=Prudence.Tasks

• This method and also makes sure that a milestone will not be exeuted if a proess expires (isAtive would

return false).

Reattempts

A ommon use ase for the proessing servie is in dealing with an unreliable ation that might atually sueed

after a few attempts. You'd thus want to let the user wait until a ertain maximum duration, and keep retrying

every few seonds in the bakground until the ation sueeds.

The Progress Servie automates muh of this using the �maxAttempts� key in �task�:

var ipAddressOfRemoteLoation = ' 1 . 2 . 3 . 4 '

var proe s s = D i l i g en e . Progress . s t a r tP ro e s s ({

d e s r i p t i o n : ' Attemping to onnet you to remote l o a t i o n { 0 } . . . ' . a s t (ipAddressOfRemoteLoation) ,

maxDuration : 5 60 1000 ,

r e d i r e t : '/ remote/ onneted / ' ,

task : {

name : '/ remote/ onnet / ' ,

maxAttempts : 10 , // f o r reattempts

de lay : 5000 , // between reattempts

remoteLoat ion : ipAddressOfRemoteLoation // t h i s i s our ustom f i e l d

}

})

Our �/libraries/remote/onnet.js� would look something like this:

doument . exeuteOne (' / d i l i g e n e / s e r v i e / progre s s / ')

var proe s s = D i l i g en e . Progress . g e tProe s s ()

i f (p roe s s) {

proe s s . attempt (fun t i on (proe s s) {

doument . exeuteOne (' / myl ibrary / onne t i ons / ')

re turn onnetRemote(proe s s . getTask () . remoteLoat ion)

})

}

Notes:

• The proess.attempt all doest most of the work: it makes sure to all the task again if there's still time before

the proess expires and the maximum number of attempts has not been exeeded, waiting the appropriate

delay before eah attempt. Your funtion just has to make sure to return true if the attempt has sueeded.

• Eah attempt will get a milestone name in the form of �attempt #X� where X starts at 1.

• If the maximum number of attempts has been reahed, the milestone will be set to �failed�.

• Reattempts are logged, to help you debug problems.

REST Servie

The REST Servie makes it easy to reate a RESTful API layer over your MongoDB database. It's powerful enough

that it may be in itself the primary reason why you wish to use Diligene.

While there are tools to do this automatially�and the REST Servie does have an automati mode, too�the

true power of this servie is in its ustomizability. You an insert your own ode anywhere in the resoures to do

speial proessing, for anything from data validation, through onstraint enforement, to seurity authorization and

high-level business logi.

Moreover, the Prudene platform lets you aess this RESTful layer internally, without any HTTP ommuni-

ation or serialization, so that you an use this layer as your primary data aess layer API, both internally and

for other servies. There's no reason to reate a separate API for internal vs. external use. This arhiteture also

makes it trivial to separate your data proessing nodes from your appliation logi nodes, should you ever want to

do so.

Even without ustomization via ode, out of the box you get the following features:

32

• The default format immediately supports Ext JS's RESTful data stores. Attah any MongoDB olletion to

an editable grid widget in a web browser! See the Senha Integration manual for more information.

• Automati ontent negotiation with support for JSON and XML formats, as well as a human-readable HTML

format perfet for debugging via browsers. The HTML format even allows simple editing of your ontent.

(Note, though, that if you want a full-�edged web frontend for your MongoDB data, you're better o� with

MongoVision, whih is easily installable side-by-side with your Diligene appliation.)

• Pagination for traversing olletions of any size.

• Choose whih doument �elds you want to expose, and extrat sub-douments from your main doument.

• Apply straightforward �modes,� whih let you transform MongoDB's extended JSON format into simpler

primitives. For example, �{$date: 1234}� would beome �1234�.

There are a lot of details below, but you shouldn't be intimidated by them. You do not have to learn every single

feature of the REST Servie in order to use it. In just a few lines of ode, you an setup a whole RESTful layer

automatially that will �just work� for many use ases.

Setup

Make sure to hek out the API doumentation for Diligene.REST.

Manual Setup

We'll start with manual on�guration, beause it will help you better understand how the REST Servie works.

First, let's on�gure the URI-spae in your appliation's �routing.js�. Add the following to app.routes and

app.dispathers:

app . route s = {

. . .

'/ data/ use r s /{ id }/ ' : ' �users ' ,

'/ data/ use r s / ' : ' �users . p lu ra l '

}

app . d i s pa t h e r s = {

. . .

j a v a s r i p t : '/manual−r e s ou r e s / '

}

We an now on�gure our resoures in �/libraries/manual-resoures.js�:

doument . exeuteOne (' / d i l i g e n e / s e r v i e / r e s t / ')

r e s ou r e s = {

. . .

u s e r s : new D i l i g en e .REST. MongoDbResoure ({name : ' users ' }) ,

' u s e r s . p lu ra l ' : new D i l i g en e .REST. MongoDbResoure ({name : ' users ' , p l u r a l : t rue })

}

Automati Setup

The REST Servie an do all the above automatially for you, whih is espeially useful if you have lots of olletions,

or if you keep adding olletions and want resoures for them to be added automatially. Note that this automation

does not our dynamially while your appliation is running: you have to restart for this to work.

In your appliation's �routing.js�.

MongoDB = nu l l

doument . exeute (' /mongo−db / ')

doument . exeuteOne (' / d i l i g e n e / s e r v i e / r e s t / ')

33

http://code.google.com/p/mongo-vision/
http://threecrickets.com/api/javascript/?namespace=Diligence.REST

app . route s = {

. . .

}

S i n e r i t y . Objets . merge (app . routes , D i l i g en e .REST. reateMongoDbRoutes ({ p r e f i x : '/ data / '}))

Important! The �rst two lines of ode make sure that MongoDB is re-initialized before proeeding, so

that we an be sure to avoid using the default MongoDB initialization in other appliations. This is

good pratie when using Diligene in any initialization sript.

In �/libraries/resoures.js�, we just need this:

doument . exeuteOne (' / d i l i g e n e / s e r v i e / r e s t / ')

r e s ou r e s = {

. . .

}

S i n e r i t y . Objets . merge (r e soure s , D i l i g en e .REST. reateMongoDbResoures ())

You an also speify exatly whih olletions you want reated:

D i l i g en e .REST. reateMongoDbResoures ({ o l l e t i o n s : [' users ' , ' no t i e s ' , ' douments ' ℄ })

Custom Queries

Sometimes you may be using a single MongoDB olletion as a ontainer for douments of several di�erent types,

and you would want them exposed as a separate URI-spae.

The REST Servie allows for this via a simple querying language. To illustrate it, lets �rst look at what the

default query is for singular resoures, if no query is provided by you:

r e s ou r e s = {

. . .

u s e r s : new D i l i g en e .REST. MongoDbResoure ({

name : ' users ' ,

query : {_id : { $oid : '{ id } '}}

})

}

app . route s = {

. . .

'/ data/ use r s /{ id }/ ' : { type : ' imp l i i t ' , id : ' users ' }

}

The �query� key is in MongoDB's extended JSON format, and is used for the MongoDB ��nd� operation. The

values are all ast using the onversation.loals, whih, if you remember how to do Prudene routing, are extrated

from the URI template. Let's look at this slowly:

1. If a �/data/users/123/� URI is aessed with a GET operation, the �123� will be extrated from the URI

template. The e�et will be as if we alled:

onve r sa t i on . l o a l s . put (' id ' , ' 123 ')

2. All the values in our resoure's �query� value are ast using onversation.loals. So, our �nal query will be:

{_id : { $oid : '123 '}}

34

3. The REST Servie will use the above query for a ��nd� operation:

var data = o l l e t i o n . f indOne ({_id : { $oid : '123 '}})

(Note that the �$oid� in MongoDB's extended JSON beomes an ObjetId in BSON.)

Knowing this, you an then set the �query� any way you like. You an use values extrated from onversation.loals,

or any literal value. For example, let's reate a URI-spae for users of type �admin�, to be aessed :

r e s ou r e s = {

. . .

admins : new D i l i g en e .REST. MongoDbResoure ({

name : ' users ' ,

query : {name : '{name} '} , { type : ' admin '}}

}) ,

' admins . p lu ra l ' : new D i l i g en e .REST. MongoDbResoure ({

name : ' users ' ,

query : { type : ' admin ' } ,

p l u r a l : t rue

})

}

app . route s = {

. . .

'/ data/admins/{name}/ ' : { type : ' imp l i i t ' , id : ' admins ' } ,

'/ data/admins / ' : { type : ' imp l i i t ' , id : ' admins . p lu ra l ' }

}

As a onveniene, you an also add ustom values to be ast using the �values� key. These will be merged with

values from onversation.loals:

new D i l i g en e .REST. MongoDbResoure ({

name : ' users ' ,

query : {name : '{name} '} , { type : '{ type } '}} ,

va lue s : { type : ' admin ' }

})

This allows for nie reusability when you reate your own extended lasses: you an share one query among

many sublasses.

Custom Extration

By default, the REST Servie will extrat and return the entire MongoDB doument, but you an ustomize this

quite powerfully, even to allow you to aess sub-douments inside a doument.

First o�, you an simply hoose the �elds you want:

new D i l i g en e .REST. MongoDbResoure ({

name : ' users ' ,

f i e l d s : [' name ' , ' email ' , ' address ' ℄

})

The ��elds� key will be used at the level of MongoDB's driver, so that unused data won't even be retrieved from

the database.

You an go further and extrat sub-�elds:

r e s ou r e s = {

. . .

' u s e r s . email ' : new D i l i g en e .REST.MongoDbResoure ({

name : ' users ' ,

f i e l d s : ' email ' ,

e x t r a t : ' email '

}

35

})

app . route s = {

. . .

'/ data/ use r s /{ id }/ email ' : { type : ' imp l i i t ' , id : ' u s e r s . email ' } ,

}

The result of a GET would be only a string of the email address. An example in JSON:

"myemail�mail . org "

Without the �extrat�, the representation would be this:

{

"_id " : {

" $oid " : "4 e057e94e799a23b0f581d7d"

} ,

" emai l " : "myemail�mail . org "

}

Important! Not all lient JSON parsers an deal with JSON data that is not a dit or an array. If you

are extrating data that is not a dit or an array, you may need to implement your own speial parsing.

With �extrat� you an go further and even provide an array that will be extrated in order. For example:

r e s ou r e s = {

. . .

' u s e r s . groups ' : new D i l i g en e .REST. MongoDbResoure ({

name : ' users ' ,

f i e l d s : ' au thor i za t i on ' ,

e x t r a t : [' au thor i za t i on ' , ' e n t i t i e s ' ℄

}

})

app . route s = {

. . .

'/ data/ use r s /{ id }/groups ' : { type : ' imp l i i t ' , id : ' u s e r s . groups ' } ,

}

The above atually uses the data struture used by Diligene's Authorization Servie to retrieve the seurity

groups. The result of a GET would be an array. An example in JSON:

[" use r s " , "admins " ℄

Finally, you an do your own ustom extration, by providing a funtion:

new D i l i g en e .REST. MongoDbResoure ({

name : ' users ' ,

f i e l d s : ' au thor i za t i on ' ,

e x t r a t : f un t i on (do) {

return do . au tho r i z a t i on . e n t i t i e s . j o i n (' , ')

}

})

Custom Modes

You an set up your own ustom modes like so:

new D i l i g en e .REST. MongoDbResoure ({

name : ' users ' ,

modes : {

f l a t : f un t i on (data) {

36

return S i n e r i t y . Objets . f l a t t e n (data)

}

}

})

See �Usage� below for information on how to use modes.

Overriding

There are two ways to override the default behavior: 1) inherit the Diligene.MongoDbResoure lass using the

Sinerity.Classes API, or 2) monkey-path the instanes. The former method is more reusable, but the latter method

works just as well and is easier if you just need to ustomize a single resoure. Example of monkey-pathing:

r e s ou r e s = {

. . .

u s e r s : new D i l i g en e .REST. MongoDbResoure ({name : ' users ' })

}

r e s ou r e s . u s e r s . doDelete = fun t i on (onve r sa t i on) {

. . .

// Cal l overr idden method

arguments . a l l e e . overr idden . a l l (th i s , onve r sa t i on)

}

Using this method you an even monkey-path instanes reated automatially after a all to �Dili-

gene.REST.reateMongoDbResoures()�.

In-Memory Data

The REST Servie does not have to use MongoDB to store data: it also supports storing data in memory, even

shared memory distributed in the Prudene luster.

This is useful if you don't need persistent storage in MongoDB (the data is onsidered volatile) and is also useful

for reating mok data for testing. The URI-spae otherwise behaves exatly the same as if it were attahed to

MongoDB olletions. Performane, of ourse, should be better than if you were aessing MongoDB. On the other,

your storage size is limited to your RAM. So, while this feature is not a replaement for using MongoDB, it an be

quite useful in various senarios.

Let's modify our example from above to use in-memory resoures:

doument . exeuteOne (' / s i n e r i t y /jvm/ ')

var use r s = {

'4 e057e94e799a23b0f581d7d ' : {

_id : '4 e057e94e799a23b0f581d7d ' ,

name : ' newton ' ,

l a s tSeen : new Date ()

} ,

'4 e057e94e799a23b0f581d7e ' : {

_id : '4 e057e94e799a23b0f581d7e ' ,

name : ' sagan ' ,

l a s tSeen : new Date ()

}

}

var usersMap = S i n e r i t y .JVM. toMap(users , t rue)

r e s ou r e s = {

. . .

u s e r s : new D i l i g en e .REST. InMemoryResoure({name : ' users ' , douments : usersMap }) ,

' u s e r s . p lu ra l ' : new D i l i g en e .REST. InMemoryResoure({name : ' users ' , douments : usersMap , p l u r a l : t rue })

}

37

http://threecrickets.com/api/javascript/?namespace=Sincerity.Classes

Note that we translated the �users� dit into a thread-safe JVM map. We ould have also just sent the �users�

dit diretly to the �InMemoryResoure� onstrutor, whih an reate the map for us. But, sine we have two

resoures, the singular and the plural, and we want them to share the same map, we have reated this map ourselves.

What if you're in a Prudene luster, and want all nodes to share the same in-memory data? Let's modify our

ode:

r e s ou r e s = {

. . .

u s e r s : new D i l i g en e .REST. Dist r ibutedResoure ({name : ' users ' , douments : u s e r s }) ,

' u s e r s . p lu ra l ' : new D i l i g en e .REST. Dist r ibutedResoure ({name : ' users ' , douments : users , p l u r a l : t rue })

}

The ode is even simpler than the �InMemoryResoure� ode (no need to reate �usersMap�), but requires some

explanation:

• The �name� �eld will be used as the name of the Hazelast map. You an on�gure this map by name in the

Hazelast on�guration, otherwise it will use the Hazelast defaults for new maps.

• The data from the �douments� �eld will be opied into the Hazelast only one and only if the map is already

empty. Thus, it should be thought of as your initialization data: the �rst time a resoure is set up for that

map, from anywhere in the luster, this data will be opied in. From then on, for the life of the luster,

�douments� will be ignored. Thus, if you want to re-initialize the map, you will need to either restart your

whole luster, or programmatially set the data. (The Diligene Console would be very useful for that.)

• Note that we are serializing data using JSON into the distributed map. The performane hit should be

minimal, but it's important to remember that only your data must be extended-JSON-ompatible. (The

�InMemoryResoure� doesn't have this restrition.)

Usage

Resoure Charateristis

All resoures support the following URI query parameters:

• format: You an use this to speify the exat format you want, overriding any HTTP ontent negotiation.

This is useful for testing and debugging, but an also help you in dealing with HTTP lients that an't easily

set headers. Aepted values are �json�, �xml� and �html�. Note that when aessing resoures internally, no

serialization happens, and �format� is unneessary.

• human: Setting this to �true� will further help your debugging, as it will return niely indented, multiline

JSON or XML representations.

• mode: �Modes� are simple funtions that are applied to all douments in order to transform the �nal repre-

sentation. The REST Servie omes with a few useful modes, but you an easily reate your own, just make

sure to hook them to the instane using the �modes� key. The query parameter value will be mapped to a

key in this dit. Note that you an provide multiple �mode� values, in whih ase all mode funtions will be

alled in order. Provided modes:

� primitive: This onverts MongoDB extended values into simpler JSON strutures. For example,

�{timestamp: {$date: 12345}}� will beome �{timestamp: 12345}�.

� string: This onverts all JSON values into strings. It's a good way to overome various number auray

issues, espeially when dealing with PHP lients.

� stringid: Converts only the �_id� �eld to a string, in ase it's a BSON ObjetId. Some lients, suh as

Ext JS, annot deal with ID values that are dits.

An example URI with all the above parameters:

/data/ use r s /4 e057e94e799a23b0f581d7d/? format=j son&human=true&mode=pr im i t i v e&mode=s t r i n g

As for payloads, in POST and PUT operations, note that by default they must be in JSON, even if you are

representing the result in XML or HTML. The reason is that there is no obvious way to translate XML to the �nal

JSON format needed by MongoDB. If you do need to support XML payloads, you an override �handlePost� and

�handlePut� to do this yourself aording to your spei�ations.

38

Singular Resoures

The REST Servie will by default extrat the �{id}� pattern in the URI into a MongoDB ObjetID for the doument

�_id� �eld. For example, if your route is �/data/users/{id}/�, then �/data/users/4e057e94e799a23b0f581d7d/�

would refer to the user doument with that �_id.�

Requests to the URI always return 404 if the doument does not exist. Further notes:

• POST: All keys of the payload will be used for a �$set� in a MongoDB ��ndAndModify� operation, and the

modi�ed doument will be returned. If you inlude an �_id� key in the payload it will be removed, beause

the ID in the URI takes preedene.

• PUT: The payload will beome a simple MongoDB �save� operation, whih is an upsert, meaning it would

either reate a new resoure or replae the existing one. If you inlude an �_id� key in the payload it will be

removed, beause the ID in the URI takes preedene. Note that if you want to reate a new resoure, it's

up to you to make sure the the id is unique, otherwise you will get an HTTP 409 error (on�it). You an

generate a unique ID by alling MongoDB.newId(). Example for generating a unique URI using templates:

'/ data/ use r s /{0}/ ' . a s t (MongoDB . newId ())

Plural Resoures

The plural resoure is a bit more omplex. The returned representations inlude a �total� key, ounting the size of

the olletion, and a �douments� key, ontaining an array of spei� douments. For example:

{

" t o t a l " : 1092 ,

"douments " : [

{"_id " : {" $oid " : "4 e057 f2ae799a23b0f581d7f" } , . . . }

. . .

℄

}

The following additional query parameters are supported for pagination, ontrolling whih douments are in-

luded in the �douments� array:

• start: The index from whih to start olleting douments. By default it will be 0.

• limit: The maximum number of douments to return.

The �douments� array an de�nitely be empty if your �start� and �limit� values are not satis�ed.

Further notes:

• POST: This lets you update many douments at one. Your payload should be an array of values that would

be sent via the singular resoure POST, as desribed above, however you must also inlude an �_id� for eah

value. The response will inlude all douments after their modi�ation.

• PUT: This is how you add douments to your MongoDB olletion. Simply provide an array of values, and

they will beome MongoDB �insert� operations. The response will inlude �_id� �elds on all your douments,

if you did not set them yourself.

• DELETE: This is a MongoDB �remove� operation, not a �drop�.

Aessing Your Resoures over the Web

All your resoures support the HTML format, so you an easily aess them via a web browser. For example, this

link: http://loalhost:8080/diligene-example/data/users/4e057e94e799a23b0f581d7d/.

This view supports simple editing of your resoures: you an POST, PUT any resoure using JSON or XML

payloads, or DELETE them. It's a great way to test and debug your resoures.

You an ustomize this view as you please: just reate �/diligene/servie/rest/singular.html� and �/dili-

gene/servie/rest/plural.html� �les in your �/fragments/� diretory. You an start with the default �les under

your ontainer's �/libraries/prudene/� diretory as a template.

39

http://localhost:8080/diligence-example/data/users/4e057e94e799a23b0f581d7d/

Aessing Your Resoures with the API

The Prudene.Resoures API makes it very easy to aess your resoures, whether internally or on a di�erent node.

See the API doumentation for full details, otherwise here we'll provide you with a quik tutorial for using it with

the REST Servie.

Let's start with the internal use ase:

doument . exeuteOne (' / prudene/ r e s ou r e s / ')

var user = Prudene . Resoures . r eque s t ({

u r i : '/ data/ use r s /4 e057e94e799a23b0f581d7d / ' ,

i n t e r n a l : t rue

})

pr in t (user . name)

Again, we'll emphasize that when aessing the API internally neither HTTP nor serialization are

involved. The data is never onverted to JSON, instead it's extrated diretly from MongoDB's BSON

to JavaSript's internal data struture, exatly as if you were using the MongoDB API diretly. There's

obviously some overhead added by the Prudene platform and the REST Servie, but it should be very

minimal, espeially when ompared to the network feth from MongoDB. In short, performane onerns

should not stop you from using the REST Servie in this fashion.

Aessing remote resoures is almost idential, though obviously HTTP and JSON (or XML) are involved. As an

example, we an try to aess our loal resoure via HTTP:

var user = Prudene . Resoures . r eque s t ({

u r i : ' http : // l o a l h o s t :8080/myapp/data/ use r s /4 e057e94e799a23b0f581d7d / ' ,

mediaType : ' app l i a t i on / json '

})

p r in t (user . name)

Of ourse, the URI an point to anywhere on the network, or the Internet. Note that we had to expliitly speify

our preferred media type, beause our resoure supports several di�erent formats.

The API an be used for all REST methods:

var user = Prudene . Resoures . r eque s t ({

u r i : '/ data/ use r s /4 e057e94e799a23b0f581d7d / ' ,

i n t e r n a l : true ,

method : ' post ' ,

payload : {

va lue : { emai l : ' newemail�mysite . org ' }

}

})

Remotely, the REST methods are atual HTTP verbs:

var user = Prudene . Resoures . r eque s t ({

u r i : ' http : // l o a l h o s t :8080/myapp/data/ use r s /4 e057e94e799a23b0f581d7d / ' ,

mediaType : ' app l i a t i on / json '

method : ' post ' ,

payload : {

type : ' j son ' ,

va lue : { emai l : ' newemail�mysite . org ' }

}

})

We'll �nish o� this short tutorial by showing you that for every request you an also set query params:

var use r s = Prudene . Resoures . r eque s t ({

u r i : '/ data/ use r s / ' ,

i n t e r n a l : true ,

query : {

40

http://threecrickets.com/api/javascript/?namespace=Prudence.Resources
http://threecrickets.com/api/javascript/?namespace=MongoDB

s t a r t : 5 ,

l im i t : 3

}

})

pr in t (u se r s [0 ℄ . name)

Aessing Your Resoures with URL

URL is an HTTP ommand line tool based on the URL library, available for a great many Unix-like operating

systems as well as Windows. It's espeially useful for testing RESTful APIs. Here's a quik tutorial to get you

started with using URL with the REST Servie.

First, a few GET ommands to try:

u r l "http :// l o a l h o s t :8080/myapp/data/ use r s /4 e057e94e799a23b0f581d7d/?human=true "

u r l "http :// l o a l h o s t :8080/myapp/data/ use r s /4 e057e94e799a23b0f581d7d/? format=xml&human=true "

u r l "http :// l o a l h o s t :8080/myapp/data/ use r s /? l im i t=3&human=true "

You an send a payload using the �-d� swith, whih also sets the HTTP verb to POST. For example, this will

modify the email of a user:

 u r l −d '{" emai l " : " newemail�mysite . org "} ' "http :// l o a l h o s t :8080/myapp/data/ use r s /4 e057e94e799a23b0f581d7d/?human=true "

When using �-d�, you an also start your payload with ��� to signify that you want to send the ontents of a

�le, in this ase �data.json�:

 u r l −d �data . j s on "http :// l o a l h o s t :8080/myapp/data/ use r s /4 e057e94e799a23b0f581d7d/?human=true "

To set the HTTP verb expliitly, use �-X�. Here we'll reate a new user:

 u r l −X PUT −d �data . j s on "http :// l o a l h o s t :8080/myapp/data/ use r s /?human=true "

And now we'll delete a user:

 u r l −X DELETE "http :// l o a l h o s t :8080/myapp/data/ use r s /4 e057e94e799a23b0f581d7d/"

With the �-h� swith, you an also send HTTP headers in raw form:

u r l −H "Aept : app l i a t i on /xml" "http :// l o a l h o s t :8080/myapp/data/ use r s /4 e057e94e799a23b0f581d7d/?human=true "

Finally, add the �-v� swith to print out the outgoing and inoming headers.

Extension

TODO

Extended MongoDbResoure

Extending IterableResoure

RPC Servie

The RPC (Remote Proedure Call) Servie provides robust, elegant support for various versions of the JSON-RPC

and XML-RPC spei�ations, inluding support for bath proessing for JSON-RPC 2.0. It's powerful enough that

it may be in itself the primary reason why you wish to use Diligene.

In most ases, all you need to do is hookup your JavaSript funtions to a URI, and let the RPC Servie do the

rest. All error odes, system APIs and type onversions will be properly handled.

As a bonus, the RPC Servie also inludes a nie lient utility for alling JSON-RPC and XML-RPC.

Is RPC a good idea? We're inlined to say: no. REST is a muh more salable and robust pattern, all

things onsidered. REST uses all the power of HTTP to provide lient-aheable representations. RPC,

on the other hand, supports only HTTP POST, the only non-idempotent HTTP operation, whih an

never be ahed. However, RPC may be neessary for ommuniation with other servies and lients,

so you might not have a hoie. And, sometimes, it's just the most straightforward, quik-and-dirty

solution to a problem. Espeially with the Diligene RPC Servie, it's so easy to just allow lients to

all funtions on the server, that sometimes you might prefer it to designing a RESTful URI-spae. So

be it! Just make sure you understand the pros and ons of you hoie.

41

http://curl.haxx.se/
http://json-rpc.org/
http://xmlrpc.scripting.com/

Setup

Make sure to hek out the API doumentation for Diligene.RPC.

First, let's on�gure the URI-spae in your appliation's �routing.js�. Add the following to app.routes and

app.dispathers:

app . route s = {

. . .

'/ a l / ' : ' �al '

}

app . d i s pa t h e r s = {

. . .

j a v a s r i p t : '/manual−r e s ou r e s / '

}

We an now on�gure our resoures in �/libraries/manual-resoures.js�:

doument . exeuteOne (' / d i l i g e n e / s e r v i e / rp / ')

var Cal = {

mult ip ly : fun t i on (x , y) {

return x y

}

}

r e s ou r e s = {

. . .

 a l : new D i l i g en e .RPC. Resoure ({ namespaes : {Cal : Cal }})

}

And. . . that's pretty muh it! You an now all your methods using JSON-RPC or XML-RPC.

Namespaes

The key of the namespae is pre�xed with a period before all method identi�ers. So, our method above would be

identi�ed as �Cal.multiply�.

However, if you do not want this pre�x, you an use the speial �.� key, whih here means the root namespae:

r e s ou r e s = {

. . .

 a l : new D i l i g en e .RPC. Resoure ({ ' . ' : Cal })

}

The method would now be identi�ed simply as �multiply�.

If you don't need the namespaes feature at all, you an use the following shortut (note the �namespae� key,

singular):

r e s ou r e s = {

. . .

 a l : new D i l i g en e .RPC. Resoure ({ namespae : Cal })

}

Long Form

You have some more ontrol over the exported funtions, should you need it. The long form of reating namespaes

is like so:

var Cal = {

mult ip ly : {

fn : fun t i on (x , y) {

42

http://threecrickets.com/api/javascript/?namespace=Diligence.RPC

return x y

} ,

a r i t y : 2

}

}

The �artity� key ounts how many arguments the funtion requires. If it's not there, the RPC Servie will ount

them from the funtion spe. However, this won't work if you aess JavaSript �arguments� diretly, hene this

long form exists.

System Namespae

The �system� namespae is reserved for parts of the RPC protools. The RPC Servie implements these for you:

• system.getCapabilities

• system.listMethods

• system.methodSignature

• system.methodHelp: By default, this will just show the method name, but in the long form de�nition you

an add a �help� key to set this as you need.

Sope

When your funtion is alled, the �this� will be automatially populated with the following keys:

• de�nition: Your long-form funtion de�nition (short-form funtion de�nitions will be expanded into the long

form)

• namespae: The original namespae objet you supplied

• resoure: The Diligene.RPC.Resoure instane

• onversation: The Prudene onversation of the all

• all: The RPC all objet, as sent from the lient

The �method� key is useful in that you an add anything you want to the method objet. For a rather silly example:

var Cal = {

mult ip ly : {

fn : fun t i on (x , y) {

return x y t h i s . d e f i n i t i o n . mu l t ip lyA l l

} ,

mu l t ip lyA l l : 100

}

}

One speial key is reserved: �sope�. Use it to override �this� to be any value you desire:

var Cal = {

mult ip ly : {

fn : fun t i on (x , y) {

return x y t h i s

} ,

sope : 100

}

}

If you are using JavaSript objet oriented programming, you might want �this� to always just be the namespae

objet itself. In that ase, you an use the �objets� key instead of the �namespaes� key when reating your

Diligene.RPC.Resoure onstrutor. It works the same way as a namespae exept that the sope will be the

objet itself for all method alls:

43

// This i s a l a s s

var Cal = fun t i on (mu l t ip lyA l l) {

t h i s . mu l t ip lyA l l = mul t ip lyA l l

t h i s . mult ip ly = fun t i on (x , y) {

return x y t h i s . mu l t ip lyA l l

}

}

r e s ou r e s = {

. . .

 a l : new D i l i g en e .RPC. Resoure ({ ob j e t s : {Cal : new Cal (100)}})

}

You an mix �namespaes� and �objets� in the same onstrutor. Also note that you an also use �objet�

(singular) in the same way as �namespae� (singular).

Fault Codes

If your funtion throws an exeption, the RPC Servie will return a ServerError fault ode with the exeption string

as the message.

However, you an also return spei� XML-RPC fault odes (the same ode numbers are used by JSON-RPC):

• By throwing a number (all fault odes are negative numbers). You an use the onvenient onstants in

�Diligene.Fault�. For example:

throw D i l i g en e . Fault . Inval idParams

• By throwing a dit with both the fault ode and the message. For example:

throw {ode : D i l i g en e . Fault . InvalidParams , message : ' Cannot d iv ide by 0 ! ' }

Usage

URI Query Parameters

• type: The resoure will automatially determine whether it should work in JSON-RPC or XML-RPC a-

ording to the media type of the inoming payload, or if that's not available, the preferred media type for the

returned representation. Unfortunately, some lients don't or an't set either. In that ase, you an set the

type expliitly in the URI, with either �json� or �xml� as values.

• human: Set this to �true� to generate multiline, indented human-readable results (both for JSON and XML).

Great for debugging.

Calling RPC with the API

The RPC Servie inludes a useful RPC lient funtion, �Diligene.RPC.request�. It's essentially a wrapper over

the Prudene.Resoures API that builds the payload for you and niely unpaks the results. The results will always

be in JSON-RPC's format, even if you are using XML-RPC. This allows for uniform proessing on your end.

Here's an example of an internal all using JSON-RPC:

doument . exeuteOne (' / d i l i g e n e / s e r v i e / rp / ')

var r e s u l t = D i l i g en e .RPC. r eque s t ({

u r i : '/ a l / ' ,

i n t e r n a l : true ,

name : ' Cal . mult iply ' ,

params : [5 , 6 ℄ ,

id : ' ab ' ,

p ro too l : ' j son '

44

http://xmlrpc-epi.sourceforge.net/specs/rfc.fault_codes.php
http://threecrickets.com/api/javascript/?namespace=Prudence.Resources

})

i f (r e s u l t . e r r o r) {

pr in t (' Error : ' + r e s u l t . e r r o r . message)

}

e l s e {

pr in t (r e s u l t . r e s u l t)

}

For XML-RPC, simply set �protool� to �xml�. If not provided, it defaults to �json�. Note that the result will

also inlude that �protool� key you provided, in ase you need to know whih protool was used.

Generally, if you have the option to use JSON-RPC, you should prefer it. XML serialization inurs an extra

overhead in JavaSript.

Calling RPC with URL

URL is an HTTP ommand line tool based on the URL library, available for a great many Unix-like operating

systems as well as Windows. It's espeially useful for testing RESTful APIs. Here's a quik tutorial to get you

started with using URL with the RPC Servie.

First, let's reate our payload. With a text editor, reate a �le named �rp.json� and paste this:

{

" j sonrp " : "2 . 0" ,

"method " : "Cal . mult ip ly " ,

"params " : [2 , 3 ℄ ,

" id " : "ab"

}

You an send a payload using the �-d� swith, whih also sets the HTTP verb to POST. When using �-d�, you

an also start your payload with ��� to signify that you want to send the ontents of a �le:

 u r l −d �rp . j s on "http :// l o a l h o s t :8080/myapp/ a l /? type=j son&human=true "

You should get this result:

{

" id " : "ab " ,

" r e s u l t " : "6" ,

" e r r o r " : nu l l ,

" j s onrp " : "2 .0"

}

Calling RPC from Web Browsers

Many lient-side JavaSript frameworks inlude support for RPC, but if all you need is a straightforward, self-

ontained library, we reommend jsonrpjs.

Searh Servie

Usage

Make sure to hek out the API doumentation for Diligene.Searh.

Serials Servie

This straightforward servie generates unique integers in a series, using MongoDB atomi operations. No number

in a spei� series will ever be generated again. This servie is thus useful for generating integer IDs.

Note that uniqueness is only guaranteed by the intatness of the MongoDB database. If you somehow lose it

and have to start over, there's a hane you would regenerate IDs that have already been used. If you need unique

IDs that don't have this limitation, you'll want to use GUIDs instead.

45

http://curl.haxx.se/
https://github.com/gimmi/jsonrpcjs
http://threecrickets.com/api/javascript/?namespace=Diligence.Search

Usage

Make sure to hek out the API doumentation for Diligene.Serials.

Usage is very simple:

doument . exeuteOne (' / d i l i g e n e / s e r v i e / s e r i a l s / ')

var id = Di l i g en e . S e r i a l s . next (' person ')

Eah series is stored as a single doument in the �serials� MongoDB olletion. By default, the method will

reate the series doument if it does not yet exist, initializing it with the number 1.

Syndiation Servie

Usage

Make sure to hek out the API doumentation for Diligene.Syndiation.

Links

The module ontains a simple /web/fragments/ drop-in that adds links reognizes by all major browsers, and

another drop-in for the �syndiation� button, using the de fato standard ion.

Gravatar Integration

Gravatar is a popular servie for managing user avatars and simple pro�le pages by assoiating them with email

addresses.

It makes users happy, beause they an manage their avatars for many, many servies in one plae. The user's

email is hashed so that it is not made publily available, unless the user hooses to put them expliitly on their

pro�le.

It makes site owners happy, beause they an display avatars for users without having to store them or otherwise

manage them. Additionally, new users would have their avatar immediately displayed without any e�ort on their

part, and users do not like e�ort. If you're using the authentiation servie (page 5) in assoiation with the

registration feature (page 61), then you already have an email address for the user, and an immediately feth their

avatar from Gravatar.

Worried about foring users to use an external servie? Then make Gravatar an optional fallbak. Provide users

with a way to manage avatars on your site diretly, and only default to Gravatar.

Usage

Make sure to hek out the API doumentation for Diligene.Gravatar.

Just enter an email address, and let the Diligene magi happen.

The avatar above is hyperlinked to their Gravatar pro�le page. And here's the omplete JSON dump of their

pro�le:

PayPal Integration

Usage

Make sure to hek out the API doumentation for Diligene.PayPal.

Senha Integration

Ext JS and Senha Touh are both large JavaSript frameworks in their own right, and Diligene supports many

of their features. For this reason, we've divided the setion for Senha Integration into several sub-setions. Still,

you'll want to start here, where we go over some general usage appliable to all features.

After that, go ahead and read the setions for the following integration features:

46

http://threecrickets.com/api/javascript/?namespace=Diligence.Serials
http://threecrickets.com/api/javascript/?namespace=Diligence.Syndication
http://en.gravatar.com/
http://threecrickets.com/api/javascript/?namespace=Diligence.Gravatar
http://threecrickets.com/api/javascript/?namespace=Diligence.PayPal

• Grids

• Trees

• Charts

• Forms

• Ext Diret

Usage

Make sure to hek out the API doumentation for Diligene.Senha.

To inlude Ext JS in your HTML page, you'll want to insert a sriptlet, resulting in a page template similar to

this:

<html>

<head>

. . .

<%

doument . exeuteOne (' / d i l i g e n e / i n t e g r a t i o n/ f rontend / senha / ')

D i l i g en e . Senha . extJsHead (onversat ion , ' ext−a l l−gray ')

%>

</head>

<body>

. . .

</body>

<s r i p t type="tex t / j a v a s r i p t">

Ext . onReady(fun t i on () {

. . .

}) ;

</s r i p t >

</html>

Notes:

• The �extJsHead� method uses �onversation.pathToBase� to make sure that the orret relative URL is in-

serted. Be aware of this if you intend to ahe that fragment for all URLs.

• The seond argument is the theme: it will be �ext-all� if not provided.

• This also inludes Diligene's Ext JS lient-side helper library. You don't have to use it, but it an make your

life easier. You an �nd it under �/libraries/web/sripts/diligene/integration/ext-js.js�. The library enhanes

Ext JS via:

� JSON Readers and Writers that support MongoDB's extended JSON format. This will allow you to

automatially translate $date, $long and other JSON extensions. Even without using MongoDB, this is

a very useful format.

� A data Proxy that automatially uses the extended JSON Reader and Writer, and builds URLs in

Diligene's default struture.

Senha Integration: Grids

Ext JS's grid widget may be its most powerful feature. It supports editing, paging and endless srolling, with lots

of room for ustomization. Grids o�er a familiar and powerful UI for traversing large amounts of strutured data.

Diligene o�ers exellent server-side support for this astounding lient widget: in a few lines of ode, you an hook

up an editable grid widget to a MongoDB olletion.

Despite being one of Diligene's most immediately impressive features, this is going to be a rather short manual

hapter! The reason is that the heavy lifting is done by the REST Servie. The URI-spae reated by the REST

47

http://threecrickets.com/api/javascript/?namespace=Diligence.Sencha

Servie is ompatible with Ext JS, so there's not muh more to do other than hook up the grid using lient-side

JavaSript.

What we're going to do here is give a quik tutorial for using Ext JS grids with Diligene.

Setup

See the REST Servie. Resoures reated there are immediately attahable to Ext JS grids.

Usage

Make sure to hek out the server-side API doumentation for Diligene.Senha and the

lient-side API doumentation for Ext JS.

A full tutorial of Ext JS grids is beyond what we an do in this Manual, but here are is a quik overview of the

omponents as they apply to Diligene:

• You start by reating a �Model� lass, whih is a template for your �reords,� represented by your grid rows.

Eah model has a list of typed �elds (the default is a plain string) whih imply lient-side translation and

validation. You an further reate your ustom �elds. For Diligene, it's important that you inlude the �_id�

�eld and also set �idProperty� to be that �eld. If you don't expliitly set �idProperty,� Ext JS will not be

able to save individual reords. Also not that Ext JS requires the idProperty to be a primitive, so we are

using the �stringid� mode for the Diligene REST Servie in order to make sure we get strings, not MongoDB

ObjetIds.

• The model also de�nes a �Proxy,� whih is Ext JS's extensible onnetor lass. Proxies are in harge of loading

and saving the data. In this ase, we are using a �diligene� proxy type. This is a ustom type that we have

de�ned in Diligene's Ext JS helper library. It's rather simple, and you are free to use the �ajax� proxy type

instead with the modi�ations we've made there. The �diligene� proxy is on�gured to automatially support

MongoDB's extended JSON notation and also use Diligene's URL style. We've additionally set the �root�

property for the reader to �douments�.

• The �Store� is an intermediary lass between the model and the grid. It handles ahing of model instanes

(�reords�) in memory, paging, pre-fething, et. By default it will use the proxy we de�ned in our model.

• Finally, there's the grid panel. Though we've de�ned ��elds� in our model, we must de�ne �olumns� in our

grid that map onto the �elds. In many ases we'll be doing a one-to-one mapping, but you an reate ustom

olumns that transform the model in various ways, for example ombining �elds into a single olumn, or

having a olumn that is derived from other �elds. You do not have to have a olumn for every �eld. (Indeed,

you'd likely not want to have the �_id� �eld visible.)

• By default, the grid is not editable, but we an add the �CellEditing� plugin to handle that. Every olumn

an de�ne its own editor, whih an handle user-side validation beyond what is o�ered by the model. Ext JS

omes with many powerful editing widgets, and of ourse you an reate your own.

• In this example, we've also added a paging toolbar to the grid, and hooked it up to use the same store as the

grid. As the store is paged by the toolbar, it �res events that update the urrent grid view.

That should be enough to get you started. Here's how the ode looks:

<html>

<head>

<%

doument . exeuteOne (' / d i l i g e n e / i n t e g r a t i o n/ f rontend / senha / ')

D i l i g en e . Senha . extJsHead (onve r sa t i on)

%>

</head>

<body>

<div id="gr id"></div>

</body>

<s r i p t type="tex t / j a v a s r i p t">

Ext . onReady(fun t i on () {

48

http://threecrickets.com/api/javascript/?namespace=Diligence.Sencha
http://docs.sencha.com/ext-js/4-1/
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.data.Model
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.data.proxy.Proxy
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.data.Store
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.grid.Panel
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.grid.plugin.CellEditing
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.toolbar.Paging

var pageS ize = 15 ;

Ext . d e f i n e (' User ' , {

extend : ' Ext . data . Model ' ,

f i e l d s : [

'_id ' ,

'name ' ,

{name : ' las tSeen ' , type : ' date ' }

℄ ,

idProperty : '_id ' ,

proxy : {

type : ' d i l i g en e ' ,

u r l : '<%= onver sa t i on . pathToBase %>/data/ use r s / '

}

}) ;

var s t o r e = Ext . r e a t e (' Ext . data . Store ' , {

model : ' User ' ,

pageS ize : pageSize ,

autoSyn : true ,

autoLoad : t rue

}) ;

Ext . r e a t e (' Ext . g r id . Panel ' , {

s t o r e : s tore ,

olumns : [{

dataIndex : 'name ' ,

header : 'Name' ,

e d i t o r : ' t e x t f i e l d '

} , {

dataIndex : ' las tSeen ' ,

xtype : ' dateolumn ' ,

format : 'm/d/y , H: i ' ,

header : ' Last Seen ' ,

e d i t o r : {

xtype : ' d a t e f i e l d ' ,

format : 'm/d/y , H: i '

}

} ℄ ,

f o r eF i t : true ,

se lType : ' e l lmode l ' ,

p lug in s : [

Ext . r e a t e (' Ext . g r id . p lug in . Ce l lEdi t ing ' , { l i k sToEd i t : 2})

℄ ,

dokedItems : [{

dok : ' bottom ' ,

xtype : ' pag ingtoo lbar ' ,

s t o r e : s tore ,

} ℄ ,

renderTo : ' gr id ' ,

s t y l e : {

margin : ' auto '

} ,

width : 500 ,

he ight : 370

}) ;

49

}) ;

</s r i p t >

</html>

Senha Integration: Trees

Ext JS's tree widget is quite powerful, and gives you a lot of ontrol over the visual presentation, supporting omplex

nodes and multi-olumn displays. Though it's not in itself editable, it integrates with Ext JS's drag-and-drop model,

whih you an hook up into your ustom editing model. Diligene o�ers exellent server-side support for it: in a

few lines of ode, you an hook up a tree widget to a doument MongoDB olletion, and use MongoDB DBRefs

to expand the tree into other douments.

Setup

Make sure to hek out the server-side API doumentation for Diligene.Senha and the

lient-side API doumentation for Ext JS.

The Ext JS's tree requires a rather spei� JSON data representation, so we've inherited the re-

soure lass in the REST Servie to support it, with lasses �Diligene.Senha.TreeResoure� and �Dili-

gene.Senha.MongoDbTreeResoure.� You might want to start by reading the REST Servie manual hapter.

In your �/routing.js�, add the following to app.routes and app.dispathers:

app . route s = {

. . .

'/ data/ textpak /{ id }/ ' : ' �textpak '

}

app . d i s pa t h e r s = {

. . .

j a v a s r i p t : '/manual−r e s ou r e s / '

}

Note the �{id}� variable in the URI pattern: the resoure expets the node ID to appear there.

Now add a �MongoDbTreeResoure� to your �/libraries/manual-resoures.js�:

doument . exeuteOne (' / d i l i g e n e / i n t e g r a t i o n/ f rontend / senha / ')

r e s ou r e s = {

. . .

textpak : new D i l i g en e . Senha . MongoDbTreeResoure({ o l l e t i o n : ' textpaks ' })

}

Custom Queries

In the above example, the �id� segment in the URI will be used for a MongoDB ��ndOne� operation in the olletion

for the doument �_id�, and the entire doument (minus the �_id� �eld) will be used for the tree data. However,

Diligene allows you to ustomize this data searh and extration:

r e s ou r e s = {

. . .

textpak : new D i l i g en e . Senha . MongoDbTreeResoure({ o l l e t i o n : ' textpaks ' , query : { l o a l e : ' en ' } , f i e l d : ' text ' })

}

The �query� key will be used for the MongoDB ��ndOne� operation, and the ��eld� key spei�es whih �eld in

the doument ontains the tree data.

50

http://docs.mongodb.org/manual/applications/database-references/
http://threecrickets.com/api/javascript/?namespace=Diligence.Sencha
http://docs.sencha.com/ext-js/4-1/

Custom Text

By default, the text for eah node will be the key for tree folders and the stringi�ed value for tree leaves. But, you

an ustomize this by overriding the �getNodeText� method:

r e s ou r e s = {

. . .

textpak : new D i l i g en e . Senha . MongoDbTreeResoure({

 o l l e t i o n : ' textpaks ' ,

query : { l o a l e : ' en ' } ,

f i e l d : ' text ' ,

getNodeText : fun t i on (id , node) {

return typeo f node == ' s t r ing ' ? id + ' : ' + node : id

}

})

}

The �id� argument is the key, while the �node� argument is null for tree folders or the value for tree leaves.

Data Struture

The expeted doument data struture is quite straightforward: a series of nested dits, for whih non-dit keys

beome tree leaves. For example:

{

"_id " : {

" $oid " : "4 d474457f9e399e7e05e1269"

} ,

" t ex t " : {

" app l i a t i on " : {

" t i t l e " : "MyApp" ,

" d e s r i p t i o n " : "This i s an important app l i a t i on "

}

} ,

" l o a l e " : "en"

}

Here, �text� and �appliation� will both beome tree folders, while �title�, �desription� and �loale� will beome

tree leaves. The �_id� �eld will be ignored by �MongoDbTreeResoure�.

Multi-Doument Data Struture

The tree data an be split among several douments using MongoDB DBRefs. Diligene will feth the referred

doument and use the ��eld� key, if it was set, to retrieve a spei� �eld. This an ontinue reursively to any

depth.

Let's add a DBRef (using MongoDB's extended JSON notation, via the �$ref� key) to another doument in our

olletion:

{

"_id " : {

" $oid " : "4 d474457f9e399e7e05e1269"

} ,

" t ex t " : {

" app l i a t i on " : {

" t i t l e " : "MyApp" ,

" d e s r i p t i o n " : "This i s an important app l i a t i on " ,

"more " : {

" $ r e f " : " textpaks " ,

" $ id " : "4 d6831f97699e71b8eaf0e"

}

51

http://docs.mongodb.org/manual/applications/database-references/

}

} ,

" l o a l e " : "en"

}

The DBRef node will appear in the tree as a non-expanded folder so that the user will have to expliitly expand

it in order to feth the nodes underneath. If you require all nodes to be expanded, you an all �expandAll� on the

tree after it is loaded.

In-Memory Data

As with the REST Servie, you an also avoid MongoDB and reate an in-memory tree resoure:

var textpak = {

app l i a t i on : {

t i t l e : 'MyApp' ,

d e s r i p t i o n : ' This i s an important app l i a t i on '

}

}

r e s ou r e s = {

. . .

textpak : new D i l i g en e . Senha . InMemroyTreeResoure ({ t r e e : textpak })

}

Note that there is no distributed version of this, beause it's unneessary: the tree data is read-only, so there's

no reason to synhronize the data aross the luster.

Usage

URI-spae

Tree widgets are read-only, so the �MongoDbTreeResoure� is signi�antly simpler to implement than �MongoD-

bResoure�. It only handles HTTP GET. Moreover, sine this resoure is designed for Ext JS, it only supports

JSON, not XML. The only URI query parameter supported is �human=true�, to return multiline, indented JSON

representations.

What is a bit more ompliated here is the node ID pattern. To support the reursive nature of the tree, the

node ID is onstruted using the path of the node starting at the root, with �/� as a separator. The root node is

simply �/�. (These onstants are on�gurable.)

To show how this works, let's lay out all the node IDs from the example data struture provided above:

/

/ t ex t

/ t ex t / app l i a t i on

/ tex t / app l i a t i on / t i t l e

/ t ex t / app l i a t i on / d e s r i p t i o n

/ l o a l e

Note that when inlude the node ID in the URI, you have to URI-enode it. The URI-ode for a �/� is �%2f�.

As an example, let's feth a node using URL in the ommand line:

 u r l "http :// l o a l h o s t :8080/myapp/data/ textpak/%2 f t e x t%2f a pp l i a t i o n /?human=true "

If you are using Apahe to reverse-proxy to your server, you may �nd that it does not proxy URLs with a

�%2f�. To solve this problem, you need to add the �AllowEnodedSlashes NoDeode� diretive, and also

add the �noanon� attribute to your �ProxyPass� diretive. For more information, see this disussion.

52

http://stackoverflow.com/questions/4390436/need-to-allow-encoded-slashes-on-apache

Tree Widget

A full tutorial of Ext JS trees is beyond what we an do in this Manual, but here are is a quik overview of the

omponents as they apply to Diligene:

• The �TreeStore� is manages data for the tree. It handles ahing of tree node instanes in memory. Note that

we've set �defaultRootId� to �/�, instead of the default �root�. This is to math Diligene's path-based node

ID pattern (see above).

• The store also de�nes a �Proxy,� whih is Ext JS's extensible onnetor lass. Proxies are in harge of loading

the data. In this ase, we are using a �diligene� proxy type. This is a ustom type that we have de�ned in

Diligene's Ext JS helper library. It's rather simple, and you are free to use the �ajax� proxy type instead with

the modi�ations we've made there. The �diligene� proxy is on�gured to automatially support MongoDB's

extended JSON notation and also use Diligene's URL style. We've additionally set the �root� property for

the reader to �douments� (where the node's hildren will be found).

• Finally, there's the tree panel, whih is linked to the store.

That should be enough to get you started. Here's how the ode looks:

<html>

<head>

<%

doument . exeuteOne (' / d i l i g e n e / i n t e g r a t i o n/ f rontend / senha / ')

D i l i g en e . Senha . extJsHead (onve r sa t i on)

%>

</head>

<body>

<div id="t r e e"></div>

</body>

<s r i p t type="tex t / j a v a s r i p t">

Ext . onReady(fun t i on () {

var s t o r e = Ext . r e a t e (' Ext . data . TreeStore ' , {

proxy : {

type : ' d i l i g en e ' ,

u r l : '<%= onver sa t i on . pathToBase %>/data/ textpak / '

} ,

de fau l tRootId : ' / ' ,

autoLoad : t rue

}) ;

Ext . r e a t e (' Ext . t r e e . Panel ' , {

s t o r e : s tore ,

au t oS r o l l : true ,

useArrows : true ,

r o o tV i s i b l e : f a l s e ,

renderTo : ' t ree ' ,

s t y l e : {

margin : ' auto '

} ,

width : 500 ,

he ight : 400

}) ;

}) ;

</s r i p t >

</html>

53

http://docs.sencha.com/ext-js/4-1/#!/api/Ext.data.TreeStore
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.data.proxy.Proxy
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.tree.Panel

Senha Integration: Charts

TODO

Usage

TODO

Senha Integration: Forms

Setup

We're using the Diligene Forms Servie, so follow the instrutions there.

The di�erent is that you should use the �Diligene.Senha.Form� lass instead of �Diligene.Forms.Form�. The

former lass extends the latter lass with an extra method to better integrate with Ext JS.

So, in �/libraries/resoures.js�:

doument . exeuteOne (' / d i l i g e n e / i n t e g r a t i o n/ f rontend / senha / ')

. . .

r e s ou r e s = {

. . .

mult ip ly : new D i l i g en e . Senha . Form(multiplyForm)

}

Usage

Con�guring the Form Fields

The �toExtJs� method lets you generate the orret lient-side soure ode for on�guring �elds for the Ext JS

form:

<%

doument . exeuteOne (' / d i l i g e n e / s e r v i e / forms / ')

var form = Di l i g en e . Forms . getForm ('/ mult ip ly / ')

%>

<s r i p t type="tex t / j a v a s r i p t">

var f i e l d s = <%= form . toExtJs (onve r sa t i on) %>;

. . .

</s r i p t >

Note the di�erene between server-side and lient-side JavaSript here!

The �eld on�gurations inlude the following, if they were set up for the �eld:

• The masking regular expression.

• The lient-side validation funtion.

• Internationalization text strings for �eld labels and possible lient-side validation error messages.

You an expliitly disable these like so:

var f i e l d s = <%= form . toExtJs (onversat ion , { l i e n tVa l i d a t i o n : f a l s e , l i entMask ing : f a l s e }) %>;

Internationalization will use text pak stored in the onversation, or you an set one expliitly:

<%

var textPak = Di l i g en e . I n t e r n a t i o n a l i z a t i o n . getPak (' f r ')

%>

var f i e l d s = <%= form . toExtJs (onversat ion , { textPak : textPak }) %>;

54

AJAX Forms

A full tutorial of Ext JS forms is beyond what we an do in this Manual, but here are is a quik example of how

you ould reate an AJAX form to use with Diligene:

<html>

<head>

<%

doument . exeuteOne (' / d i l i g e n e / i n t e g r a t i o n/ f rontend / senha / ')

D i l i g en e . Senha . extJsHead (onve r sa t i on)

%>

</head>

<body>

</body>

<s r i p t type="tex t / j a v a s r i p t">

<%

doument . exeuteOne (' / d i l i g e n e / s e r v i e / forms / ')

var form = Di l i g en e . Forms . getForm ('/ mult ip ly / ')

%>

var f i e l d s = <%= form . toExtJs (onve r sa t i on) %>;

Ext . onReady(fun t i on () {

Ext . r e a t e (' Ext . window .Window' , {

t i t l e : 'MyForm' ,

width : 350 ,

i tems : {

xtype : ' form ' ,

u r l : '<%= onver sa t i on . pathToBase %>/mult ip ly /?mode=json ' ,

border : f a l s e ,

bodyCls : ' x−border−layout−t ' , // Uses the neut ra l bakground o l o r

bodyPadding : 10 ,

layout : ' anhor ' ,

d e f a u l t s : {

anhor : '100% '

} ,

defaultType : ' t e x t f i e l d ' ,

i tems : f i e l d s ,

buttons : [{

t ex t : ' Submit ' ,

d i s ab l ed : true ,

formBind : true ,

handler : f un t i on () {

var form = th i s . up (' form ') . getForm () ;

i f (form . i sVa l i d ()) {

form . submit ({

su e s s : f un t i on (form , a t i on) {

Ext .Msg . a l e r t (' Suess ! ' , a t i on . r e s u l t . msg) ;

} ,

f a i l u r e : f un t i on (form , a t i on) {

Ext .Msg . a l e r t (' Fa i lu r e ! ' , a t i on . r e s u l t . msg) ;

}

}) ;

}

}

} ℄

}) . show () ;

}) ;

</s r i p t >

55

</html>

Standard Forms

Ext JS an also perform a standard submission instead of using AJAX. The result is that you get the nie GUI

of Ext JS, inluding lient-side validation, but as far as the server is onerned, the behavior is like the standard

HTML <form> mehanism.

Why would want to do this? Honestly, with Diligene handling AJAX forms for you, it's hard to imagine a use

ase. Nevertheless, we'll tell you how to do this, for ompletion's sake.

Let's use the Diligene Form Servie's manual mode:

<s r i p t type="tex t / j a v a s r i p t">

<%

doument . exeuteOne (' / d i l i g e n e / s e r v i e / forms / ')

var form = Di l i g en e . Forms . getForm ('/ mult ip ly / ')

var r e s u l t s = form . handle (onve r sa t i on)

%>

var f i e l d s = <%= form . toExtJs (onversat ion , { r e s u l t s : r e s u l t s }) %>;

. . .

</s r i p t >

Note how we added �results� to �toExtJs�. This makes sure that the �elds will be initialized with the previous

form submission values, and also the orret error odes for �eld validation.

Ext Diret Forms

Finally, Ext JS forms an also use Ext Diret, Senha's RPC mehanism, whih is niely supported by Diligene,

instead of the regular AJAX mode. Going this route means that you will not use the Diligene Forms Servie at

all, and use the Diligene RPC Servie instead.

We reommend using the Diligene Forms Servie if you an, beause it will give you fuller ontrol over �eld

validation. However, Ext Diret might be nie to use if you already are using it a lot and have everything set up

for it. In any ase, Ext Diret is fully supported, and sine it's also based on AJAX, the user experiene is pretty

muh the same.

You will need to add an extra attribute when setting up Ext Diret, to make sure that it supports form

submission, and also return the results in the appropriate format. Here's an example �/libraries/resoures.js�,

similar to the one for the RPC Servie:

doument . exeuteOne (' / d i l i g e n e / i n t e g r a t i o n/ f rontend / senha / ')

var Cal = {

mult ip ly : {

fn : fun t i on (x , y) {

return {

su e s s : true ,

msg : '{0} t imes {1} i s {2} ' . a s t (x , y , x y)

}

} ,

ex tD i r e t : {

formHandler : t rue

}

}

}

r e s ou r e s = {

. . .

 a l : new D i l i g en e . Senha . DiretResoure ({name : 'MyApp' , namespaes : {Cal : Cal }})

}

Then, on the lient you would reate your form after initializing Ext Diret like so:

56

<s r i p t type="tex t / j a v a s r i p t">

fun t i on openForm () {

Ext . r e a t e (' Ext . window .Window' , {

t i t l e : 'MyForm' ,

width : 350 ,

i tems : {

xtype : ' form ' ,

ap i : {

submit : MyApp. Cal . mult ip ly

} ,

. . .

}

}) . show () ;

}

Ext . onReady(fun t i on () {

Ext . Ajax . r eque s t ({

u r l : '<%= onver sa t i on . pathToBase %>/a l / ' ,

method : 'GET' ,

d i sab leCah ing : f a l s e ,

s u e s s : f un t i on (response) {

var prov ide r = Ext . deode (response . responseText) ;

Ext . D i r e t . addProvider (p rov ide r) ;

openForm () ;

} ,

}) ;

}) ;

</s r i p t >

Note that instead of supplying a �url� key to the form on�guration, we use �api� and hook the �submit� key to

our Ext Diret method. Ext JS will take are of the rest.

Senha Integration: Ext Diret

Diligene makes it trivial to support Ext Diret, Senha's straightforward RPC protool. Ext Diret it has exellent

support in Ext JS and Senha Touh: the frameworks generate a lient-side namespae for you with asynhronous

methods equivalent to those on the server. All you have to do is all them! Operations are bathed for maximum

e�ieny, and errors are handled as elegantly as an be.

Diligene atually takes Ext Diret one step ahead in letting you automatially generate the API on�guration

on the server. A �GET� to the resoure will retrieve the JSON needed to on�gure the lient-side provider. We

show this in detail under �Usage,� below.

Ext Diret's funtionality is pratially idential to that JSON-RPC, but the protool is inompatible. It may

be unfortunate that Senha deided not to use that better-known protool, but in any ase Diligene supports both.

Setup

Make sure to hek out the server-side API doumentation for Diligene.Senha and Diligene.RPC, as well as the

lient-side API doumentation for Ext Diret.

Ext Diret setup is almost idential to RPC Servie setup, so make sure you read the setion there.

One small di�erene is in how Ext Diret handles namespaes. First of all, you annot have an empty namespae

(the �.� namespae in JSON-RPC). And, seond, you an optionally set up a lient-side namespae, using the �name�

key. Here's an example �/libraries/resoures.js�, similar to the one for the RPC Servie:

doument . exeuteOne (' / d i l i g e n e / i n t e g r a t i o n/ f rontend / senha / ')

var Cal = {

mult ip ly : fun t i on (x , y) {

57

http://www.sencha.com/products/extjs/extdirect
http://json-rpc.org/
http://threecrickets.com/api/javascript/?namespace=Diligence.Sencha
http://threecrickets.com/api/javascript/?namespace=Diligence.RPC
http://docs.sencha.com/ext-js/4-1/#!/api/Ext.direct.Manager

return x y

}

}

r e s ou r e s = {

. . .

 a l : new D i l i g en e . Senha . DiretResoure ({name : 'MyApp' , namespaes : {Cal : Cal }})

}

It is also possible to set Ext Diret method attributes using the long-form method de�nition with the �extDiret�

key.

Ext JS Forms

Ext Diret an be used to respond to Ext JS form submissions. To do so, we need to set the �formHandler� attribute

and also return an appropriate response:

var Cal = {

mult ip ly : {

fn : fun t i on (x , y) {

return {

su e s s : true ,

msg : '{0} t imes {1} i s {2} ' . a s t (x , y , x y)

}

} ,

ex tD i r e t : {

formHandler : t rue

}

}

}

See the setion on Ext JS Forms for more information on usage. Note furthermore that Diligene supports all

of Ext JS's form submission mehanisms.

Usage

See the Ext JS doumentation for full details on the lient-side API. Otherwise, here's a quik tutorial, whih also

shows you how to feth the provider on�guration from the resoure.

Here's an example of a dynami web page, say �diret.d.html�:

<html>

<head>

<%

doument . exeuteOne (' / d i l i g e n e / i n t e g r a t i o n/ f rontend / senha / ')

D i l i g en e . Senha . extJsHead (onve r sa t i on)

%>

</head>

<body>

</body>

<s r i p t >

fun t i on i n i t () {

MyApp. Cal . mult ip ly (2 , 3 , fun t i on (prov ider , response) {

i f (response . type == ' exept ion ') {

Ext .Msg . a l e r t (' Mu l t ip l i a t i on ' , ' Exeption : ' + response . message) ;

}

e l s e {

Ext .Msg . a l e r t (' Mu l t ip l i a t i on ' , re sponse . r e s u l t) ;

}

}) ;

58

}

Ext . Ajax . r eque s t ({

u r l : '<%= onver sa t i on . pathToBase %>/a l / ' ,

method : 'GET' ,

d i sab leCah ing : f a l s e ,

s u e s s : f un t i on (response) {

var prov ide r = Ext . deode (response . responseText) ;

Ext . D i r e t . addProvider (p rov ide r) ;

i n i t () ;

} ,

f a i l u r e : f un t i on (response) {

onso l e . l og (response) ;

}

}) ;

</s r i p t >

</html>

Some notes:

• Make sure you understand the di�erene between the server -side JavaSript (between the �<%� and �%>�

delimiters) and the lient-side JavaSript (between the �<sript>� and �</sript>� delimiters)!

• We are using �Ext.Ajax.request� to do a �GET� on our resoure. It will return the JSON needed for the all

to �Ext.Diret.addProvider�. Here's how it would look in our example:

{

" a t i on s " : {

"Cal " : [{

"name" : "mult ip ly " ,

" l en " : 2

} ℄

} ,

"namespae " : "MyApp"

}

You an avoid that �Ext.Ajax.request� all by simply opying and pasting that JSON into your lient-side

soure ode. This extra all is simply a onveniene allowing you to modify the server-side ode without

worrying about also having to update the lient-side ode aordingly. You might prefer to keep this extra

all during development, and then freeze it for prodution ode.

• We are disabling the default �disableCahing� mode in �Ext.Ajax.request�. Ext JS disabled ahing by default

in order to better deal with servers that do not handle REST properly. Sine Prudene does this for us, there's

no reason to avoid lient-side ahing if it's possible.

• The last argument for any Ext Diret method is a allbak that is alled when the server returns a response.

It's umbersome, but that's the prie you pay for asynhronous remote alls! Also note that you want to

properly handle server and network failures.

Blog Feature

TODO

Usage

Make sure to hek out the API doumentation for Diligene.Blog.

59

http://threecrickets.com/api/javascript/?namespace=Diligence.Blog

Console Feature

TODO

Usage

Make sure to hek out the API doumentation for Diligene.Console.

Contat Us Feature

This simple feature ontains a /web/fragment/ that displays an HTML form with a CAPTCHA that allows users

to send a message on a spei� noti�ation servie (page 28) hannel. System administrators or others subsribing

to the hannel would then reeive it. Straightforward!

Note that a di�erent form is displayed depending on whether the user is logged in. Logged-in users will not have

to enter their email address or pass the CAPTCHA. We already know they are legit, by virtue of having logged in!

The originating IP address is inluded in the email.

Usage

Make sure to hek out the API doumentation for Diligene.ContatUs.

Disussion Feature

This feature lets you attah a �forum� to any MongoDB doument. It ould be a Page from the Wiki Feature, a

blog post, or just anything in your appliation. Of ourse, permissions apply, and you an allow, for example, for

registered users to post new threads and have �visitor� users (Faebook, Twitter, et.) only the right to omment.

The disussion is threaded, in that omments an have any level of depth. It's very easy to drop in, and makes a

lot of web appliation features instantly soiable.

Usage

Make sure to hek out the API doumentation for Diligene.Disussion.

Editable Graph Strutures in MongoDB

If you'll take a look at Diligene's Ext JS tree integration, you'll see it's pretty neat. It's literally neat beause

the trees for Ext-JS are immutable, and easily stored in a MongoDB doument, whih an hold a struture of

arbitrary depth. However, if you want your tree to hange by multiple users and threads, doument databases suh

as MongoDB begin to show some of their limitations. (Graph databases, suh as neo4j, are of ourse perfet for

this use ase.)

Nevertheless, it's not impossible, and an get exellent all-around performane for mutability. How is this solved

for the Disussion Feature? MongoDB's atomi operations do not support suh reursion, so we needed a di�erent

method. You an see ideas on the MongoDB trees page.

After some onsideration, we used a variation of the �materialized paths� pattern. We have the forum posts

stored as plain array, with eah having a path as well as a parent �eld. We parse this doument on load, to give

it a tree-like struture more amenable to work with. The �at storage struture, however, allows for easy use of

MongoDB's atomi update operation. For eah post, we store a �nextResponse� running serial. We update it

atomially with $in for eah new post, to make sure it's unique, and append that number to the parent's path to

reate the new path. We then add the new response using MongoDB's $push. The result is that any number of users

an respond at the same time to the same forum, and eah response takes only two MongoDB write operations,

only one of whih waits for the response. We're guaranteed atomiity and uniqueness of eah path ID.

A graph DB would do this better, but the real omparison would be to a relational database. Just two writes,

but the whole forum is read with one read. We think this ounts as a smashing suess!

You'll notie a rule of thumb we've applied here, useful in general when working with MongoDB: if in relational

database you always want your tables to be normalized, in doument databases your goal is to use as few douments

as possible. In this ase, the entire forum is embedded into one doument (together with the doument's other

60

http://threecrickets.com/api/javascript/?namespace=Diligence.Console
http://threecrickets.com/api/javascript/?namespace=Diligence.ContactUs
http://threecrickets.com/api/javascript/?namespace=Diligence.Discussion
http://www.mongodb.org/display/DOCS/Trees+in+MongoDB

data, if there is any). The doument limit in MongoDB is 4MB, easily adequate for suh disussions. But, what if

you want a more open forum, with no limitations on size? Well, the Disussion Feature also omes with a forum

implementation that stores eah thread in post in its own doument, or even eah post in its own doument. All

use the same API. Mix and math for the best performane and growth ability suitable for your needs.

Registration Feature

This omplement to the authentiation servie (page 5) uses a two-step proess to allow new users to register to

your appliation. As is ommon, it expets users to have a personal email address, whih will be used to both

on�rm the identity of the user and to ommuniate with the user when they are not logged in.

The feature ontains a /web/fragment/ HTML form with a CAPTCHA, whih ollets the user's email, user-

name, password and possibly some personal information. The form will be valid only of the username is not already

in use.

If the form is valid, the user is reated but not yet ativated. An email is sent to the user with a unique,

impossible-to-guess URL, whih an be used only one. If they lik on that link, the user is ativated.

The feature allows for not-yet-ativated users to be automatially deleted after a ertain time. This would

release the username for others to use.

Usage

Make sure to hek out the API doumentation for Diligene.Registration.

SEO Feature

This feature helps you omply with a few de fato searh engine standards to improve your interation with them,

spei�ally robots.txt and sitemap.xml.

At �rst glane, there's nothing very sophistiated about these standards, and you might be tempted to reate

the required text �les manually and then serve them statially. However, large appliations with many URLs an

easily have unwieldy site maps. This Diligene feature helps you reate them and manage them fairly automatially.

It supports very, very large site maps.

Usage

Make sure to hek out the API doumentation for Diligene.SEO.

The Goods

robots.txt

Searh engines expet to �nd this resoure right at the root of your domain. Its plain text ontent tells them where

to �nd your sitemap URL, and an also ontrol the rawling of your domain.

Your robots.txt will likely not be very dynami. Beause it mathes URLs starting with stated URLs, it an

easily over large setions of your site, and require infrequent tweaking.

When would you need a lot of robots.txt tweaking? A ommon ase for large sites is that publi resoures

are depreated or otherwise anelled. In suh ases you still want to keep them up for referene, and to allow

hyperlinks elsewhere on the web to still be able to reah them�there's SEO value in that. But, you do not want

these resoures to appear in searh engines and onfuse users (you want them to �nd the new, better resoures). A

robots.txt exlusion would do the trik.

sitemap.xml

If your robots.txt doesn't state otherwise, then this resoure will also be at the root of your domain. Its XML ontent

an either list URLs diretly, or, more ommonly, at as the primary index of other XML �les alled URL sets.

Searh engines do take site maps seriously. A arefully maintained site map would help them keep up to date

with your dynami site, in turn helping to get human searhers to the page they want (or the page you want them

to want. . .). It's likely this would indiretly and diretly improve your ranking, too.

61

http://threecrickets.com/api/javascript/?namespace=Diligence.Registration
http://threecrickets.com/api/javascript/?namespace=Diligence.SEO
http://www.robotstxt.org/robotstxt.html
http://sitemaps.org/protocol.php

Dynami or Stati?

URL sets an grow to be very large (think: Wikipedia), so searh engines have put limits on �le size: 50,000 URLs

per �le and 10MB, unompressed. That's right, you're allowed to ompress your site map �les with gzip to save

bandwidth. There doesn't seem to be a limit on the number of �les you an serve, so potentially your site map an

be as big as needed.

Diligene supports two ways of generating site map resoures: dynami (via /web/fragments/) and stati

(via /web/stati/). Dynami is the default, and should be �ne for small web sites. It generates robots.txt and

sitemap.xml on demand, using Prudene's standard ahing to keep things smooth and fast.

But, dynami mode does not support more than 50,000 URLs per URL set. What's more, it generates these

within the HTTP request thread. So, you de�nitely do not want to use dynami mode for large sites, or sites whih

are slow to generate the URL sets! If you do, eah time you get hit by a searh engine for the site map (an happen

several times a day for �hot� sites!) a web request thread will be tied up for the length of time it takes to generate

the huge URL set. There are two problems for this: �rst and worst, the searh engine may penalize you for being

so slow, and seond, even if you are ahing aggressively, it means that you will oasionally have one very heavy

request, breaking the ironlad rules laid out in Prudene's Saling Tips artile.

Stati mode an support URL sets of any size: it works by generating all required �les in an asynhronous

Prudene task so that they an take as muh time as neessary, without tying up any user thread. You an set the

task to run via Prudene's rontab: one a day, twie a day, et. The task makes sure to split URL sets into �pages�

of 50,000 URLs max, and to gzip ompress them. It even makes sure to generate them in a separate spool diretory,

and then swap them all at one, so that searh engines hitting your site exatly during site map generation don't

see a partial, inonsistent piture. And it all happens asynhronously, using Diligene tasks, so that multiple URL

sets an be generated simultaneously. And, of ourse, sine they are plain old �les, you an also host them outside

of Prudene.

Note that robots.txt is always generated dynamially: its size limit is 100KB, whih should be manageable. The

impliation is that you an't go razy with very large lists of exlusions/inlusions. If this is an issue, you an use

meta tags instead.

Instrution Manual

Every appliation in your Prudene instane an have its own URL sets, but it only makes sense for the root

appliation to have both robots.txt and sitemap.xml. We'll start our guide with an appliation that is not the at

root, beause it's simpler.

From our settings.js:

p r ede f inedGloba l s = S i n e r i t y . Objets . f l a t t e n ({

d i l i g e n e : {

f e a tu r e : {

seo : {

domains : [{

rootUr i : ' http : // l o a l h o s t : 8080 '

} , {

rootUr i : ' http : // t h r e e r i k e t s . om '

} ℄ ,

l o a t i o n s : [{

name : ' the−r ea l−thing ' ,

domains : [' http : // l o a l h o s t : 8080 ' , ' http : // t h r e e r i k e t s . om ' ℄ ,

l o a t i o n s : [' / happy / ' , '/ t h i s / ' , '/ i s / ' , '/ working / ' ℄ ,

e x l u s i on s : [' / d i l i g e n e /media / ' , '/ d i l i g e n e / s t y l e / ' , '/ d i l i g e n e / s r i p t / ' ℄ ,

i n l u s i o n s : [' / d i l i g e n e /media/name / ' ℄ ,

f a t o r y : ' Exp l i i t '

} , {

name : ' t e s t ' ,

domains : [' http : // l o a l h o s t : 8 0 8 0 ' ℄ ,

f a t o r y : 'Fake ' ,

dependeny : '/ about/ f e a tu r e / seo/ fake−l o a t i o n s / '

} ℄

}

62

http://threecrickets.com/prudence/scaling/
http://www.robotstxt.org/meta.html

}

}

})

Note the two arrays: domains and loations. There is a many-to-many onnetion between them, suh your

appliation an support many domains, many loation groups, and apply di�erent loations groups to di�erent

domains. This is beause Prudene allows for multiple virtual hosting, so that eah appliation may very well be

running on di�erent domains at the same time, and may want to present itself di�erently to searh engines on eah

domain.

If you don't need to support virtual hosting, ignore the domains array and domains parameters: it will be

assumed that your loations are to be applied to all domains.

You then route the SEO resoures for the appliation in its routing.js:

doument . exeuteOne (' / d i l i g e n e / f e a tu r e / seo / ')

D i l i g en e .SEO. rout ing ()

Loations

Loations are on�gured using Diligene's plug-in library, whih uses the fatory pattern to generate plug-ins. In

our �rst loations on�g, we used the �Expliit� fatory, whih is built-in to the SEO feature. This lets use expliitly

list our loations as arrays within the on�g. Obviously, this is useful only for very small sites with a known list of

URLs.

The �name� �eld is important: this beomes exatly the name of the URL set as it appears in the site map. As

for exlusions and inlusions: they are lumped into robots.txt.

More interesting is our seond loations on�g: it uses our own fatory, whih we alled �Fake�. This fatory

generates lots and lots (300,000) fake loations, and is useful for testing out very large site maps. (Bottom line: it

takes about 7 seonds to generate the omplete, gzip-ompressed 7-page site map for that many URLs.) It's also a

good example for you to use to reate your own loation fatories.

The key to fatory suess is understanding Iterators: as long as you keep your iterator properly fed, you should

be able to sale to site maps of sary sizes.

One more thing to note is that eah loations on�g will be exeuted simultaneously on its own tasks thread,

and this is true for all loations on�gs on all appliations whih you inlude in your root appliation, as detailed

below.

The Root Appliation

At minimum, the settings.js of the root appliation should look something like this:

p r ede f inedGloba l s = S i n e r i t y . Objets . f l a t t e n ({

d i l i g e n e : {

f e a tu r e : {

seo : {

domains : [{

rootUr i : ' http : // l o a l h o s t : 8080 ' ,

a p p l i a t i o n s : [{

name : 'My Appl i at ion ' ,

internalName : 'myapp '

} ℄ ,

de laySeonds : 100 ,

dynami : f a l s e ,

s t a t i Re l a t i v ePa th : ' sitemap−l o a l ' ,

workRelativePath : ' sitemap−l o a l '

} ℄

}

}

}

})

63

http://threecrickets.com/api/javascript/?namespace=Sincerity.Iterators

You'll see that we added a few more �elds to our domain on�g: beyond the root URI, we are also on�guring

our robots.txt here, whih we will be hosting, and on�guring the paths to use for stati generation. The stati path

is relative to the appliation's /web/stati/ diretory, while the work path will be under your appliation's root

diretory's �work� subdiretory. Alternatively, you an use �statiPath� or �workPath� to provide absolute paths.

For example, you might prefer to use �workPath: '/tmp/sitemap�'.

Note that these paths are per domain: if you hosting multiple domains via virtual hosting, eah site map should

go to a di�erent path. Via a simple �lter we make sure that eah domain gets it orret site map. Thus, the outside

world doesn't atually see these stati subdiretories: the URI spae for the site map all appears, publily, at the

root.

The truly magial �eld is �appliations�: this is an array of appliation names for whih loations will be

added to this domain. The URL sets for eah appliation for this will be merged into the main site map, and its

exlusions/inlusions will be merged into robots.txt. It's up to you to make sure that URL set names from all

appliations don't overlap, sine their �les are all moved into the same stati diretory.

The root appliation an also have its own �loations� �eld, whih will also be merged in. We omitted it in this

example for simpliity.

To have your site map generated regularly, put something like the following in your appliation's rontab (as a

single line). In this example, we're having our site map generator run every day at 4:00AM:

0 4 / d i l i g e n e / eva l / doument . exeuteOne (' / d i l i g e n e / f e a tu r e / seo / ') ; SEO. getDomain (' http :// l o a l h o s t : 8 0 8 0 ') . g en e r a t eS t a t i () ;

You then route the SEO resoures for the root appliation in its routing.js:

doument . exeuteOne (' / d i l i g e n e / f e a tu r e / seo / ')

D i l i g en e .SEO. rout ing (true)

Well, one tiny little onveniene here: though you do need to install the routes in your root appli-

ation, you are free to host the SEO resoures on another app (works via the magi of Prudene's router.aptureOther).

So, we an all SEO.install(true, 'myapp').

. . . And do all of the SEO stu� on myapp, even though it's not at root. The root appliation really doesn't have

to do anything else.

Optionally, you an also <a href="http://threerikets.om/prudene/manual/stati-web/#to-Subsetion-

55">register the �.gz� extension to serve the gzip MIME type. Searh engines would not really are, but

it makes your URI-spae more orret and debuggable. Do this in the appliation's default.js:

doument . exeuteOne (' / d i l i g e n e / f e a tu r e / seo / ')

D i l i g en e .SEO. r e g i s t e rEx t en s i on s ()

And that's pretty muh it!

Shopping Cart Feature

TODO

Usage

Make sure to hek out the API doumentation for Diligene.ShoppingCart.

Wiki Feature

TODO

Usage

Make sure to hek out the API doumentation for Diligene.Wiki.

64

http://threecrickets.com/prudence/manual/filtering/
http://threecrickets.com/prudence/manual/tasks/#crontab
http://threecrickets.com/api/javascript/?namespace=Diligence.ShoppingCart
http://threecrickets.com/api/javascript/?namespace=Diligence.Wiki

	Assets Service
	Usage

	Authentication Service
	Usage

	Authorization Service
	Usage

	Backup Service
	Usage

	Documents Service
	Usage
	Configuration

	Events Service
	Usage
	Configuration

	Forms Service
	Setup
	Usage

	HTML Service
	Usage

	Internationalization Service
	Setup
	Usage
	Configuration

	Cache Service
	Usage

	Linkback Service
	Usage

	Nonces Service
	Usage
	Configuration

	Notification Service
	Usage
	Configuration

	Progress Service
	Usage

	REST Service
	Setup
	Usage
	Extension

	RPC Service
	Setup
	Usage

	Search Service
	Usage

	Serials Service
	Usage

	Syndication Service
	Usage
	Links

	Gravatar Integration
	Usage

	PayPal Integration
	Usage

	Sencha Integration
	Usage

	Sencha Integration: Grids
	Setup
	Usage

	Sencha Integration: Trees
	Setup
	Usage

	Sencha Integration: Charts
	Usage

	Sencha Integration: Forms
	Setup
	Usage

	Sencha Integration: Ext Direct
	Setup
	Usage

	Blog Feature
	Usage

	Console Feature
	Usage

	Contact Us Feature
	Usage

	Discussion Feature
	Usage
	Editable Graph Structures in MongoDB

	Registration Feature
	Usage

	SEO Feature
	Usage
	The Goods
	Dynamic or Static?
	Instruction Manual

	Shopping Cart Feature
	Usage

	Wiki Feature
	Usage

